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Abstract. In this present work, authors are introduced a new subclass of bivalent functions SΣ(α,x, p,q) with

respect to symmetric conjugate points in the open unit disc U related to (p,q) polynomials. Further the initial

bounds of the subclass and the well known Fekete-Szegö inequality are determined.
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1. INTRODUCTION

Let R=(−∞,∞)be the set of real numbers, C be the set of complex numbers and

N := 1,2,3...= N0\{0}

be the set of positive integers.
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Let A denote the family of normalized analytic functions f of the form

(1.1) f (z) = z+
∞

∑
k=2

akzk (z ∈ U)

in the open disc U = {z : z ∈ C : |z| < 1}. Further, let S denote the class of functions in A

which are also univalent in U.

The well-known Koebe one-quarter theorem [2] ensures that the image of U under every

univalent function f ∈ A contains a disc of radius 1/4. Hence every univalent function f has

an inverse f−1 satisfying f−1( f (z)) = z,(z ∈ U) and

f−1( f (w)) = w,(|w|< r0( f ),r0( f )≥ 1/4) ,

where

(1.2) g(w) = f−1(w) = w−a2w2 +(2a2
2−a3)w3− (5a3

2−5a2a3 +a4)w4 + · · · .

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U. Let

Σ denote the class of bi-univalent functions in U given by (1.1). For example, functions in the

class Σ are given below [8]:

z
1− z

, −log(1− z),
1
2

log
(

1+ z
1− z

)
.

In 1967, Lewin [5] introduced the class Σ of bi-univalent functions and shown that |a2| <

1.51. In 1969, Netanyahu [7] showed that max f∈Σ|a2| = 4/3 and Suffridge [9] have given an

example of f ∈ Σ for which |a2| = 4/3. Later, in 1980, Brannan and Clunie [1] improved the

result as |a2| ≤
√

2. In 1985, Kedzier-awski [3] proved this conjecture for a special case when

the function f and f−1 are starlike. In 1984, Tan [10] proved that |a2| ≤ 1.485 which is the best

estimate for the function in the class of bi-univalent functions.

For any integer n ≥ 2 and 0 < q < p ≤ 1, the (p,q)-Chebyshev polynomials of the second

kind is defined by the following recurrence relations:

Un(x,s, p,q) = (pn +qn)xUn−1(x,s, p,q)+(pq)n−1sUn−2(x,s, p,q)

with the initial values U0(x,s, p,q) = 1, U1(x,s, p,q) = (p+ q)x and ’s’ is a variable. By As-

suming various values of x,s,p and q we get some interesting polynomials as follows:
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• When x =
x
2

, s = s, p = p and q = q, the (p, q)- Chebyshev polynomials of the second

kind becomes (p, q)-Fibonacci polynomials.

• When x = x, s = -1, p = 1 and q = 1, the (p, q)- Chebyshev polynomials of the second

kind becomes Second kind of Chebyshev polynomials.

• When x =
x
2

, s = 1, p = 1 and q = 1, the (p, q)- Chebyshev polynomials of the second

kind becomes Fibonacci polynomials.

• When x =
1
2

, s=1, p=1 and q=1, the (p, q)- Chebyshev polynomials of the second kind

becomes Fibonacci numbers.

• When x = x, s = 1, p = 1 and q = 1, the (p, q)- Chebyshev polynomials of the second

kind becomes Pell polynomials.

• When x = 1, s = 11, p = 1 and q = 1, the (p, q)- Chebyshev polynomials of the second

kind becomes Pell numbers.

• When x =
1
2

, s = 2y, p = 1 and q = 1, the (p, q)- Chebyshev polynomials of the second

kind becomes Jacobsthal polynomials.

• When x =
1
2

, s=2, p=1 and q=1, the (p, q)- Chebyshev polynomials of the second kind

becomes Jacobsthal numbers.

Recently Kızılate¸s et al.[4] defined (p, q)-Chebyshev polynomials of the first and second

kinds and derived explicit formulas, generating functions and some interesting properties of

these polynomials.

The generating function of the (p, q)- Chebyshev polynomials of the second kind is as fol-

lows:

Gp,q(z) =
1

1− xpzτp− xqzτq− spqz2τp,q

=
∞

∑
n=0

Un(x,s, p,q)zn (z ∈ U)

where the Fibonacci operator τq was introduced by Mason [6], τq f (z) = f (qz). Similarly,

τp,q f (z) = f (pqz).
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Definition 1. For 0 < α ≤ 1, a function s ∈ σ is belong to the class SΣ(α,x, p,q) if it satisfies

the following conditions{
2zs′(z)

s(z)− s(−z)
+

2(zs′(z))′

(s(z)− s(−z))′

− 2αz2s′′(z)+2zs′(z)

αz(s(z)− s(−z))′+(1−α)(s(z)− s(−z))

}
≺ Gp,q(z)

(1.3)

and {
2wr′(w)

r(w)− r(−w)
+

2(wr′(w))′

(r(w)− r(−w))′

− 2αw2r′′(w)+2wr′(w)

αw(r(w)− r(−w))′+(1−α)(r(w)− r(−w))

}
≺ Gp,q(w)

(1.4)

where r = s−1.

By setting α = 0, SΣ(α,x, p,q)=SΣ(0,x, p,q) which holds the following conditions

2(zs′(z))′

(s(z)− s(−z))′
≺ Gp,q(z) and

2(wr′(w))′

(r(w)− r(−w))′
≺ Gp,q(z),

where r is the extension of f−1.

2. ESTIMATION OF INITIAL COEFFICIENTS & FEKETE-SZEGÖ INEQUALITY

Theorem 1. A function f ∈ Σ of the form (1.1) is said to be in the class SΣ(α,x, p,q), then

(2.1) |a2| ≤
u1(x,s, p,q)

2

 √
u1(x,s, p,q)(m2 +n2)√

(3−2α)u2
1(x,s, p,q)−2(2−α)2


and

(2.2) |a3| ≤
u1(x,s, p,q)

4

 (m2−n2)

(3−2α)−
u1(x,s, p,q)(m2

1 +n2
1)

2(2−α)2

 .
Proof. Suppose that f ∈SΣ(α,x, p,q), then from (1.3) and (1.4){

2zs′(z)

s(z)− s(−z)
+

2(zs′(z))′

(s(z)− s(−z))′

− 2αz2s′′(z)+2zs′(z)

αz(s(z)− s(−z))′+(1−α)(s(z)− s(−z))

}
= Gp,q(φ(z))

(2.3)
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and for its inverse map g = f−1, we have{
2wr′(w)

r(w)− r(−w)
+

2(wr′(w))′

(r(w)− r(−w))′

− 2αw2r′′(w)+2wr′(w)

αw(r(w)− r(−w))′+(1−α)(r(w)− r(−w))

}
= Gp,q(ϕ(w)).

(2.4)

For some analytic functions φ and ϕ such that φ(0) = ϕ(0) = 0 and |φ(z)|= |ϕ(w)|< 1 for all

z,w ∈ U. It is well known that if

|φ(z)|= |m1z+m2z2 +m3z3 + ...|< 1

and

|ϕ(w)|= |n1w+n2w2 +n3w3 + ...|< 1

where z,w ∈ U, then |mk|= |nk|< 1 (∀ k ∈ N).

From (2.3) and (2.4),{
2zs′(z)

s(z)− s(−z)
+

2(zs′(z))′

(s(z)− s(−z))′
− 2αz2s′′(z)+2zs′(z)

αz(s(z)− s(−z))′+(1−α)(s(z)− s(−z))

}

=U0(x,s, p,q)+U1(x,s, p,q)φ(z)+U2(x,s, p,q)φ 2(z)+ · · ·

and{
2wr′(w)

r(w)− r(−w)
+

2(wr′(w))′

(r(w)− r(−w))′
− 2αw2r′′(w)+2wr′(w)

αw(r(w)− r(−w))′+(1−α)(r(w)− r(−w))

}

=U0(x,s, p,q)+U1(x,s, p,q)ϕ(w)+U2(x,s, p,q)ϕ2(w)+ · · · .

Thus, we write{
2zs′(z)

s(z)− s(−z)
+

2(zs′(z))′

(s(z)− s(−z))′
− 2αz2s′′(z)+2zs′(z)

αz(s(z)− s(−z))′+(1−α)(s(z)− s(−z))

}

= 1+U0(x,s, p,q)+m1(z)+
[
U1(x,s, p,q)m2 +U2(x,s, p,q)m2

1
]

z2 + ...

(2.5)

and {
2wr′(w)

r(w)− r(−w)
+

2(wr′(w))′

(r(w)− r(−w))′
− 2αw2r′′(w)+2wr′(w)

αw(r(w)− r(−w))′+(1−α)(r(w)− r(−w))

}

= 1+U0(x,s, p,q)+n1(w)+
[
U1(x,s, p,q)n2 +U2(x,s, p,q)n2

1
]

w2 + · · · .

(2.6)
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By equating the coefficients from (2.5) and (2.6)

(2.7) 2(2−α)a2 = u1(x,s, p,q)m1

(2.8) 2(3−2α)a3 = u1(x,s, p,q)m2 +u2(x,s, p,q)m2
1

(2.9) −2(2−α)a2 = u1(x,s, p,q)n1

(2.10) 2(3−2α)(2a2
2−a3) = u1(x,s, p,q)n2

1.

From (2.7) and (2.9)

(2.11) m1 =−n1

and

(2.12) 8(2−α)2a2
2 = u2

1(x,s, p,q)(m2
1 +n2

1).

By using (2.8) and (2.10) we obtain,

(2.13) 4(3−2α)a2
2 = u1(x,s, p,q)(m2 +n2)+u2(x,s, p,q)(m2

1 +n2
1).

By using (2.12) in (2.13) we get,

(2.14)
[

4(3−2α)− 8(2−α)2u2(x,s, p,q)
u2

1(x,s, p,q)

]
a2

2 = u1(x,s, p,q)(m2 +n2).

From (2.13) we acquired the result which is desired in (2.1).

By subtracting (2.10) from (2.8)

−4(3−2α)(a2
2−a3) = u1(x,s, p,q)(m2−n2)+u2(x,s, p,q)(m2

1−n2
1).

Using (2.11) and (2.12),

4(3−2α)
u2

1(x,s, p,q)(m2
1 +n2

1)

8(2−α)2 +4(3−2α)a3 = u1(x,s, p,q)(m2−n2)



8428 K. DHANALAKSHMI, D. KAVITHA, A. ANBUKKARASI

(2.15) a3 =
u1(x,s, p,q)(m2−n2)

4(3−2α)
+

u2
1(x,s, p,q)(m2

1 +n2
1)

8(2−α)2 .

By using (2.11), we obtain the desired result in (2.2). �

Theorem 2. A function f ∈ Σ of the form (1.1) is said to be in the class SΣ(α,x, p,q), then

|a3−µa2
2| ≤


|u1(x,s, p,q)|

2(3−2α)
, φ ≤ 1

4(3−2α)
,

2|u1(x,s, p,q)||p|, φ ≥ 1
4(3−2α)

.

Proof. From (2.14) and (2.15),

a3−µa2
2 =

[u1(x,s, p,q)]3(m2 +n2)(1−µ)

4(3−2α)u2
1(x,s, p,q)−8(2−α)2u2(x,s, p,q)

+
u1(x,s, p,q)(m2−n2)

4(3−2α)

= u1(x,s, p,q)
[

m2 +

(
φ +

1
4(3−2α)

)
+n2

(
φ − 1

4(3−2α)

)]
where

φ =
u2

1(x,s, p,q)(1−µ)

4(3−2α)u2
1(x,s, p,q)−8(2−α)2u2(x,s, p,q)

.

�

Corollary 1. When α = 0,

|a3−µa2
2| ≤


|u1(x,s, p,q)|

6
, φ ≤ 1

12
,

2|u1(x,s, p,q)||p|, φ ≥ 1
12

.
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[4] S. C. Kızılate¸ N. Tuglu, B. Çekim, On the (p, q)-Chebyshev polynomials and related polynomials, Mathe-

matics, 7 (2019), 136.

[5] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.

[6] J. C. Mason, D. C. Handscomb, Chebyshev Polynomials, Chapman & Hall, Boca Raton (2003).

[7] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a

univalent function in z < 1, Arch. Rational Mech. Anal. 32 (1969), 100-112.

[8] H. M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J.

Egypt. Math. Soc. 23(2) (2015), 242-246.

[9] T. J. Suffridge, A coefficient problem for a class of univalent functions, Michigan Math. J. 16 (1969), 33-42.

[10] D. L. Tan, Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 5 (1984), 559–568.


	1. Introduction
	2. Estimation of Initial Coefficients & Fekete-Szegö Inequality
	Conflict of Interests
	References

