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Abstract. In this paper, for the first time, notion of linear operator is introduced on multi normed linear space.
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1. INTRODUCTION

Multiset, which is considered to be the generalization of a set, is an important concept both

in mathematics and in computer science ([11], [12], [21]). If repeated occurrences of any object

is allowed in a classical set then the mathematical structure is called a multiset (mset, for short),

([20], [22]). We formalize multiset as a collection of elements, each considered with certain

multiplicity. It is written as {k1/x1,k2/x2, ...,kn/xn} in which the element xi occurs ki times.

We note that each multiplicity ki is a positive integer.

In classical set theory, an element can appear only once in a set; it assumes that all math-

ematical objects occur without repetition. Thus, there is only one number zero, one field of
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real numbers, etc. So, two mathematical objects are either equal or they are different. But, in

the physical world there is enormous repetition. For instance, there are many oxygen atoms,

many water molecules, many strands of DNA, etc. Coins of the same denomination and year,

electrons or grains of sand appear similar, despite being obviously separate.

Wayne D. Blizard studied thoroughly about multiset theory, real valued multisets and nega-

tive membership of the elements of multisets ([1], [2],[3],[4]). After that, K. P. Girish and S. J.

John developed the concepts of multiset topologies, multiset relations, multiset functions, ([13],

[14],[15]). Different aspects and applications of multi sets in various directions was studied by

different authors from time to time. For a short list of reference one can see ([23], [17], [18],

[5], [6], [16], [19]).

In our previous papers ([7], [8], [9], [10]), we have introduced the notions of multi metric

space, multi metric topology, convergence in multi metric space, complete multi metric space,

multi linear (vector) space and multi normed linear space along with their various properties

and several examples and counter examples. An analogue of Cantor’s intersection theorem

and Banach’s fixed point theorem are established in multi set settings. In the present paper,

we are going to introduce multi linear operator on multi normed linear space. Continuity and

boundedness of multi linear operator, norm of a multi linear operator are studied along with

their various properties.

2. PRELIMINARIES

Definition 2.1. [13] A multi set M drawn from the set X is represented by a function Count M

or CM defined as CM : X → N where N represents the set of non-negative integers.

Here CM(x) is the number of occurrences of the element x in the mset M. We represent the

mset M drawn from the set X = {x1,x2, ...,xn} as M = {m1/x1,m2/x2, ...,mn/xn} where mi is

the number of occurrences of the element xi in the mset M denoted by xi ∈mi M, i = 1,2, ...,n.

However those elements which are not included in the mset M have zero count.

Example 2.2. [13] Let X = {a,b,c,d,e} be any set. Then M = {2/a,4/b,5/d,1/e} is an mset

drawn from X . Clearly, a set is a special case of an mset.

Definition 2.3. [13] Let M and N be two msets drawn from a set X . Then, the following are

defined:
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(i) M = N if CM(x) =CN(x) for all x ∈ X .

(ii) M ⊂ N if CM(x)≤CN(x) for all x ∈ X .

(iii) P = M∪N if CP(x) = Max{CM(x),CN(x)} for all x ∈ X .

(iv) P = M∩N if CP(x) = Min{CM(x),CN(x)} for al x ∈ X .

(v) P = M⊕N if CP(x) =CM(x)+CN(x) for all x ∈ X .

(vi) P = M	N if CP(x) = Max{CM(x)−CN(x),0} for all x ∈ X , where ⊕ and 	 represents

mset addition and mset subtraction respectively.

Let M be an mset drawn from a set X . The support set of M, denoted by M∗, is a subset of

X and M∗ = {x ∈ X : CM(x)> 0}, i.e., M∗ is an ordinary set. M∗ is also called root set.

An mset M is said to be an empty mset if for all x∈ X ,CM(x) = 0. The cardinality of an mset

M drawn from a set X is denoted by Card(M) or |M| and is given by Card(M) = ∑x∈X CM(x).

Definition 2.4. [7] Multi point: Let M be a multi set over a universal set X . Then a multi point

of M is defined by a mapping Pk
x : X −→ N such that Pk

x (x) = k where k ≤CM(x).

x and k will be referred to as the base and the multiplicity of the multi point Pk
x respectively.

Collection of all multi points of an mset M is denoted by Mpt .

Definition 2.5. [7] The mset generated by a collection B of multi points is denoted by MS(B)

and is defined by CMS(B)(x) = Sup{k : Pk
x ∈ B}.

An mset can be generated from the collection of its multi points. If Mpt denotes the collection

of all multi points of M, then obviously CM(x) = Sup{k : Pk
x ∈Mpt} and hence M = MS(Mpt).

Definition 2.6. [7] (i) The elementary union between two collections of multi points C and D

is denoted by CtD and is defined as CtD = {Pk
x : Pl

x ∈C,Pm
x ∈ D and k = max{l,m}}.

(ii) The elementary intersection between two collections of multi points C and D is denoted

by CuD and is defined as CuD = {Pk
x : Pl

x ∈C,Pm
x ∈ D and k = min{l,m}}.

(iii) For two collections of multi points C and D, C is said to be an elementary subset of D,

denoted by C @ D, iff Pl
x ∈C⇒∃m≥ l such that Pm

x ∈ D.

Definition 2.7. [7] Let mR+ denotes the multi set over R+ (set of non-negative real numbers)

having multiplicity of each element equal to w, w ∈N. The members of (mR+)pt will be called

non-negative multi real points.
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Definition 2.8. [7] Let Pi
a and P j

b be two multi real points of mR+. We define Pi
a > P j

b if a > b

or Pi
a > P j

b if i > j when a = b.

Definition 2.9. [7] (Addition of multi real points) We define Pi
a + P j

b = Pk
a+b where k =

Max{i, j},Pi
a,P

j
b ∈ (mR+)pt .

Definition 2.10. [7] (Multiplication of multi real points) We define multiplication of two multi

real points in mR+ as follows:

Pi
a×P j

b = P1
0 ,if either Pi

a or P j
b equal to P1

0 .

= Pk
ab, otherwise where k =Max {i, j}.

Definition 2.11. [7] Multi Metric: Let d : Mpt ×Mpt −→ (mR+)pt(M being a multi set over

a Universal set X having multiplicity of any element atmost equal to w) be a mapping which

satisfy the following:

(M1) d(Pl
x,P

m
y )≥ P1

0 , ∀Pl
x,P

m
y ,∈Mpt

(M2) d(Pl
x,P

m
y ) = P1

0 iff Pl
x = Pm

y , ∀Pl
x,P

m
y ∈Mpt

(M3) d(Pl
x,P

m
y ) = d(Pm

y ,Pl
x), ∀Pl

x,P
m
y ∈Mpt

(M4) d(Pl
x,P

m
y )+d(Pm

y ,Pn
z )≥ d(Pl

x,P
n
z ), ∀Pl

x,P
m
y ,Pn

z ∈Mpt .

(M5) For l 6= m, d(Pl
x,P

m
y ) = Pk

0 , ⇔ x = y and k = Max{l,m}.

Then d is said to be a multi metric on M and (M,d) is called a Multi metric (or an M-metric)

space.

Example 2.12. [7] Let M be a multi set over X having multiplicity of any element atmost equal

to w. We define d : Mpt×Mpt −→ (mR+)pt such that

d(Pl
x,P

m
y ) = P1

0 if Pl
x = Pm

y

= PMax{l,m}
0 if x = y and l 6= m

= P j
1 if x 6= y ∀ Pl

x,P
m
y ∈Mpt , [ 1≤ j ≤ w is some f ixed positive integer ].

Then d is an M-metric on M.

Definition 2.13. [10] Multi vector space: Let V be vector space over a field K. A multiset X

over V is said to be a multi vector space or a multi linear space or Mvector space of V over K

if every element of X has the same multiplicity and the support X∗ of X is a subspace of V .

The multiplicity of every element of X will be denoted by wX .
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Example 2.14. [10] Let R3 be the Euclidean 3-dimensional pace over R. Let X = {5/(a,b,0) :

a,b ∈ R}. Then X is a multi vector space of R3 over R.

Definition 2.15. [10] Multivectors: Let X be an Mvector space over a vector space Vk. Then

every multi point of X ie. every element of Xpt will be called a multivector of X.

Definition 2.16. [10] Multi scalar field: Let K be a field. Then a multi set L over K is called

a multi scalar field or Mscalar field if every element of K has the same multiplicity and the

support L∗ of L is a subfield of K.

Multi points of L will be referred to as multi scalars or Mscalars of L.

Multiplicity of each element of L will be denoted by wL.

Example 2.17. [10] In Example 2.14, P1
(1,1,0),P

2
(1,1,0),P

4
(1,5,0) etc. are Mvectors of the given

Mvector space.

Definition 2.18. [10] Let X be an Mvector space over VK . Then an Mvector Pk
x of X will be

called a null Mvector if its base x = θ (θ being the null vector of X∗ ie VK).

It will be denoted by Θk. An Mvector Pk
x will be called non null if x 6= θ .

Definition 2.19. [10] Let X be an Mvector space over a vector space VK , L be an Mscalar field

over K such that wL ≤ wX , Pl
x,P

m
y ∈ Xpt and Pi

a ∈ Lpt .

Then we define Pl
x +Pm

y = P1
θ

i f f x =−y and l = m

= Pl∨m
x+y otherwise.

and Pi
a.P

l
x = P1

θ
i f f Pi

a = P1
0 or Pl

x = P1
θ

= Pi∨l
ax otherwise, where 0 is the null element of K.

Definition 2.20. [10] Multi linear combination: Let X be an Mvector space over a vector

space VK and L be an Mscalar field over K such that wL ≤ wX . Then an Mvector Pl
x ∈ Xpt is said

to be a multi linear combination or Mlinear combination of the Mvectors Pl1
x1 ,P

l2
x2 , ............,P

ln
xn
∈

Xpt if Pl
x can be expressed as Pl

x = Pi1
a1.P

l1
x1 +Pi2

a2.P
l2
x2 + ................+Pin

an
.Pln

xn
for some Mscalars

Pi1
a1 ,P

i2
a2, ............,P

in
an
∈ Lpt .

Definition 2.21. [10] Multi linearly dependent and multi linearly independent: Let X be an

Mvector space over a vector space VK and L be an Mscalar field over K such that wL ≤ wX .

Then a finite collection of Mvectors {Pl1
x1 ,P

l2
x2 , ............,P

ln
xn
} of X is said to be multi linearly

dependent or Mlinearly dependent or ML.D if there exist Mscalars Pi1
a1,P

i2
a2 , ............,P

in
an
∈ Lpt
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with ai 6= 0 for some i = 1,2, ...........,n such that Pi1
a1.P

l1
x1 +Pi2

a2.P
l2
x2 + ................+Pin

an
.Pln

xn
= Θl .

The collection of Mvectors {Pl1
x1 ,P

l2
x2 , ............,P

ln
xn
} of X is said to be multi linearly independent

or Mlinearly independent or ML.Id if the relation Pi1
a1.P

l1
x1 +Pi2

a2.P
l2
x2 + ................+Pin

an
.Pln

xn
= Θl

holds only when ai = 0 ∀ i = 1,2, ...........,n.

An arbitrary multiset G⊂ X is said to be ML.D if there exists a finite collection of Mvectors of

G, which is ML.D. An arbitrary multiset G⊂ X is Ml.Id if it is not ML.D.

Definition 2.22. [10] Linear span: Let X be an Mvector space over a vector space VK , L be

an Mscalar field over K such that wL ≤ wX and S = {Pl1
x1 ,P

l2
x2 , ............,

ln
xn
} be a collection of

Mvectors of X. Then the linear span of S denoted by LS(S) is defined as

LS(S)= {Pi1
a1.P

l1
x1 +Pi2

a2.P
l2
x2 + ................+Pin

an
.Pln

xn
: Pi1

a1,P
i2
a2, ....,P

in
an
∈ Lpt}.

MS[LS(S)] will be referred to as the multi linear span or Mlinear span of S.

Definition 2.23. [10] An Mvector space X over VK is said to be finite dimensional if there

is a finite set of ML.Id Mvectors in X that also generates M i.e., there exists a finite set S =

{Pl1
x1 ,P

l2
x2 , ............,

ln
xn
} of Mvectors of X which is ML.Id and MS[LS(S)] = X.

The number of elements of such a set S is called the dimension of X and is denoted by

Dim(X).

Notation: Through out this paper we shall consider V as a vector space over R/C; X as an

Mvector space over VK with wX ≤ w (w being the multiplicity of every element of mR+) and L

as an Mscalar field over K with support L∗ = K and wl ≤ wX .

Definition 2.24. [10] A mapping ‖ ‖ : Xpt −→ (mR+)pt will be called a multi norm or Nmorm

on X if it satisfies the following:

(N1) ‖Pl
x‖ ≥ P1

0 ∀ Pl
x ∈ Xpt .

(N2) ‖Pl
x‖= Pk

0 iff x = θ and l = k.

(N3) ‖Pi
aPl

x‖= Pi
|a|‖P

l
x‖ ∀ Pi

a ∈ Lpt ,Pl
x ∈ Xpt .

(N4) ‖Pl
x +Pm

y ‖ ≤ ‖Pl
x‖+‖Pm

y ‖ ∀ Pl
x,P

m
y ∈ Xpt .

An Mvector space X with an Mnorm ‖ ‖ on X is called a multi normed linear space or Mnormed

linear space and is denoted by (X ,‖ ‖). (N1), (N2), (N3) and (N4) are called norms or axioms.
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Example 2.25. [10] Let (V,‖ ‖) be a normed linear space over K = R/C and X be an Mvector

space over V with wX = w. Let ‖ ‖m : Xpt −→ (mR+)pt such that ‖Pl
x‖m = Pl

‖x‖ ∀ Pl
x ∈ Xpt . Then

‖ ‖m is an Mnorm over X and (X ,‖ ‖m) is an Mnormed linear space.

Note 2.26. [10] Corresponding to every normed linear space, there exists a Mnormed linear

space.

Theorem 2.27. [10] Let (X ,‖ ‖) be an Mnormed linear space over a vector space VK . Then

d : Xpt ×Xpt −→ (mR+)pt defined by d(Pl
x,P

m
y ) = ‖Pl

x −Pm
y ‖ ∀ Pl

x,P
m
y ∈ Xpt is a multi metric

on X.

Definition 2.28. [10] Mnorm subspace: Let (X ,‖ ‖X) be an Mnormed linear space over VK and

Y ⊂ X is an Msubspace of X. Then ‖ ‖Y : Ypt −→ (R+)pt defined by ‖Pl
x‖Y = ‖Pl

x‖X ∀ Pl
x ∈ Ypt

is an Mnorm on Y. This Mnorm is known as the relative Mnorm on Y induced by ‖ ‖X . The

Mnormed linear space (Y,‖ ‖Y ) is called a an Mnorm subspace or simply an Msubspace of the

Mnormed linear space (X ,‖ ‖X).

Definition 2.29. [10] Let (X ,‖ ‖) be an Mnormed linear space over a vector space VK and r > 0.

We define the following:

(i) B(Pl
x,P

1
r ) = {Pm

y ∈ Xpt : ‖Pl
x−Pm

y ‖< P1
r } as an open ball with center Pl

x and radius P1
r .

(ii) B(Pl
x,P

1
r ) = {Pm

y ∈ Xpt : ‖Pl
x−Pm

y ‖ ≤ P1
r } as a closed ball with center Pl

x and radius P1
r .

(iii) S(Pl
x,P

1
r ) = {Pm

y ∈ Xpt : ‖Pl
x−Pm

y ‖= P1
r } as a sphere with center Pl

x and radius P1
r .

MS[B(Pl
x,P

1
r )],MS[B(Pl

x,P
1
r )] and S(Pl

x,P
1
r ) are respectively called an Mopen ball, an Mclosed

ball and an Msphere with center Pl
x and radius P1

r .

Definition 2.30. [10] Convergence of sequence: A sequence {Pln
xn
} of Mvectors in an Mnormed

linear space (X ,‖ ‖) over VK is said to be convergent and converges to an Mvector Pl
x if ‖Pln

xn
−

Pl
x‖ −→ P1

0 as n−→∞ which means, for any ε > 0, ∃ n0 ∈N such that ‖Pln
xn
−Pl

x‖< P1
ε ∀ n≥ n0

ie. n≥ n0 ⇒ Pln
xn
∈ B(Pl

x,P
1
ε ). We denote this by Pln

xn
−→ Pl

x as n−→ ∞ or by limn→∞ Pln
xn
= Pl

x .

Pl
x is said to be the limit of {Pln

xn
} as n−→ ∞.

Definition 2.31. [10] Boundedness: (i) In an Mnormed linear space (X ,‖ ‖), a multi subset

Y ⊂ X is said to be bounded if ∃ r > 0 such that ‖Pl
x‖< P1

r ∀ Pl
x ∈ Ypt .

(ii) If a sequence {Pln
xn
} of Mvectors in an Mnormed linear space (X ,‖ ‖) is bounded if ∃ r > 0

such that ‖Pln
xn
−Plm

xm
‖< P1

r ∀ m,n ∈ N.
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Definition 2.32. [10] Cauchy sequence: If a sequence {Pln
xn
} of Mvectors in an Mnormed linear

space (X ,‖ ‖) is said to be Cauchy if for any ε > 0, ∃ n0 ∈N such that ‖Pln
xn
−Plm

xm
‖<P1

ε ∀m,n≥

n0 ie. ‖Pln
xn
−Plm

xm
‖ −→ P1

0 as m,n−→ ∞.

Definition 2.33. [10] Completeness: An Mnormed linear space (X ,‖ ‖) is said to be complete

if every Cauchy sequence of Mvectors in (X ,‖ ‖) converges to an Mvector of X.

Theorem 2.34. [10] In an Mnormed linear space (X ,‖ ‖), if Pln
xn
−→ Pl

x and Pkn
yn
−→ Pk

y , then

Pln
xn
+Pkn

yn
−→ Pl

x +Pk
y .

Theorem 2.35. [10] In an Mnormed linear space (X ,‖ ‖) over a vector space VK , if {Pln
xn
} be

a sequence of Mvectors such that Pln
xn
−→ Pl

x and {Pkn
an
} be a sequence of Mscalars such that

Pkn
an
−→ Pk

a , then Pkn
an
.Pln

xn
−→ Pk

a .P
l
x .

Theorem 2.36. [10] In an Mnormed linear space (X ,‖ ‖) over a vector space VK , if {Pln
xn
},{Pmn

yn
}

are Cauchy sequences of Mvectors and {Pkn
an
} is a Cauchy sequence of Mscalars, then

{Pln
xn
+Pmn

yn
},{Pkn

an
.Pln

xn
} are Cauchy sequences of Mvectors.

Theorem 2.37. [10] If M be an Msubspace of an Mnormed linear space (X ,‖ ‖), then M is also

an Msubspace of (X ,‖ ‖).

3. MULTI LINEAR OPERATOR ON MULTI NORMED LINEAR SPACE

Definition 3.1. Multi linear operator: Let X and Y be Mnormed linear spaces on mvector

spaces VK and WK respectively where K = R/C, L be an Mscalar field over K with L∗ = K and

wL ≤ wX ,wY . Then T : Xpt −→ Ypt is said to be a multi linear operator if

(L1) T is additive i.e., T (Pl
x +Pm

u ) = T (Pl
x)+T (Pm

u ), ∀ Pl
x,P

m
u ∈ Xpt .

(L2) T is homogeneous i.e., T (Pi
a.P

l
x) = Pi

a.T (P
l
x), ∀ Pi

a ∈ Lpt ,Pl
x ∈ Xpt .

The properties (L1) and (L2) can be put in combined form as

T (Pi
a.P

l
x +P j

b .P
m
u ) = Pi

a.T (P
l
x)+P j

b .T (P
m
x ), ∀ Pi

a,P
j

b ∈ Lpt and Pl
x,P

m
u ∈ Xpt .

Example 3.2. (1) The identity operator I : Xpt −→ Xpt defined as I(Pl
x) = Pl

x, ∀ Pl
x ∈ Xpt is a

multi linear operator.

(2) The null operator O : Xpt −→ Xpt defined as O(Pl
x) = P1

θ
, ∀ Pl

x ∈ Xpt is a multi linear operator

where θ is the null element in VK .

(3) Let Pi
a ∈ Lpt . Define T (Pl

x) = Pi
a.P

l
x = Pi∨l

ax , ∀ Pl
x ∈ Xpt . Then ∀ Pl

x,P
m
u ∈ Xpt , T (Pl

x +Pm
u ) =
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T (Pl∨m
x+u ) = Pi∨(l∨m)

a(x+u) = P(i∨l)∨(i∨m)
ax+au = Pi∨l

ax +Pi∨m
au = T (Pl

x)+T (Pm
u ).

For any P j
b ∈ Lpt , T (P j

b .P
l
x) = T (P j∨l

bx ) = Pi∨( j∨l)
a(bx) = P j∨(i∨l)

b(ax) = P j
b .P

i∨l
ax = P j

b .T (P
l
x).

Theorem 3.3. Let X and Y be Mnormed linear spaces over VK and L be an Mscalar field over

K. If T : Xpt −→ Ypt is a Multi linear operator, then

(1) T (Pl
x−Pm

u ) = T (Pl
x)−T (Pm

u ), ∀ Pl
x,P

m
u ∈ Xpt .

(2) T (Pk
θX
) = P1

θY
where θX and θY are null elements of X and Y respectively.

(3) T (−Pl
x) =−T (Pl

x).

(4) T (∑n
r=1 Pir

ar
.Plr

xr
) = ∑

n
r=1 Pir

ar
.T (Plr

xr
).

Proof. (1) Let T (Pm
u ) =Pn

y ∈Ypt . Then T (Pl
x−Pm

u ) = T (Pl
x +Pm

−u) = T (Pl
x +P1

−1.P
m
u ) = T (Pl

x)+

T (P1
−1.P

m
u ) = T (Pl

x)+P1
−1.T (P

m
u ) = T (Pl

x)+P1
−1.P

n
y = T (Pl

x)+P1
−1.P

n
y = T (Pl

x)−T (Pm
u ).

(2) Pk
θX
+Pk

θX
= Pk

θX
=⇒ T (Pk

θX
+Pk

θX
) = T (Pk

θX
) =⇒ T (Pk

θX
)+T (Pk

θX
) = T (Pk

θX
) =⇒ T (Pk

θX
)+

T (Pk
θX
)−T (Pk

θX
) = T (Pk

θX
)−T (Pk

θX
) =⇒ T (Pk

θX
)+P1

θY
= P1

θY
=⇒ T (Pk

θX
) = P1

θY
.

(3) Pl
x−Pl

x = P1
θ

=⇒ T (Pl
x−Pl

x) = T (P1
θ
) =⇒ T (Pl

x)+T (−Pl
x) = P1

θ
=⇒ T (−Pl

x) =−T (Pl
x).

(4) We shall prove this by method of induction. For n = 1, the result is obvious. Let the result

be true for n = k ie. T (∑k
r=1 Pir

ar
.Plr

xr
) = ∑

k
r=1 Pir

ar
.T (Plr

xr
).

Now T (∑k+1
r=1 Pir

ar
.Plr

xr
) = T (∑k

r=1 Pir
ar
.Plr

xr
+Pik+1

ak+1.P
lk+1
xk+1) = T (∑k

r=1 Pir
ar
.Plr

xr
)+T (Pik+1

ak+1.P
lk+1
xk+1) =

∑
k
r=1 Pir

ar
.T (Plr

xr
)+Pik+1

ak+1.T (P
lk+1
xk+1) = T (∑k+1

r=1 Pir
ar
.Plr

xr
) = ∑

k+1
r=1 Pir

ar
.T (Plr

xr
).

Definition 3.4. A multi linear operator T : Xpt −→ Ypt is said to be continuous at Pl0
x0 ∈ Xpt if

for every sequence {Pln
xn
} in X pt with Pln

xn
−→ Pl0

x0 as n −→ ∞, we have T (Pln
xn
) −→ T (Pl0

x0) as

n−→ ∞ ie. ‖T (Pln
xn
)−T (Pl0

x0)‖ −→ P1
0 as n−→ ∞.

If T is continuous at every point of Xpt , then T is said to be a continuous multi linear operator.

Example 3.5. The Multi linear operators given in Example 3.2 are continuous. (1) and (2) are

obviously continuous. For (3), since Pln
xn
−→ Pl0

x0 as n−→ ∞, for 0 < η < ε, ∃ n0 ∈N such that

‖Pln
xn
−Pl0

x0‖X < P1
η/|a| ∀ n≥ n0 [assuming|a| 6= 0].

Now ∀ n≥ n0,‖T (Pln
xn
)−T (Pl0

x0)‖= ‖Pi
a.P

ln
xn
−Pi

a.P
l0
x0‖= ‖Pi

a.(P
ln
xn
−Pl0

x0)‖= Pi
|a|.‖(P

ln
xn
−Pl0

x0)‖<

Pi
|a|.P

1
η/|a| = P1

η < P1
ε =⇒ T (Pln

xn
)−→ T (Pl0

x0) as n−→ ∞ =⇒ T is continuous.

If a = 0, ‖T (Pln
xn
)−T (Pl0

x0)‖= Pk
0 [ for some 1≤ k ≤ wY ] < P1

ε .

Theorem 3.6. Let T : Xpt −→Ypt be a multi linear operator. If T is continuous at some Pl0
x0 ∈Xpt ,

then T is continuous at every element of Xpt .
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Proof. Let Pl
x ∈ Xpt be arbitrary, {Pln

xn
} be a sequence in Xpt converging to Pl

x and Pkn
un

=

Pln
xn
−Pl

x +Pl0
x0 ∀ n ∈ N. Then Pkn

un
is a sequence in Xpt converging to Pl0

x0 .

∴ by continuity of T at Pl0
x0 , T (Pkn

un
) −→ T (Pl0

x0) as n −→ ∞ =⇒ T (Pln
xn
−Pl

x +Pl0
x0) −→ T (Pl0

x0)

as n −→ ∞ =⇒ T (Pln
xn
)−T (Pl

x)+T (Pl0
x0) −→ T (Pl0

x0) as n −→ ∞ =⇒ T (Pln
xn
)−T (Pl

x) −→ P1
θ

asn −→ ∞ =⇒ T (Pln
xn
) −→ T (Pl

x) =⇒ T is continuous at Pl
x . Since Pl

x ∈ Xpt is arbitrary, the

result follows.

Definition 3.7. A multi linear operator T : Xpt −→ Ypt is said to be bounded if ∃ r > 0 such

that ‖T (Pl
x)‖ ≤ P1

r ‖Pl
x‖ ∀ Pl

x ∈ Xpt .

Theorem 3.8. Let T : Xpt −→ Ypt be a multi linear operator. If T is bounded, then T is continu-

ous.

Proof. Let Pl0
x0 ∈ Xpt and {Pln

xn
} be a sequence in Xpt converging to Pl0

x0 . Also since T is bounded,

∃ r > 0 such that ‖T (Pl
x)‖≤ P1

r ‖Pl
x‖ ∀ Pl

x ∈ Xpt . Let ε > 0 be arbitrary. Since Pln
xn
−→ Pl0

x0 , ∃ n0 ∈

N such that ‖Pln
xn
−Pl0

x0‖< P1
ε/r ∀ n≥ n0 =⇒ ‖T (Pln

xn
)−T (Pl0

x0)‖= ‖T (Pln
xn
−Pl0

x0)‖ ≤ P1
r ‖Pln

xn
−

Pl0
x0‖< P1

r .P
1
ε/r = P1

ε ∀ n≥ n0 =⇒ T (Pln
xn
)−→ T (Pl0

x0).

Theorem 3.9. Let (V,‖ ‖V ) and (W,‖ ‖W ) be normed linear spaces over K =R/C and (X ,‖ ‖X)

and (Y,‖ ‖Y ) are two multi normed linear spaces over (V,‖ ‖V ) and (W,‖ ‖W ) respectively. Let

T : V −→W be a linear operator. Then Tm : Xpt −→Ypt such that Tm(Pl
x) = Pl

T (x) is a multi linear

operator.

Proof. For Pi
a,P

j
b ∈ Lpt [Lpt being an Mscalar field over K such that wL ≤ wX ,wY ] and Pl

x,P
m
u ∈

Xpt , Tm(Pi
a.P

l
x+P j

b .P
m
u )= Tm{(P(i∨l)∨( j∨m)

ax+bu )}=P(i∨l)∨( j∨m)
T (ax+bu) =P(i∨l)∨( j∨m)

aT (x)+bT (u)=Pi
a.P

l
T (x)+P j

b .P
m
T (u)

= Pi
a.Tm(Pl

x)+P j
b .Tm(Pm

u ).

Theorem 3.10. Let Tm : Xpt −→ Ypt be a multi linear operator on X where (V,‖ ‖V ) and

(W,‖ ‖W ) be normed linear spaces over K = R/C; (X ,‖ ‖X) , (Y,‖ ‖Y ) are two multi normed

linear spaces over (V,‖ ‖V ) and (W,‖ ‖W ) respectively and X∗=V . We denote b̃(Pl
x) as the base

of the multi vector Pl
x ∈ Xpt or Ypt . Also let Tl : V −→W such that Tl(x) = b̃{Tm(Pl

x)} ∀ x ∈V .

Then {Tl : 1≤ l ≤ wX} is a family of normed linear operators on (V,‖ ‖V ).

If we define T ∗m : Xpt −→ Ypt such that T ∗m(P
l
x) = Pm̃{Tm(Pl

x)}
Tl(x)

[m̃Pl
x being the multiplicity of

Pl
x ∈ Xptor Ypt], then T ∗m is a multi normed linear operator on X with T ∗m = Tm.
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Proof. Clearly ∀ l, Tl is well defined. Now for x,u∈V and a,b∈K, Tl(ax+bu)= b̃[Tm(Pl
ax+bu)]

= b̃[Tm(Pl
a.P

l
x +Pl

b.P
l
u] = b̃[Pl

a.Tm(Pl
x)+Pl

b.Tm(Pl
u)] = b̃(Pl

a.P
i
y +Pl

b.P
j

v ) [where Tm(Pl
x) = Pi

y and

Tm(Pl
u) = Pi

y]= b̃(Pi∨ j∨l
ay+bv) = ay+bv = a.b̃(Tm(Pl

x))+b.b̃(Tm(Pl
u)) = a.Tl(x)+b.Tl(u).

The second part is obvious.

Theorem 3.11. T : Xpt −→ Ypt is continuous at a point of Xpt =⇒ T is continuous everywhere

in Xpt .

Proof. Let T be continuous at Pl0
x0 ∈ Xpt , Pl

x ∈ Xpt be arbitrary and {Pln
xn
} be a sequence in Xpt

such that Pln
xn
−→ Pl

x . If ∀ n∈N, Pln
xn
−Pl

x +Pl0
x0 = Pkn

un
, then {Pkn

un
} is a sequence in Xpt converging

to Pl0
x0 .

So by continuity of T at Pl0
x0 , for any ε > 0, ∃ m ∈N such that ‖T (Pkn

un
)−T (Pl0

x0)‖= ‖T (Pln
xn
−

Pl
x +Pl0

x0)− T (Pl0
x0)‖ = ‖T (Pln

xn
)− T (Pl

x)+ T (Pl0
x0)− T (Pl0

x0)‖ = ‖T (Pln
xn
)− T (Pl

x))‖ < P1
ε ∀ n ≥

m =⇒ T (Pln
xn
)−→ T (Pl

x) =⇒ T is continuous at Pl
x.

Theorem 3.12. T : Xpt −→ Ypt is continuous =⇒ T is bounded.

Proof. If possible let T be not bounded. Then ∀ n ∈N, ∃ Pln
xn
∈ Xpt such that T (Pln

xn
)> P1

n ‖Pln
xn
‖.

Let ‖Pln
xn
‖ = Pin

an
∀n ∈ N. Then an > 0∀n ∈ N since an = 0 for some n = m ∈ N =⇒ ‖Plm

xm
‖ =

Pim
0 =⇒ xm = θ and lm = im =⇒‖T (Plm

xm
)‖= ‖T (Pim

θ
)‖≯ P1

m‖Plm
xm
‖= Pim

0 . So ∀ n ∈N, ‖Pln
xn
‖>

Pin
n.an

and an > 0.

We consider ∀ n ∈ N, Pkn
un

= Pkn
xn

nan
where kn = ln∨ in. Then ‖Pkn

un
‖ = ‖Pln

xn
.Pin

1
nan
‖ = Pin

1
nan

.‖Pln
xn
‖ =

Pin
1

nan
.Pin

an
= Pin

1
n
−→ P1

0 as n −→ ∞ =⇒ ‖Pkn
un
− P1

θ
‖ −→ P1

0 . But ‖T (Pkn
un
)‖ = ‖T (Pkn

xn
nan

)‖ =

‖T (Pln
xn
.Pin

1
nan

)‖ = ‖Pin
1

nan
.T (Pln

xn
)‖ = Pin

1
nan

.‖T (Pln
xn
)‖ > Pin

1
nan

.Pin
nan

= Pin
1 , which contradicts the fact

that T is continuous.

Lemma 3.13. Let X ,‖ ‖ be a multi normed linear space over VK and Pl1
x1 ,P

l2
x2 , ........P

ln
xn

be linearly

independent mvectors of X. Then for any set of mscalars Pi1
a1,P

i2
a2 , ..........P

in
an
, ∃ c > 0 such that

‖Pa1.P
l1
x1 +Pi2

a2.P
l2
x2 + ..........,Pin

an
.Pln

xn
‖ ≥ P1

c (P
i1
|a1|+Pi2

|a2|+ ..........+Pin
|an|).

Proof. Let s = |a1|+ |a2|+ ..........+ |an|. If s = 0, then ai = 0 ∀ i = 1,2, ....,n and the result

holds.

Let s > 0. Now we have to prove ∃ c > 0 such that ‖Ppn
a1.x1+a2.x2+......+an.xn

‖ ≥ P1
c .P

jn
s where

pn = Max {i1, i2, ....., in, l1, l2, ......, ln}, jn = Max {i1, i2, ....., in} i.e., we have to prove

‖Ppn
a1.x1+a2.x2+......+an.xn

s
‖ ≥ P jn

c ie. ‖Ppn
b1.x1+b2.x2+......+bn.xn

s

‖ ≥ P jn
c .........(1),
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where bi =
ai
s ∀ i = 1,2, ....,n, so that ∑

n
i=1 bi = 1.

It is now sufficient to prove the existance of c > 0 such that (1) is true for any set of mscalars

Pi1
b1
,Pi2

b2
, ..........Pin

bn
with ∑

n
i=1 bi = 1.

If possible, let this is not true ie. for every m ∈ N there is a sequence {ym} in Vk such that

ym = b(m)
1 x1 + b(m)

2 x2 + .....+ b(m)
n xn with ∑

n
i=1 |b

(m)
i | = 1 and ‖Ppn

ym ‖ < P1
1
m
∀ m ∈ N. Since

1
m −→ 0 as m −→ ∞, it follows that Ppn

ym −→ Ppn
θ

as m −→ ∞. Since ∑
n
i=1 |b

(m)
i | = 1 ∀ m ∈ N,

we have |b(m)
i | ≤ 1 ∀ i = 1,2, ....,n and m ∈N. Hence for each fixed i = 1,2, ....,n, the sequence

{b(m)
i }= {b

(1)
i ,b(2)i , ......,b(m)

i , ...} is bounded. So by Bolzano Weierstrass theorem, {b(m)
1 } has a

subsequence converging to c1, and let {y1,m} be the corresponding subsequence of {ym}. By the

same reason, {y1,m} has a subsequence {y2,m}, say for which the corresponding subsequence

of scalars {b(m)
2 } converges to c2, say. This process continues till we reach the n-th stage. At

the n-th stage, we obtain a subsequence {yn,m}= {yn,1,yn,2, ....} of {ym} whose terms are of the

form yn,m = d(m)
1 x1 + d(m)

2 x2 + .....+ d(m)
n xn with ∑

n
i=1 |d

(m)
i | = 1 and d(m)

i −→ ci as m −→ ∞.

Let y = c1x1 + c2x2 + ....+ cnxn ∈VK .

Then ‖Ppn,m
yn,m − Ppn,m

y ‖= ‖Ppn,m

d(m)
1 x1+d(m)

2 x2+.....+d(m)
n xn
−Ppn,m

c1x1+c2x2+....+cnxn
‖

= ‖Ppn,m

(d(m)
1 −c1)x1+(d(m)

2 −c2)x2+.....+(d(m)
n −cn)xn

‖

= ‖P1
d(m)

1 −c1
Ppn,m

x1 +P1
d(m)

2 −c2
Ppn,m

x2 + .....+P1
d(m)

n −cn
Ppn,m

xn ‖

≤ ‖P1
d(m)

1 −c1
Ppn,m

x1 ‖+‖P1
d(m)

2 −c2
Ppn,m

x2 ‖+ .....+‖P1
d(m)

n −cn
Ppn,m

xn ‖

= P1
|d(m)

1 −c1|
‖Ppn,m

x1 ‖+P1
|d(m)

2 −c2|
‖Ppn,m

x2 ‖+ .....+P1
|d(m)

n −cn|
‖Ppn,m

xn ‖ −→ P1
0 as m−→ ∞ since

d(m)
i −→ ci as m−→ ∞ and ∑

n
i=1 |ci|= ∑

n
i=1 |limm→∞d(m)

i |= limm→∞ ∑
n
i=1 |d

(m)
i |= 1.

So, ci 6= 0 for some i = 1,2, ....,n and as x1,x2, ...,xn are linearly independent in VK

[∵ Pli
xi , i = 1,2, ...,n are multi linearly independent in (X ,‖ ‖)],

it follows that y = c1x1+c2x2+ ....+cnxn 6= θ . Now Ppn
ym −→ Ppn

θ
and {Ppn,m

yn,m } is a subsequence

of {Ppn
ym } , but Ppn,m

yn,m −→ Ppn,m
y where y 6= θ , a contradiction, which proves the lemma.

Theorem 3.14. If {Pln
xn
} be a sequence of mvectors in an Mnormed linear space (X ,‖ ‖) such

that Pln
xn
−→ Pl

x , then every subsequence P
lnk
xnk

of {Pln
xn
} converges to Pl

x and conversely.

Proof. The proof is straight forward and hence omitted.

Theorem 3.15. Let T : Xpt −→ Ypt be a multi linear operator (X ,‖ ‖x) and (Y,‖ ‖y) are two

multi normed linear spaces. If X is finite dimensional, then T is bounded and hence continuous.
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Proof. Let dimension of X be n and {Pl1
x1 ,P

l2
x2 , ........P

ln
xn
} be a basis of X.

Let Pi
a = Max {‖T (Pl1

x1)‖y,‖T (Pl2
x2)‖y, ...,‖T (Pln

xn
)‖y} and

Pl
x = ∑

n
k=1 Pik

akPlk
xk ∈ Xpt . Then by linearity of T,

‖T (Pl
x)‖y = ‖∑

n
k=1 Pik

akT (Plk
xk)‖y ≤ ∑

n
k=1 Pik

|ak|
‖T (Plk

xk)‖y ≤ Pi
a ∑

n
k=1 Pik

|ak|
..(1). By Lemma 3.13,

∃ c > 0 such that ‖Pl
x‖x = ‖∑

n
k=1 Pik

akPlk
xk‖x ≥ P1

c ∑
n
k=1 Pik

|ak|
=⇒∑

n
k=1 Pik

|ak|
≤ P1

1
c
‖Pl

x‖x. ∴ from (1),

‖T (Pl
x)‖y ≤ Pi

aP1
1
c
‖Pl

x‖x = P1
a
c
‖Pl

x‖x =⇒‖T (Pl
x)‖y < P1

r ‖Pl
x‖x where 0 < a

c < r. ∴ T is bounded.

Definition 3.16. Let T : Xpt −→ Ypt be a bounded multi linear operator. Then ∃ r > 0 such that

‖T (Pl
x)‖ ≤ P1

r ‖Pl
x‖ ∀ Pl

x ∈ Xpt . Let s = In f{r > 0 : ‖T (Pl
x)‖ ≤ P1

r ‖Pl
x‖ ∀ Pl

x ∈ Xpt}

We define ‖T‖ as ‖T‖= P1
s i f s ∈ {r > 0 : ‖T (Pl

x)‖ ≤ P1
r ∀ Pl

x ∈ Xpt}

= Pw
s i f s ∈ {r > 0 : ‖T (Pl

x)‖ ≤ P1
r ∀ Pl

x /∈ Xpt}.

Note 3.17. Since {r > 0 : ‖T (Pl
x)‖ ≤ P1

r ‖Pl
x‖ ∀ Pl

x ∈ Xpt} is bounded below (0 being a lower

bound), the Infimum s exists. If s ∈ {r > 0 : ‖T (Pl
x)‖ ≤ P1

r ‖Pl
x‖ ∀ Pl

x ∈ Xpt}, then ‖T (Pl
x)‖ ≤

‖T‖‖Pl
x‖ ∀ Pl

x ∈ Xpt .

If s /∈ {r > 0 : ‖T (Pl
x)‖≤ P1

r ‖Pl
x‖ ∀ Pl

x ∈ Xpt}, then for ε > 0 arbitrary, ∃ r0 ∈ {r > 0 : ‖T (Pl
x)‖≤

P1
r ∀ Pl

x ∈ Xpt} such that s+ ε > r0. Now, ∀ Pl
x ∈ Xpt ,‖T (Pl

x)‖ ≤ P1
r0
‖Pl

x‖< P1
s+ε . Since ε > 0

is arbitrary, ∀Pl
x ∈ Xpt , ‖T (Pl

x)‖ ≤ P1
s ‖Pl

x‖ ⇒ ‖T (Pl
x)‖ ≤ ‖T‖‖Pl

x‖ ∀ Pl
x ∈ Xpt .

Theorem 3.18. ‖T‖= P1
s0

where s0 = In f{r > 0 : ‖T (Pl
x)‖ ≤ P1

r ‖Pl
x‖,∀ Pl

x ∈ Xpt s.t ‖Pl
x‖= Pi

1}.

Proof. Let ‖T‖= P1
s where s = In f{r > 0 : ‖T (Pl

x)‖ ≤ P1
r ‖Pl

x‖ ∀ Pl
x ∈ Xpt}. Since

{r > 0 : ‖T (Pl
x)‖ ≤ P1

r ‖Pl
x‖ ∀ Pl

x ∈ Xpt s.t ‖Pl
x‖= Pi

1} ⊂ {r > 0 : ‖T (Pl
x)‖ ≤ P1

r ‖Pl
x‖

∀ Pl
x ∈ Xpt}, In f{r > 0 : ‖T (Pl

x)‖ ≤ P1
r ‖Pl

x‖ ∀ Pl
x ∈ Xpts.t.‖Pl

x‖= Pi
1} ≥ In f{r > 0 : ‖T (Pl

x)‖ ≤

P1
r ‖Pl

x‖∀ Pl
x ∈ Xpt}⇒ s0 ≥ s Let r0 ∈ {r > 0 : ‖T (Pl

x)‖ ≤ P1
r ‖Pl

x‖ ∀ Pl
x ∈ Xpt}.

Then ∀ Pl
x ∈ Xpt ,‖T (Pl

x)‖ ≤ P1
r0
‖Pl

x‖. Let ‖Pl
x‖= Pi

a and x 6= θ so that a > 0. Consider Pl
y where

y = a−1x. Then ‖Pl
y‖= ‖Pl

a−1x‖= ‖P
1
a−1Pl

x‖= P1
a−1‖Pl

x‖= P1
a−1Pi

a. Now ‖T (Pl
x)‖ ≤ P1

r0
‖Pl

x‖ ⇒

P1
a−1‖T (Pl

x)‖ ≤ P1
r0

P1
a−1‖Pl

x‖⇒ ‖T (P1
a−1Pl

x)‖ ≤ P1
r0
‖P1

a−1Pl
x‖⇒ ‖T (Pl

a−1x)‖ ≤ P1
r0
‖Pl

a−1x‖⇒

‖T (Pl
y)‖ ≤ P1

r0
‖Pl

y‖ ⇒ r0 ∈ {r > 0 : ‖T (Pl
x)‖ ≤ P1

r ‖Pl
x‖ ∀ Pl

x ∈ Xpts.t ‖Pl
x‖ = Pi

1} ⇒ r0 ≥ s0.

Since r0 ∈ {r > 0 : ‖T (Pl
x)‖ ≤ P1

r ‖Pl
x‖ ∀ Pl

x ∈ Xpt} is arbitrary, it follows that s≥ s0.

Example 3.19. (1) For the Identity Operator I : Xpt −→ Xpt such that I(Pl
x) = Pl

x,‖I‖= P1
1 .

(2) For the Null Operator O : Xpt −→ Xpt such that O(Pl
x) = Pl

θ
,‖O‖= Pwx

0 .
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Theorem 3.20. Let (V,‖ ‖V ) and (W,‖ ‖W ) are two normed linear spaces; (X ,‖ ‖X) , (Y,‖ ‖Y )

are two multi normed linear spaces on (V,‖ ‖V ) , (W,‖ ‖W ) respectively such that ‖Pm
y ‖Y =

Pm
‖y‖W , ∀ Pm

y ∈ Ypt and T : V −→W be a bounded linear operator. Then TM : Xpt −→ Ypt such

that TM(Pl
x) = Pl

T (x) ∀P
l
x ∈ Xpt is also a bounded multi linear operator.

Proof. Since T : V −→W is bounded, ∃r > 0 such that ‖T (x)‖W ≤ r‖x‖V ,∀x ∈V .

Then ‖TM(Pl
x)‖Y = ‖Pl

T (x)‖Y = Pl
‖T (x)‖W ≤ Pr‖x‖l

V = P1
r Pl
‖x‖V ⇒ TM is bounded.

Theorem 3.21. Let (V,‖ ‖V ) and (W,‖ ‖W ) be two normed linear spaces; (X ,‖ ‖X) , (Y,‖ ‖Y ) are

two multi normed linear spaces on (V,‖ ‖V ) , (W,‖ ‖W ) respectively with X∗ =V and ‖Pm
y ‖Y =

Pm
‖y‖W , ∀ Pm

y ∈ Ypt . Let for 1 ≤ l ≤ wX ,Tl : V →W such that Tl(x) = b̃[TM(Pl
x)] ∀ x ∈ V . Then

{Tl : 1≤ l ≤wX} is a family of bounded linear operators. More over, if we define T ∗M : Xpt→Ypt

such that T ∗M(Pl
x) = TM(Pl

x) ∀ Pl
x ∈ Xpt , then T ∗M is a bounded multi linear operator with T ∗M = TM.

Proof. Since TM is a bounded multi linear operator, ∃ r > 0 such that

‖TM(Pl
x)‖Y ≤ P1

r ‖Pl
x‖X ∀ Pl

x ∈ Xpt . Let TM(Pl
x) = Pk

y . Then

‖TM(Pl
x)‖Y = ‖Pk

y ‖Y = Pk
‖y‖W ≤ P1

r ‖Pl
x‖X .

∴ ‖Tl(x)‖W = ‖b̃{TM(Pl
x)}‖W = ‖b̃(Pk

y )‖W = ‖y‖W .

4. CONCLUSIONS

Theory of operator is an important branch of functional analysis and it has many applications

in Mathematics and Sciences. In this paper, an attempt has been made to introduce linear

operators on multi normed linear space. There is an ample scope for further research on multi

linear operators. Research on multi linear functionals and multi inner product can be of special

interest.
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