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Abstract. Bollobas and Gyarfds conjectured that for n > 4k — 3 every 2-edge-coloring of K,, contains a
monochromatic k-connected subgraph with at least n — 2k + 2 vertices. It was proved that the conjecture
holds for k = 2,3. In this paper, we prove that if each monochromatic k-connected (k = 2,3) subgraph
has at most n — 2k + 2 vertices in 2-edge-colored K,, (n > 13), then there exists a monochromatic

4-connected subgraph with at least n — 6 vertices.
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1. Introduction

It is easy to see that for any graph G, either G or its complement G is connected. This is
equivalent that there exists a connected monochromatic subgraph of every 2-edge-coloring
of K,. Bollobds and Gyarfas [1] conjectured that for n > 4(k — 1) every 2-edge-coloring

of K, contains a monochromatic k-connected subgraph with at least n — 2k + 2 vertices.
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Liu et al. [9] proved that the conjecture holds when n > 13k — 15. Jin et al. [§]
characterized all the 2-edge-colorings of K, where there is a monochromatic k-connected
subgraph with ai least n — 2k + 2 vertices for n > 13k — 15. Fujita et al. [7] proved
that every 2-edge-coloring of K, contains a monochromatic k-connected subgraph with
at least n — 2k + 2 vertices when n > 6.5(k — 1). In fact this conjecture is a part of the
question due to Bollobas: when we colored the edges of K, with at most r colors, how
large a k-connected subgraph are we guaranteed to find using only at most s colors.
Let ¢ be an r-edge-coloring of K,,. Given a subgraph H of K,,, we write c,(H) for the

number of colors in H. Denote by
M(¢p,n,r, s, k) =max{|V(H)|: H C K,, H is k-connected, and c4(H) < s}

the order of the largest k-connected subgraph of K, using at most s colors. Let m(n,r, s, k) =
ming{M (4, n,r, s, k)}, where ¢ runs over all the r-edge-colorings of K,,. Thus the question
of Ballobas asks for the value of m(n,r, s, k).

When s = k = 1, the question asks for the order of monochromatic component in edge
colored graph K, see [3, 5, 6]. Bollobas and Gyérfas [1] gave some bounds for the case
s = 1. Liu et al. [9, 10] gave some bounds for the parameter m(n,r, s, k) for some r, s
and k. Note that only a few cases are determined exactly. Besides of the connectivity of
monochromatic subgraphs in edge colored K, other propositions should be interesting
too. For example, Gyarfids and Sarkézy [4, 5] considered the order of monochromatic
double stars in edge colored K,,. Burr 2] proved that each 2-edge-colored K, contains a
monochromatic spanning broom.

Bollobés and Gyarfas [1] present a 2-edge-coloring of K,, where each monochromatic k-
connected subgraph has order at most n—2k+2. They also proved that m(n,2,1,2) = n—2
when n > 5. Liu et al. [9] proved that m(n,2,1,3) = n —4 for n > 9. Without loss
of generality, throughout the paper, we use red and blue to color the edges of K,. For
convenience, denote by R and B the spanning graphs of K, which contains all the red

and blue edges respectively.

2. Main results
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First we present some known results, which also appeared in [1, 9, 10].
Lemma 2.1. Let G be a graph and v € V(G) with d(v) > k. If G — v is k-connected,

then G is also k-connected.

Lemma 2.2. Let G and H be k-connected graphs. If |[V(G) NV (H)| > k, then GU H

is also k-connected.

Lemma 2.3. For n > 4k — 3, m(n,2,1,k) =n—2k+2, k =2, 3.

Second we will prove the following theorem.
Theorem 2.4. Let K, (n > 13) be 2-edge-colored. If each monochromatic k-connected
(k = 2,3) subgraph has at most n—2k+2 vertices in K, then there exists a monochromatic

4-connected subgraph with at least n — 6 vertices.

Proof. We use red and blue to color the edges of K,. From Theorem 2.3. we can
assume that (G; is a monochromatic 3-connected graph with n — 4 vertices and G, is a
2-connected graph with n — 2 vertices in K,,. Let Cy = V(K,)\V(G1), and then |C}| = 4.

Let Cl == {1)171)27/037?}4}’

Case 1 The graphs G; and G, have the same color. Without loss of generality, let
G;CR(1=1,2).

Since G is a red 3-connected graph, we have that Gy is a red 2-connected graph. Note
that G; C Gy. Otherwise, since |V (G2)| = n — 2, we have that |V (G1) NV (Gy)| > n — 6.
By Lemma 2.2, the graph Gy U Gy is a red subgraph with at least n — 1 vertices, a
contradiction. Note that there are two vertices, say vs, vy € C}, each of which sends two
red edges to Gy, i.e., V(Gy) = V(G1) U{vs,v4}. Otherwise, by Lemma 2.1, there exists a
red 2-connected subgraph with at least n — 1 vertices, a contradiction. Then it is easy to
see that each vertex of {vy, vy} sends at most one red edge to G;.

If Gy is 4-connected, then we are done. Now we suppose that Gy isn’t a 4-connected
subgraph, then there exists a cut set C' of G; with at most 3 vertices. Let A; be the union

of vertices of some components of G; — C and By = V(G;)\A; such that |A;| > |By| and
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|By| as large as possible. Choose the cut set C' that maximize the set |By|. It is easy to

see that all edges between A; and B; are blue. This forms a complete bipartite graph in
blue. Let G3 = B[Al U B1 U {Ul,vg}] and G4 = B[Al U B1 U Cl]

Case 1.1 |By| > 4.
Then B[A;, Bi] is a blue 4-connected complete bipartite graph with at least n — 7 ver-
tices. Since each vertex of Cy sends at least n —|C|—|C1| —2 > 5 blue edges to B[A;, Bi],

by Lemma 2.1, we know that GG3 is a blue 4-connected subgraph with at least n—3 vertices.

Case 1.2 |By| = 3.

Then |A;| = n — |C| — |Cy| — |B1] > 4 (n > 13). Note that each vertex of {vy,vs}
sends at most one red edges to Gy. If the red edges between {vy,v2} and V(Gp) are
non-adjacent, then it is easy to see that (5 is a blue 4-connected subgraph with at least
n— 5 vertices. If the red edges between {vy,v2} and V(G;) are adjacent, then there exists
a vertex u € V(G;) such that both uv; and uvy are red edges. Then we have that the

graph G5 — u is a blue 4-connected subgraph with at least n — 6 vertices.

Case 1.3 |B;| = 2.
Then |A;| =n — |C| — |Cy| — |B:1| > 4.

Case 1.3.1 There are at least one vertex of {v1,v2}, say vy, that sends one red edge to
C.

Then there are at most one vertex vy of {v1,v9} that sends one red edge to V(G1)\C.
And all edges between v; and A; U By are blue. If vy sends one red edge to By, then Gj
a blue 4-connected graph with at least n — 5 vertices. If vy sends one red edge to Ay,
then there exists a vertex u of A; such that uvy is red. Then the graph G3 — u is a blue

4-connected graph with at least n — 6 vertices.

Case 1.3.2 Each vertex of {v1,v3} sends one red edge to Bj.
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Then all edges between {vy,v9, B1} and A; are blue. We have that the graph Gj3 is a

blue 4-connected subgraph with at least n — 5 vertices.

Case 1.3.3 There exists only one vertex of {vy, v}, say vy, that sends one red edge to
A

Then v, sends at most one red edge to By. Let u € A; such that uv; is red. It’s easy
to see that all the edges between B; and vy are blue. Then the graph G3 — w is a blue

4-connected graph with at least n — 6 vertices.

Case 1.3.4 Each vertex of {v1, vy} sends one red edge to A;.

Then all the edges between B; and {v;,vs} are blue edges. If there exists a vertex
u € Ajp such that both wv; and uwvs are red edges, then the graph G3 — u is a blue
4-connected graph with at least n — 6 vertices.

Suppose that there exist two vertices uy, us € Ay such that viu; and veusy are red edges.
Then it is easy to see that the graph G3 — {uy,us} is a blue 4-connected subgraph. We
know that each vertex of {vs,vs} sends two red edges to Gp. If there exists a vertex of
{vs,v4} and a vertex of {uy,us}, say vz and u;, such that ujvz is blue, then the graph
G4 — ug — vy is a 4-connected subgraph with at least n — 5 vertices. If there isn’t a vertex
of {vs,v4} such that w;vs (i = 1,2) is blue, then each vertex of {vs, v4} sends at least four
red edges to G3 — u; — us. By Lemma 2.1, the graph G4 — u; — us is 4-connected with at

least n — 5 vertices.

Case 1.4 |B;| = 1.
Then |A;| =n — |By| — |C| — |C1] > 5. It is easy to see that there are at most six red

edges between C] and G in all.

Case 1.4.1 There are at most two red edges between A; and C.
Then there exists at most one vertex v of A; that sends at most three blue edges to

By U (4. It’s easy to see that the graph G4 — v is a 4-connected subgraph with at least
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n — 4 vertices.

Case 1.4.2 There are three red edges between A; and C4.

Suppose that there exists a vertex of (', say vz, that sends two red edges to different
vertices of A;. Then there exists a vertex of C, say v, that sends one red edges to the
vertex u of Ay. If uvsz is a red edge, then the graph G4 — v3 is a 4-connected subgraph with
at least n — 4 vertices. If uvs is a blue edge, then the graph G4 — vy — v3 is a 4-connected
subgraph with at least n — 5 vertices. Suppose that there exist three vertices of C, say
v1, V9, v3, each of which sends one red edge to A;. If each vertex of A; sends at least
four blue edges to By U (1, then the graph G, is a 4-connected subgraph with with at
least n — 3 vertices. If there exists a vertex u of A; such that u sends three red edges to
B, U (], then the graph G4 — u is a 4-connected subgraph with at least n — 4 vertices.
If there exist two vertices uq,us of Ay such that ujvy, uivse, usvs are red edges, then the

graph G4 — u; — v3 is a 4-connected subgraph with at least n — 5 vertices.

Case 1.4.3 There are four red edges between A; and Cf.

Since there are at most six red edges between C; and (G in all, we have that there
exists a vertex w € C' that sends |Cy| blue edges to Cy. There are at most two vertices
uy, up of Ay each of which sends at most three blue edges to By U C;. Then the graph
B[(A1\{u1,u2}) U By UCy U{w}] is a 4-connected subgraph with at least n — 4 vertices.

Case 1.4.4 There are five red edges between A; and C.

Then there are at least two vertices of C' each of which sends |Cy| blue edges to Ci.
There are at most two vertices uy, us of A; each of which sends at most three blue edges
to By U Cy. Then the graph B[(A;\{u1,u2}) U By UCy U {wy,ws}] is a blue 4-connected

subgraph with at least n — 3 vertices.

Case 1.4.5 There are six red edges between A; and C}.
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Then There are at most three vertices uq, us,u3 of A; each of which sends at most
three blue edges to B[B; U C, Cy]. It’s easy to see that each vertex of C' sends |C}| blue
edges to C' and each vertex of C sends |B;| blue edges to By. Then B[B; U C U (4] is
a 4-connected graph. Note that each vertex of A;\{uq,us, us} sends at least four blue
edges to B[B; UC U(C4]. By Lemma 2.1, the graph B[(A;\{u1,us,us}) U B UC; UC] is

a 4-connected subgraph with at least n — 3 vertices.

Case 2 Suppose that G; and G5 have different colors. Without loss of generality, let
G7 € Rand G, C B.

Note that there exists at most one vertex v of ('} that sends two red edges to G.
Otherwise, there are at least two vertices vy, vy of C each of which sends two red edges
to G;. By Lemma 2.1, R[G1 U {v1,v9}] is a red 2-connected subgraph with at least n — 2
vertices, a contradiction. Then there are at most five red edges between C'; and GG;. Then
There are at most five vertices, say u; € G1(i = 1,2,3,4,5), each of which sends at least
one red edge to C';. Since n > 13, we have that there exists a blue 4-connected subgraph
B[C7 U G1\{uy, ug, us, uy, us} with at least n — 5 vertices.

This completes the proof.
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