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1. INTRODUCTION 

The study of generalized functions has become a major area of research for last five decades. The 

literature with Schwartz distribution theory, tempered distributions and their applications are 

available. Dirac introduced the 𝛿 -function and the property that the derivative of the Heaviside 

function is the 𝛿–function.  

The impact of generalized functions on the integral transformations has revolutionaries the 

theory of generalized integral transformations. McBride, Mendez and Zemanian have given their 

contribution in this field. Mikusinski J. has given algebraic approach to generalized functions in 
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[10]. Similar to Mikusinski operators, a very general new class of generalized functions, called 

as Boehmians was constructed by Mikusinski P. [12]. Several properties of Kamal transform are 

investigated with applications in [1-3]. The Various integral transforms on Boehmians spaces are 

developed and studied in [4-9, 13-14].  

In this paper we mainly deal with a case of Kamal transform and developed Boehmian space for 

it. 

 

2. GENERALIZED FUNCTIONS [15-17]: 

The straight forward approach for generalized function is given by Temple G. [16] with the fact 

that different sequences may have the same generalized functions.  

Hence it is a need to define an equivalence relation between sequences that represent the same 

generalized functions.  

Suppose (𝑓𝑛)𝑎𝑛𝑑 (𝑔𝑛) are the sequences of functions so that the integrals ∫ 𝑓𝑛(𝑡)𝜑(𝑡)
∞

−∞
𝑑𝑡 

and ∫ 𝑔𝑛(𝑡)𝜑(𝑡)
∞

−∞
𝑑𝑡 exists for all n and for all 𝜑 from a given class of functions 𝜑(𝑡).   

Assume also that lim
𝑛→∞

∫ 𝑓𝑛(𝑡)𝜑(𝑡)
∞

−∞
𝑑𝑡  𝑎𝑛𝑑 lim

𝑛→∞
∫ 𝑔𝑛(𝑡)𝜑(𝑡)

∞

−∞
𝑑𝑡 exists.  

The two sequences (𝑓𝑛)𝑎𝑛𝑑 (𝑔𝑛) are called equivalent with respect to 𝜑(𝑡) if and only if   

                             lim
𝑛→∞

∫ 𝑓𝑛(𝑡)𝜑(𝑡)
∞

−∞
𝑑𝑡 =  lim

𝑛→∞
∫ 𝑔𝑛(𝑡)𝜑(𝑡)

∞

−∞
𝑑𝑡           

for all𝜑 ∈ 𝜑(𝑡).  

The expression ∫ 𝑓𝑛(𝑡)𝜑(𝑡)
∞

−∞
𝑑𝑡 associates a number with every𝜑, this quantity is called a 

functional. We can write this as〈𝑓𝑛, 𝜑〉 = ∫ 𝑓𝑛(𝑡)𝜑(𝑡)
∞

−∞
𝑑𝑡.  

We denote lim
𝑛→∞

〈𝑓𝑛, 𝜑〉  𝑏𝑦 〈𝑓, 𝜑〉, is well defined, and is a complex number, called as generalized 

function. The definition of generalized functions as functional is used by Schwartz and Gelfand 

in their monographs. 
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3. INTEGRABLE BOEHMIANS 

A general construction of Boehmians was studied in [11]. The space of Boehmians with two 

notions of convergence was well defined in [12]. The integral transforms have been extended to 

the context of Boehmian spaces. Fourier [5, 6, 7, 13, 14], Hilbert [8, 9] are some of them.  

Suppose 𝐿1 is the space of complex valued (Lebesgue) Integrable functions on(0, ∞).  

Define the norm on 𝐿1 as ‖𝑔‖ = ∫ |𝑔(𝑢)|
∞

0
𝑑𝑢.  

If 𝑓1, 𝑓2 ∈ 𝐿1 then the convolution product(𝑓1 ∗ 𝑓2)(𝑢);    

                  (𝑓1 ∗ 𝑓2)(𝑢) = ∫ 𝑓1(𝑥)𝑓2(𝑢 − 𝑥)
∞

0
𝑑𝑥; is an element of 𝐿1 and we have  

                    ‖𝑓1 ∗ 𝑓2‖ ≤ ‖𝑓1‖‖𝑓2‖.  

A sequence of continuous real valued functions(∅𝑛) ∈ 𝐿1, called a delta sequence if  

(i) ∫ ∅𝑛(𝑥)
∞

0
𝑑𝑥 = 1, ∀ 𝑛 ∈ ℕ.  

(ii)    ‖∅𝑛‖ < 𝐾, for some 𝐾 ∈ (0, ∞) and all 𝑛 ∈ ℕ.  

(iii)    lim
𝑛→∞

∫ |∅𝑛(𝑥)|
|𝑥|>𝜀

𝑑𝑥 = 0, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝜀 > 0.  

If (𝑓𝑛)𝑎𝑛𝑑 (𝑔𝑛) are delta sequences then (𝑓𝑛 ∗ 𝑔𝑛) is also a delta sequence.  

If 𝑓1 ∈ 𝐿1𝑎𝑛𝑑 (∅𝑛) is a delta sequence then ‖𝑓1 ∗ ∅𝑛 − 𝑓1‖ → 0 𝑎𝑠 𝑛 → ∞. 

The delta sequences have approximate identities or summability kernels as other notions.  

A pair of sequences (𝑓𝑛, 𝑔𝑛) is called quotient of sequences; denoted by 𝑓𝑛/𝑔𝑛, if 𝑓𝑛 ∈

𝐿1 𝑎𝑛𝑑 (𝑔𝑛) is a delta sequence and 𝑓𝑚 ∗ 𝑔𝑛 = 𝑓𝑛 ∗ 𝑔𝑚, for all 𝑚, 𝑛 ∈ ℕ.   

Two quotient sequences 𝑓𝑛/𝑔𝑛 and ℎ𝑛/∅𝑛 are equivalent if 𝑓𝑛 ∗ ∅𝑛 = 𝑔𝑛 ∗ ℎ𝑛, ∀ 𝑛 ∈ ℕ.                                  

The equivalence class of quotient of sequences is called as an Integrable Boehmian.  

The space of all these Integrable Boehmians is denoted by𝐵𝐿
1.  

If we define addition, multiplication by a scalar and convolution on 𝐵𝐿
1 as  

              [𝑓𝑛/𝑔𝑛] + [ℎ𝑛/∅𝑛] = [(𝑓𝑛 ∗ ∅𝑛 + ℎ𝑛 ∗ 𝑔𝑛)/(𝑔𝑛 ∗ ∅𝑛)],  

              𝑘[𝑓𝑛/𝑔𝑛] = [𝑘𝑓𝑛/𝑔𝑛],   

              [𝑓𝑛/𝑔𝑛] ∗ [ℎ𝑛/∅𝑛] = [(𝑓𝑛 ∗ ℎ𝑛)/(𝑔𝑛 ∗ ∅𝑛)] respectively then 𝐵𝐿
1  becomes a 
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convolution algebra.  

Note that a function 𝑓 ∈ 𝐿1 with a Boehmian[(𝑓 ∗ ∅𝑛)/∅𝑛]; (∅𝑛)is any delta sequence. Here, 

𝐿1is a subspace of 𝐵𝐿
1. 

Also if 𝐹 = [𝑓𝑛/∅𝑛] 𝑡ℎ𝑒𝑛 𝐹 ∗ ∅𝑛 = 𝑓𝑛  ∴ 𝐹 ∗ ∅𝑛 ∈ 𝐿1, ∀ 𝑛 ∈ ℕ.  

The two type of convergence 𝛿 𝑎𝑛𝑑 ∆ of sequences of Boehmians on 𝐵𝐿
1 can be defined as- 

A sequence of Boehmians 𝐹𝑛 is 𝛿-convergent to 𝐹 if ∃ a delta sequence (∅𝑛) such that 

𝐹𝑛 ∗ ∅𝑘 ∈ 𝐿1 𝑎𝑛𝑑 𝐹 ∗ ∅𝑘 ∈ 𝐿1, ∀ 𝑛, 𝑘 ∈ ℕ 𝑎𝑛𝑑 ‖(𝐹𝑛 − 𝐹) ∗ ∅𝑘‖ → 0  for each 𝑘 ∈ ℕ.  We can 

denote this as 𝛿 − lim 𝐹𝑛 = 𝐹.  

A sequence of Boehmians 𝐹𝑛 is ∆-convergent to 𝐹 if ∃ a delta sequence (∅𝑛) such that 

(𝐹𝑛 − 𝐹) ∗ ∅𝑛 ∈ 𝐿1  ∀ 𝑛 ∈ ℕ 𝑎𝑛𝑑 ‖(𝐹𝑛 − 𝐹) ∗ ∅𝑛‖ → 0 for each 𝑘 ∈ ℕ. we can denote this as     

∆ − lim 𝐹𝑛 = 𝐹. With this ∆-convergence 𝐵𝐿
1 is a quasi-normed space [12]. 

The relation between these two types of convergence is given in [12] as an equivalence.  

∆ − lim 𝐹𝑛 = 𝐹 if and only if each sub-sequence of (𝐹𝑛) contains a 𝛿-convergent subsequence 

which converges to 𝐹.  

Now, if ∆ − lim 𝐹𝑛 = 𝐹  𝑎𝑛𝑑 ∆ − lim 𝐻𝑛 = 𝐻  𝑡ℎ𝑒𝑛 ∆ − lim( 𝐹𝑛 ∗ 𝐻𝑛) = 𝐹 ∗ 𝐻.  

If (∅𝑛) is a delta sequence, [∅𝑛/∅𝑛] represent Integrable Boehmian. As it corresponds to the 

Dirac delta distribution; denoted by ∅, all the derivatives of ∅ are also Integrable Boehmians.  

Since there are delta sequences (∅𝑛) such that all functions ∅𝑛 are infinitely differentiable and 

having bounded support, we can define the mth derivative of ∅ by 

∅(𝑚) = [∅𝑛
𝑚/∅𝑛]. Here, ∅(𝑚) ∈ 𝐵𝐿

1, for any 𝑚 ∈ ℕ.  

The mth derivative of Boehmian 𝐹 ∈ 𝐵𝐿
1 is defined as 𝐹(𝑚) = 𝐹 ∗ ∅(𝑚).  

Using the continuity of the convolution in 𝐵𝐿
1, if ∆ − lim 𝐹𝑛 = 𝐹 then we have 

                                        ∆ − lim 𝐹𝑛
(𝑚)

= 𝐹(𝑚), for any 𝑚 ∈ ℕ.   

Let  𝐹 = [𝑓𝑛/∅𝑛] ∈ 𝐵𝐿
1 then 𝑓1 ∗ ∅𝑛 = 𝑓𝑛 ∗ ∅1 for each 𝑛 ∈ ℕ. 

Again as ∫ ∅𝑛(𝑥)
∞

0
𝑑𝑥 = 1, ∀ 𝑛 ∈ ℕ we have, 
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                    ∫ 𝑓1(𝑥)
∞

0
𝑑𝑥 = ∫ (𝑓1 ∗ ∅𝑛)(𝑥)

∞

0
𝑑𝑥 

                              = ∫ (𝑓𝑛 ∗ ∅1)(𝑥)
∞

0
𝑑𝑥 

                              = ∫ 𝑓𝑛(𝑥)
∞

0
𝑑𝑥.  

Also if  [𝑓𝑛/𝑔𝑛] = [ℎ𝑛/∅𝑛] 𝑡ℎ𝑒𝑛 𝑓𝑛 ∗ ∅𝑛 = ℎ𝑛 ∗ 𝑔𝑛, ∀ 𝑛 ∈ ℕ.  

⇒  ∫ 𝑓𝑛 𝑑𝑥 = ∫ ℎ𝑛 𝑑𝑥 (𝑠𝑖𝑛𝑐𝑒 ∫ 𝑔𝑛 = ∫ ∅𝑛 = 1). 

Hence, we can define the integral of a Boehmian as if   

                 𝐹 = [𝑓𝑛/∅𝑛] ∈ 𝐵𝐿
1 𝑡ℎ𝑒𝑛 ∫ 𝐹(𝑥)

∞

0
𝑑𝑥 = ∫ 𝑓1

∞

0
(𝑥)𝑑𝑥.  

The integral is same as Lebesgue integral for the function in 𝐿1 . However, continuously 

differentiable functions in 𝐿1 whose derivatives are not in 𝐿1  are Integrable as Boehmians but 

not Integrable as functions.  

 

4. THE KAMAL TRANSFORM 

The Kamal transform of the function 𝐹(𝑡) defined in [1] is 

                 𝐾{𝐹(𝑡)} = ∫ 𝑒
−𝑡

𝑣⁄∞

0
𝐹(𝑡)𝑑𝑡 = 𝐺(𝑣), 𝑡 ≥ 0, 𝑘1 ≤ 𝑣 ≤ 𝑘2, 

provided the integral on R.H.S. exists and 𝐹(𝑡) is sectionally continuous and of exponential 

order on the set A; where  

                 𝐴 = {𝑓: |𝑓(𝑡)| < 𝑀𝑒
|𝑡|

𝛼𝑗
⁄

, 𝑡 ∈ (−1)𝑗 × [0, ∞), 𝑀, 𝛼 > 0};  

Here the constant M should be finite number, 𝛼 may be infinite and v is a variable of transform. 

Off course these conditions are sufficient for existence of Kamal transform of 𝐹(𝑡).  

The inverse Kamal transform: If 𝐾{𝐹(𝑡)} = 𝐺(𝑣)  then 𝐹(𝑡)  is called inverse Kamal 

transform of 𝐺(𝑣). 

                𝐹(𝑡) = 𝐾−1{𝐺(𝑣)}; Where 𝐾−1 is inverse Kamal operator. 

Lemma 4.1. If [𝑓𝑛/∅𝑛] ∈ 𝐵𝐿
1 then the sequence 

                                 𝑓𝑛̃(𝑥) = ∫ 𝑓𝑛
∞

0
(𝑡)𝑒𝑖𝑡/𝑥𝑑𝑡;  

Where the Kernel 𝑘(𝑥, 𝑡) = 𝑒𝑖𝑡/𝑥, converges uniformly on each compact set in(0, ∞).  
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Proof: If (∅𝑛) is a delta sequence then (∅𝑛̃)  converges uniformly on each compact set to 

constant function 1. Hence for each compact set K, ∅𝑘̃ > 0 on K for all most all 𝑘 ∈ K and 

                      𝑓𝑛̃ = 𝑓𝑛 .̃
∅𝑘

∅𝑘̃

̃
=

(𝑓𝑛∗∅𝑘)̃

∅𝑘̃
=

(𝑓𝑘∗∅𝑛)̃

∅𝑘̃
=

𝑓𝑘

∅𝑘̃

̃
. ∅𝑛̃ on K. 

Here, the Kamal transform of Integrable Boehmians 𝐹 = [𝑓𝑛/∅𝑛] is defined as the lim(𝑓𝑛)̃  in 

the space of continuous functions on(0, ∞). Therefore Kamal transform of Integrable Boehmians 

is a continuous function.   

Theorem 4.2. Suppose 𝐹1, 𝐹2 ∈ 𝐵𝐿
1 then  

(i) (𝛼𝐹)̃ = 𝛼𝐹̃, for any complex number𝛼. 

(ii) (𝐹1 + 𝐹2)̃ = 𝐹1̃ + 𝐹2̃  

(iii) (𝐹1 ∗ 𝐹2)̃ = 𝐹1̃𝐹2̃ 

(iv) If 𝐹̃ = 0 𝑡ℎ𝑒𝑛 𝐹 = 0.  

(v) If ∆ − lim 𝐹𝑛 = 𝐹  𝑡ℎ𝑒𝑛 𝐹𝑛̃ → 𝐹̃ uniformly on each compact set.  

Proof: To prove (v) it is sufficient if we show that 𝛿 − lim 𝐹𝑛 = 𝐹 which implies that 𝐹𝑛̃ → 𝐹̃, 

converges uniformly on each compact set.  

Let (∅𝑛) be a delta sequence such that 𝐹𝑛 ∗ ∅𝑘 , 𝐹 ∗ ∅𝑘 ∈ 𝐿1, for all 𝑛, 𝑘 ∈ ℕ 𝑎𝑛𝑑  

                   ‖(𝐹𝑛 − 𝐹) ∗ ∅𝑘‖ → 0 for each 𝑘 ∈ ℕ.   

Let S be a compact set in(0, ∞). Then ∅𝑘̃ > 0 on S, for some 𝑘 ∈ ℕ. Since ∅𝑘̃ is a continuous 

function, Consider 

           𝐹𝑛̃. ∅𝑘̃ − 𝐹̃. ∅𝑘̃ = [(𝐹𝑛 − 𝐹) ∗ ∅𝑘]̃  𝑎𝑛𝑑 ‖(𝐹𝑛 − 𝐹) ∗ ∅𝑘‖ → 0 𝑎𝑠 𝑛 → ∞.  

                       𝑖. 𝑒. 𝐹𝑛̃. ∅𝑘̃ → 𝐹̃. ∅𝑘̃ , converges uniformly on S.  

The case (i) to (iv) can be proved easily.  

Lemma 4.3. Let 𝑓 ∈ 𝐿1 𝑎𝑛𝑑 𝑓𝑛(𝑥) =
1

2𝜋
 ∫ 𝑓(𝑡)

𝑟

−𝑟
𝑒𝑖𝑡/𝑥𝑑𝑡. Then (𝑓𝑛) converges to 𝑓 in 𝐿1. 

Theorem 4.4. Let 𝐹 ∈ 𝐵𝐿
1 𝑎𝑛𝑑 𝑓𝑛(𝑥) =

1

2𝜋
 ∫ 𝑓(𝑡)

𝑟

−𝑟
𝑒𝑖𝑡/𝑥𝑑𝑡. Then 𝛿 − lim 𝑓𝑛 = 𝐹.  

                          Hence we can also have ∆ − lim 𝑓𝑛 = 𝐹.  
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Proof: Let 𝐹 = [𝑔𝑛/∅𝑛] 𝑎𝑛𝑑 𝑘 ∈ ℕ. Then 

                    (𝑓𝑛 ∗ ∅𝑘)(𝑥) = ∫ 𝑓𝑛(𝑥 − 𝑢)
∞

0
∅𝑘(𝑢)𝑑𝑢 

                               =
1

2𝜋
 ∫ 𝐹̃(𝑡)

𝑟

–𝑟
𝑒𝑖𝑡(

1

𝑥
−

1

𝑢
)∅𝑘(𝑢)𝑑𝑡𝑑𝑢  

                               =
1

2𝜋
 ∫ 𝐹̃(𝑡)

𝑟

–𝑟
𝑒

𝑖𝑡

𝑥 𝑑𝑡 ∫ ∅𝑘(𝑢)𝑒−
𝑖𝑡

𝑢
∞

0
𝑑𝑢  

                               =
1

2𝜋
 ∫ 𝐹̃(𝑡)∅𝑘̃(𝑡)

𝑟

−𝑟
𝑒𝑖𝑡/𝑥𝑑𝑡.  

Therefore by lemma (4.1), ‖𝑓𝑛 ∗ ∅𝑘 − 𝐹 ∗ ∅𝑘‖ → 0 𝑎𝑠 𝑛 → ∞. Since 𝑘 ∈ ℤ+is arbitrary we 

have, 𝛿 − lim 𝑓𝑛 = 𝐹.   

From (iv) and (v) in Theorem (4.2), there are separate points for the family of continuous 

functional on𝐵𝐿
1.  

Hence, we can have the following characterization- 

Theorem 4.5. If a function Γ(t) is defined on [0,1] with values in𝐵𝐿
1 such that the derivative Γ’(t) 

exists and equal to 0 at each point then Γ(t) is continuous function.  

  

5. CONCLUSION 

The space 𝐵𝐿
1  contains some elements which are not Schwartz distributions. The Kamal 

transform for Integrable Boehmians is obtained with some basic properties. An inversion 

theorem for Kamal transform is also discussed.  
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