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Abstract. In this paper, we define the concept of Cubic Picture Fuzzy Soft Matrices (CPFSMs). Cubic Picture
Fuzzy Soft Matrices is a combination of Cubic Soft Matrices (CSMs) and Picture Fuzzy Soft Matrices (PFSMs).
Furtherly, we develop the P-order and R-order of Union and Intersection of Cubic Picture Fuzzy Soft Matrices
with relevant algebraic properties are investigated.
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1. INTRODUCTION

Fuzzy set (FS) theory was introduced by Zadeh[9] in 1965 and it is an extention of the clas-
sical crisp logic a multivariate form. Intuitionistic Fuzzy Set (IFS) defined by Atanassov[2] in
1983, which is also an extension of FS. Molodtsov([7] developed the concept of Soft Set (SS)
theory. This provided a new methodology for studying uncertainty.

A Cubic Set(CS) is a hybrid structure involving an Interval Valued Fuzzy Set(IVFS) by
Jun.et.al.,[6] in 2012 have introduced the concept of Cubic Sets as internal Cubic Set(ICS) and
external Cubic Set(ECS). Muhiuddin and Al-rogi[8] proposed the concept of P — (R)-Cubic
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Soft Subsets(CSSs) P — (R)-Union and Intersection of a Cubic Soft Sets(CSS) were developed.

Chinnadurai and Barkavi[4] was introduced the notion of Cubic Soft Matrices(CSM),also
they investigated P — (R)- order of P — (R)-Union and intersection of CSM.

The notion of Picture Fuzzy Set (PFS) was introduced by Coung[3] in 2015, is a recently de-
veloped tool to deal with uncertainty which is a direct extension of Intuitionistic Fuzzy Set(IFS).
Interval valued Picture Fuzzy Set(IVPES) also proposed by Coung.

In 2020 Dogra and Pal[5] established the concept of Picture Fuzzy Matrix(PFM) and stud-
ied some of its properties. Ashraf[1] recently developed the concept of Cubic Picture Fuzzy
Set(CPFES) in 2018.

In this paper, we present the notion of Cubic Picture Fuzzy Soft Matrices(CPFSMs), is a
combination of Cubic Soft Matrices(CSM) with Picture Fuzzy Soft Matrices(PFSM). We de-
fine P — (R)-order of P — (R)- Union, Intersection of Cubic Picture Fuzzy Soft Matrices. Also

investigate some of its algebraic properties.

2. PRELIMINARIES

Definition 2.1. [3] Let U be a non empty set, A Picture Fuzzy Set P of U is given by P =
{u, 065 (u), Bp(u), Yp(u) /u € U}

where, o, : U — [0,1],8, : U — [0,1] and 7y, : U — [0, 1] are subsets of U which define the
degree of Positive, degree of Neutral and degree of Negative of any element u € U, to the PFS
P, which satisfying the condition

0 < a,(u)+By(u)+7v,(u) <1forallucU.

Definition 2.2. [6] Let U be a non empty set, An IVPES P of U is given by

P = {u, Gy (u). By (), 7y () fu € U}

where, &, : U — [0,1],8,:U — [0,1] and %, : U — [0, 1]. C[0, 1] denotes the set of all closed sub
intervals of [0, 1]. Respectively &, (u), B, (1), ¥, (1) are closed sub intervals of [0, 1], representing
the degree of positive, degree of Neutral and degree of Negative of any element u to the PFS P.
The lower and upper ends of & (), B,(u) and 7, (u) are denoted respectively
dp(u),gp(u),ﬁp(u),ﬁp(u) and ]‘/p(u),j_/p(u), which satisfying the condition
0<a,(u)+By(u)+7,(u) <1,forallu e U.
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Definition 2.3. [1] Let U be a non empty set, A Cubic Picture Fuzzy Set P is an object of the
form

P = {u, < @y (u), 0y (u) >, < By(u), Bp(u) >, < Fp(u), Yp(u) > ju € U}

in which &, (u), Bp(u), ¥,(u) are closed sub intervals of [0,1], representing the degree of
positive, degree of Neutral and degree of Negative of any element u to the PFS P and
Op(u) Bp(u), Yp(u) @ degree of positive. degree of neutral and degree of negative of the element u
tO the set P.

A CPFS P can also be denoted as

P= (< 0p, 0 >, < Bp,ﬁp >, < VsV >> and PV denotes the collection of all CPFSs defined
onU.

Definition 2.4. [7] Let U be a non empty set, E be a set of parameters and A C E. P(U) denote
the power set of U.

A pair (F,A) is called a soft set over U, if F : A — P(U).

3. CusBIic PICTURE FUZZY SOFT SETS AND CUBIC PICTURE FUZZY SOFT MATRICES

Definition 3.1. Let U be a non empty set, E be a set of parameters and A C E. A cubic Picture
Fuzzy Soft Set over U is defined as a pair (F,A), where F : A — PY (F,A) = {F(e)/e € A},

where F(e) = {< r(e), Or(e) > < Br(e), Br(e) > < Tr(e)» Yr(e) >}

OF (e)s Br(e); ¥r () are closed sub intervals of [0, 1]

Definition 3.2. The complement of a CPFSS (F,A) denoted by (F,A) is defined as, (F,A)¢ =

{< Xy [ZF(e) (X), ’}7F(e) (‘x)]7 YF(e) (X), [EF(e) (X), BF(e) (X)] ) ﬁF(e) (X),
[QF(e) (X), @F(e) (x)],OCF(e) (x) >VxeUande € A}.

Definition 3.3. Let U = {u;,uy,...,un,} be a Universal set and E = {ey,ez,...,e,} be a set of
parameters and A € E, then the cubic picture fuzzy soft matrix (F,A) is represented in matrix

form as,
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P11 P12 -~ Pin
P21 p22 ... P2

PM = [pij] =

| Pm1 Pm2 -+ Pmn
where, [pi}] = (< [&, ), [BS, BO, (¥, %] >)
= (< o], &f], 0 >, < B B7), Bl >, < [}/{’_,74”.], 7o)
i=1,2,..,m, j=1,2,...,n. Also satisfying the condition, 0< 0/, —l—ﬁ y‘” <1, then PM is an

(m x n) CPFSM.

Definition 3.4. Consider the CPFSM PM = [< [af, o], [BL. B, (75

ij> ijoPij ijo ,‘j] >] , then the

(mxn)
complement of the CPFSM is denoted by,

}/f;,}/f; l], ~lj, ]>] X)foralli,j.

Example 3.4.1
M
PC =
<10.1,0.3],0.2,[0.2,0.3],0.3,[0.1,0.2],0.3 > < [0.1,0.4],0.3,[0.1,0.3],0.2,]0.1,0.3],0.3 >
<1[0.1,0.2],0.2,[0.2,0.4],0.3,[0.2,0.3],0.3 > < [0.1,0.3],0.3,[0.2,0.3],0.3,[0.1,0.3],0.3 >
<1[0.1,0.3],0.2,[0.1,0.4],0.2,[0.1,0.2],02 > < [0.2,0.3],0.2,[0.1,0.2],0.2,]0.1,0.4],0.3 >
(PM)e =
<1[0.1,0.2],0.3,[0.2,0.3],0.3,[0.1,0.3],0.2 > < [0.1,0.3],0.3,[0.1,0.3],0.2,[0.1,0.4],0.3 >
<1[0.2,0.3],0.3,[0.2,0.4],0.3,[0.1,0.2],02 > < [0.1,0.3],0.3,[0.2,0.3],0.3,[0.1,0.3],0.3 >

<10.1,0.2],0.2,[0.1,0.4],0.2,[0.1,0.3],0.2 > < [0.1,0.4],0.2,[0.1,0.2],0.2,[0.2,0.3],0.3 >

4. P-UNION, P-INTERSECTION, R-UNION, R-INTERSECTION OF CPFSM

In this section, we define P-Union, P-Intersection, R-Union, R-Intersection of two

CPFSM,, ) and investigate some properties.

Definition 4.1. Let P = [< [}, o], [BF, B, 17, v >
. le: [< [111]7“1]]7[ﬁl]7rlz]]7[gzjvgzj] >] GCPFSM(an)
Then
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(1) P-Union of PM and Q¥ is denoted by P¥ vp QM is defined as
PYVp QM =M if MY = [myj] =< MY, A >,

where MY = max{<< 565, Nl-I]J-,}Z-I; > < [Lg,ﬁg,gg >)} and

M = min{<< of BEYE > < uf 8.5 >)} for all i, j.

(2) P-Intersection of P¥ and Q¥ is denoted by PM Ap QM is defined as

PYnp QM = MY it MY = [m;] =< MM M >,

c »Mij
M ~P BP % nQ 50 =0
where M _mm{<< a;j, iijiI; >, < K55 M7, G5 >>} and
M _ P RP 0 0 0 ;o
(3) R-Union of P¥ and Q™ is denoted by PM Vg QM is defined as

PYvr O = MY it MY = [mij) =< MY AN >,
where MY = max{<< o, ~5,}7;’; > < ﬂg,ﬁg,gg >>} and
M}f’ = min{<< a{;, 5,7;-’; >, < ug,ng,gg >)} for all i, j.
(4) R-Intersection of PM and Q¥ is denoted by PM Ag Q¥ is defined as

PY AR QM = MM it MY = [m;;] =< MM A >,

c »Mj
M — mi 5P BP & 0 =0 =0
where M _mm{<< G, By ¥ > < B M5, G >>} and
= o 0 0 ..
7“1'1}/1 —max{(< (XS-, 5775‘ >, < “l'j;rlij,gij >>} for all i].
Example 4.1.1
P =

C

<10.1,0.3],0.2,[0.2,0.3],0.3,[0.1,0.2],0.3 > < [0.1,0.4],0.3,[0.1,0.3],0.2,[0.1,0.3],0.3 >
<1[0.1,0.2],0.2,[0.2,0.4],0.3,[0.2,0.3],0.3 > < [0.1,0.3],0.3,[0.2,0.3],0.3,[0.1,0.3],0.3 >
<10.1,0.3],0.2,[0.1,0.4],0.2,[0.1,0.2],0.2 > < [0.2,0.3],0.2,[0.1,0.2],0.2,[0.1,0.4],0.3 >

oM =
<10.1,0.3],0.2,[0.2,0.3],0.3,0.2,0.3],0.3 > < [0.1,0.4],0.3,[0.1,0.3],0.2,]0.2,0.3],0.3 >

<10.2,0.3],0.3,[0.1,0.4],0.2,[0.1,0.2],0.2 > < [0.1,0.4],0.3,[0.1,0.2],0.2,[0.1,0.3],0.3 >
<10.1,0.2],0.2,[0.2,0.3],0.3,0.1,0.3],0.2 > < [0.1,0.3],0.2,[0.1,0.3],0.2,[0.2,0.3],0.3 >

1. (P-Union) PM vp QM = MM | is defined by,

MY =
< [0.1,0.3],0.2,[0.2,0.3],0.3,[0.2,0.3],0.3 > < [0.1,0.4],0.3,[0.1,0.3],0.2,[0.1,0.4],0.3 >
< [0.2,0.3],0.3,[0.2,0.4],0.3,[0.2,0.3],0.3 > < [0.1,0.4],0.3,[0.2,0.3],0.3,[0.1,0.3],0.3 >
< [0.1,0.3],0.2,[0.2,0.4],0.3,[0.1,0.3],0.2 > < [0.2,0.3],0.2,[0.1,0.3],0.2,[0.2,0.4],0.3 >
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2. (P-Intersection) PM Ap QM = MM _is defined by,

MY =
<[0.1,0.2],0.2,[0.1,0.3],0.3,[0.1,0.2],03 > < [0.1,0.3],0.2,[0.1,0.2],0.2,[0.1,0.3],0.3 >
<1[0.1,0.2],0.2,[0.1,0.4],0.2,0.1,0.2,0.2 > < [0.1,0.3],0.3,[0.1,0.2],0.2,[0.1,0.3],0.3 >
<1[0.1,0.2],0.2,[0.1,0.3],0.2,[0.1,0.2],0.2 > < [0.1,0.2],0.2,[0.1,0.2],0.2,[0.1,0.3],0.3 >

3. (R-Union) PCM Vg Qﬁ” = Mé"’ , is defined by,

MY =
< 10.1,0.3],0.2,]0.2,0.3],0.3,]0.2,0.3},0.3 > < [0.1,0.4],0.2,[0.1,0.3],0.2,[0.2,0.3],0.3 >
< [0.2,0.3],0.2,[0.2,0.4],0.2,[0.2,0.3],0.2 > < [0.1,0.4],0.3,[0.2,0.3],0.2,[0.1,0.3],0.3 >
< 10.1,0.3],0.2,10.2,0.4],0.2,]0.1,0.3],0.2 > < [0.2,0.3],0.2,[0.1,0.3],0.2,[0.2,0.4],0.3 >

4. (R-Intersection) P¥ Ng QM = MM s defined by,

MY =
<[0.1,0.2],0.2,[0.1,0.3],03,[0.1,0.2],03 > < [0.1,0.3],0.3,[0.1,0.2],0.2,[0.1,0.3],0.3 >
<1[0.1,0.2],0.3,[0.1,0.4],0.3,0.1,0.2],0.3 > < [0.1,0.3],0.3,[0.1,0.2],0.3,[0.1,0.3],0.3 >

<10.1,0.2],0.2,[0.1,0.3],0.3,[0.1,0.2],0.2 > < [0.1,0.2],0.2,[0.1,0.2],0.2,[0.1,0.3],0.3 >

Property 4.2. Let PM oM RM sM TM ¢ CPF SM(nxn), then the following conditions are
holds,

() If, PM C, oM O™ Cp RM RM Cp SM and S¥ Cp TM, then
R Cp (O N RY) Ap (RY NpSE) Ap (S APTH).

(2) If, PM C, oM O™ Cp RM RM Cp SM and S¥ Cp TM, then
R Cp (Y VvpRY) Ve (RY VpSE) Ve (S VP TH).

(3) If, PM C, oM O™ Cp RM RM Cp SM and S¥ Cp TM, then
(PMvp QM vpRMvpSMY C TM.

) If, PM C, oM O™ Cp RM RM Cp SM and S¥ Cp TM, then
(P Np QM Np RM N pSM) Cp TM.

(5) If, PM C, oM O™ Cp RM RM Cp SM and S¥ Cp TM, then
(@)(PMvp M) Cp (RMvpSM) CpTH
O)(PY Ap Q) Cp (R ApSE) Cp T,



CUBIC PICTURE FUZZY SOFT MATRICES 7945
©6) If, PM C, oM O™ Cp RM RM Cp SM and S¥ Cp TM, then
@(PY VP Q) Ve (R VpS) Cp TV

b)(PY Ap QY ) vp (RYVpSY) Cp TV

(P vp MY vp (RY NpSY) Cp TM
(A (PY Ap QM) Ap (RY ApSH) Cp TH
(©)(PMvp QM) np (R NpSH) Cp TH

OPY Np OY) Np (RY v pSM) Cp TM.

Property 4.3. Let PCM ,QIC‘./[ ,Rjy ,Sﬁ‘.” ,TCM € CPFSM ;%) then the following conditions are
holds,

(1) If, PY Cr O™, 0" Cr RM RM Cp SM and SM C TM, then
PM Cr (OM AR RM) Ag (RM A SM) Ag (SM AR TM).

(2) If, PM Cr QM O™ Cr RM RM Cp SM and S¥ Cg TM, then
P Cr (QY VRRY) VR (RY VR SY) VR (S VRTM).

(3) If, PM Cr QM OM Cr RM RM C SM and S¥ Cr TM, then
(PYVR QY VR RM g SM) C TM,

(4) If, PM Cr O™, 0" Cr RM RM Cp SM and SM C TM, then
(PY AR QY NgRM N SM) CRr TM.

(5) If, PM C, oM O™ Cr RM RM Cp SM and S¥ Cg TM, then
@(PY VR Q) Cr (RY VR SY) SR T
(b)(PY AR QY) Cr (RY N SM) CRTM.

(6) If, P Cr O™, 0M Cr RM RM Cp SM and SM C TM, then
@(PY VR Q) VR (RY VR SM) CRTM
O)(PY AR Q) VR (RY VR SY) CRTM
©(PY VR QM) VR (R AR SY) CRTM
(@)(PY AR Q) AR (RY AR SY) CRTM
@ (PY VR O) Ar (RY AR SY) CRTM

(OPY AR OY) Nr (RM Vg SM) Cr TM.

Property 4.4. Let P be a CPFSM(,,.,). then
(@) (PM)vp (PM)e = (RM)°
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(i) (PY)e np (PY)e = (PM)°
(iii) (PM) Vg (PM)° = (PY)
(iv) (PM) Ag (PM)E = (PM)*

Proof:
PM = (< [af, af),[BE, BEL 17, 7] >
p

(P)e = [< [ 7). (B B, ladf, off) >]

@) (PM)evp (PM) = [< [af}, of 1, [BS, B, 7 v5) >1ve
[< [}’f; %’;] [ l],ﬁp ] [Ocl’;,ap] >| for all i, j.

P

~ P
:>max{< L ,j, l]> <y,], l],al]>},max{<yp U,oc,]> <y,’]’., 2ol

= [< 7.7, 1Bf. B [, o) >]

(i) (PM)° Ap (PM)CZ (< (@], al), (B, BEL, 17, %] >1ne
(< (770, 1B BE ). [, o) >] for all i .

:>m1n{< l’]’,~P> <7, Uﬁu },min{<y£~, ,],oc >, <y‘° 5, ;
= [< [7, v, 1B, BEL 16, o] >]

= (RM).

(iii) (PM)CVR(PM)CZ [< (&, o), B, BE) 17, v) >]ve
(< 1757, [B? 1B ] &, ofF) >] for all i, j.

~ ~ P P
:>max{<y.P. ,j,ocl]> <7 ],oclj>},max{<}f’ Lol > <yl Bl o

= [< 7. 7). 1Bf. B [, o) >]

= (RM).

(iv) (PM)C/\R(PM)CZ (< [&f, o), 1B, BE) 17, 7] >1ne
(< 757, IB? /B ] [al’;,ocp] >] for all i, j.

5 : P P
:>m1n{<}fp Lal >, < 75 B U>},mm{<yf;, Lol >, <o B o

>} for all 7, j

} for all i, j

>} forall i, j

>} forall i, j
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= [< (7). 1B, BL). (&), o) >]

= (P

Property 4.5. Let P be a CPFSM(,,), then
(i) (PY)evp () = (@) vp (PY)°

(i) (PM)C Ap () = (@) Ap (PY)

(iii) (PM)¢ Ve (Q)¢ = (Q) Vr (PY)*

(iv) (PY)° Ar (Q)° = (@) Ar (PY)°

Proof:

PY = [< (&, o], (B BEL 17 v >
M _ 50 91 1RQ 071 20 -0

o =< [uijvuij],[nij,nij],[Gij,gij] >]

(PMYe = [< (71,90, 1B BE), (@), o] >]
(M) = [< [g8), ¢, (72, n2), (53], u9) >]
(@) (PM)evp (QM)e = [< [af, o), [BL. BE), (7, 7] >V
< [&2,¢20. (7% &), (a8, u8) >] for all i,j.
= max{< }75, ~5,6¢f; >, < Cg,ﬁg,ﬁg >} ,max{< }/5, 5,065 >, < gg,nlg,ug >} for all
i,j
= max{< Cg,ﬁg,,ﬂg >, < }75-, ~5,6¢5 >, } ,max{< gg,ng,ug >, < }/;-7, 5,0{5 >} for all
i,j
= (QM)° vp (PM)

(i1) (Péw)c Ap (di)c = [< [&57 O‘f}], [~57 1'1;]7 [7757711;] >]/\P

(< (28621179, n2). (a8, 18] >] forall i, j.
= min{< Y Bl af >, < Cg,ﬁg,ﬁg >} ,min{< Y Bl od >, < gg,ng,,ug >} for all i, j

= min{<§§,ﬁg,ﬂg >, < ¥.B5.af >,},min{< seng.ul > <o, ,f;,oc5>} for all

]
= (@) Ap (P
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(iii) (PM)e Vg (QM) = [< [aF, o), [BL, BE) (%5, v >1Vr

< (59,681, (A&, &), [0S, uF] >] for all i j.
:>max{< o Bh.al > < g8 ag 0 > } min{< vo.Bh ol > < g8 nS uf > }forall i,
= max{< g8 n2. 08 >, < ¥4 B af >, } mm{< s2ng.uf >, <y,’;,ﬁ,j,a{j’.>} for all
i,j
= (QY)° VR (PM)*

(@) (PM)° AR (QU) = [< (&}, o), B BELL 17, 7] >1Aw

(< (89,65, (78021, (88, u5) >] for all i, ;.
:>m1n{<yP 35 al >, < &9,78. 18 > },max{<7”P Lol > < gl nf uf > }foralli,j
= m1n{< gg ng ,u162> <7f;, ,],OcP >,} max{< gg ng,ug> <Yij» U,(XP>} for all
i, ]
= () AR (PM)C.

S. SOME OPERATIONS ON CPFSM,; )

In this section, we discuss the P-Union, P-Intersection, R-Uion, R-Intersection of Cubic Pic-

ture Fuzzy Soft Matrices are defined and their relevant properties are investigated.

Theorem 5.1. Let
M QM RY SM be a CPFSM ), then

(P vp OX) A (RY VP ST =
(PP vpRY) AR (P Ve SE] AR [(QF Ve RY) AR (Q2 VP SET)]

Proof:

Let

PY =< [af}, o], (B, BL 175 7))
o =< [u,,,u,,] [n,-j nij] 59, g?] >]
RY = [< [pf,pf], (65, of], [%F, 7] >]

S = [< %5 20, (055, Wi, (@, @) >] all € CPFSM -

Consider,
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(PMvp QM) AR (RY VP SM) =
<max{< N RS ﬂg,ﬁg@g >} ,max{< N RS ug,nl%cg >}) AR
(max { < P8, 65,2 >, < 75,0505 > b .max { < plof. o > < 5.y @S > ) for al

o~
~

~P AP & R xR =R P RpP R ~R -R
o, ij»?’;? >,<pij,6ij,rij>},max{< o), l.j,y,.’;>,<pl-j,6,.j,’cij>}

(x| < )
AR (max{< o, BY 7 >,<)Z§j,¢/fj,d)i5j>},max{< ol BE Y >,<xi5j,q/l§,wfj>}>
(ma{ < )

(max{ <

)

ﬂg7ﬁ37gg >7< 257 %576)5 >} ,max{< ;ugangvgg >7< %15}7 ll/iawg >}) fOl"

n0 =0 =0 sR =R =R o ,0 .0 R ~R R
M55 M55 S5 =< Pijs» Oij» Tij >}7max{< KMy S5 =5 < Pij» Oij» Tij >
AR
all i, j

- ~P AP & 5R =R =R ~P AP & 5S S =S
:>m1n{< ol BL 7 > < PR, 65, Tk },{< ol BT >,<xij,wl.j,a)ij>},

P pP R ~R R P pP S S mS
max{< ol BV >,<pij,6ij,rij>},{< ol Bl >,<xij,1//ij,coij>}

max{< ug,ng.c% >, < p& ok 7k >} {<ulnl.cf > < 15 v$, @ >} forall i, .

- 5P BP % AR SR =R 5P BP % 2S TS @S
:>m1n{< o B >,<pij,cij,rij>},{< o BY >7<xij,1;/ij,wij>},

~0 =0 =0 R ~R =R ~0 =0 .0 ~S =S =S
{< HiisMij: S =< Pij: Oij» Tij >}>{< HiisNijs S =< Xij» Vij» O >}7
P RP R R R P nP S S S
max{< o, ij,xﬁ>,<pij,6ij,rij>},{< o, ij,y,ﬁ>,<xij,1;/ij,wij>},
o 0 .0 R ~R R o 0 .0 S N -

= [(Péw \/pRQ/[) AR (Péu Vp S]Cu)} AR [(QJCVI \/pRJCVI) AR (QQ/I \/pS]CVI)] .

Theorem 5.2. Let P, 0¥ R SM be a CPFSM ;. then
(PYVROY) Ap (R VRSY) =
(PP VRRY) Ap (P VR SE)] Ap [(QF VRRY) AP (Q2 VR ST

Proof'

Let

M _ ~P P [P RP] [

Pc —[< [aij’aij]’[ ijo ij]u[%’?u ij] >]
0 =< (151,175 n5). (65,551 >]
M _ [_ [3R AR] [#R ~R] [#R

R =[<[p]}:pi}], (67}, 053], (%5, ) >]

[ R
’ J
SQ/[ = [< [ZS;X{S;]’ [1/715}7 II/;S]']’ [@5,(0{3] >] all CPFSM(an)'

Consider,
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(PY Vg QM) Ap (RM Vg SY) =

(max{ < o z,aﬁ><u5»m%€3 }.min{< af, w%‘?><u5am?a€$ }) e

max {<pl], B> <20, 9, & >} m1n{<plj, of,Th > < xb v o; })faralll]
o, U,yfj’> < pK, 655,15 >},m1n{<oc,j, > <pU,GU,TU>}>
lJ’ lp?’i> <XU"VSJ’ },min{ l]’ lj’yl};> <le"”€’

> (max{ <
maX{< ,ug,nl%gg >, < pllj,GR R >} m1n{< ,ug,ng,gg >, < pS,GR R >}
{< >

max

AP

ijortij 12y
0 ,0 .0

max Nl%7nl€7gl?> <%lj7ll,l]7 } mln{<nu'l]?nl]7gl] > <%lj7l)l/lj7

(
Ap (max )
( )
e }) for
all i, j
:>min{< ocl], lﬁ,ﬁg>,<ﬁi],cl],rlj>} {< a,], ,],971’;> <%u»‘/’u> >},
min{< ol BLL v >, <Pip°',p%>} {< ol BL Y > < 20 v o }
/\pmln{< ag.1n8.e8 >, <pl’§,c§,r{j>} {< ag.n8.e8 >, <xl],1//l], >},
m1n{< us.ns,¢8 > < pk ok R >} {< us.ng.¢8 >, <xlj,l/ﬁ3~,(x)-~>}f0rall i,
:>m1n{< o, l.j,yij>,<p,.],cf,],ru>} {< ab, BE.7E >, < x5, WS, & },
{<ag.n8.c8><phof et >} {<nlnl el > < 759505 }7
m1n{< ol BE v >, <pl’j,c{j,r{§>} {< ol BLLY > < x5 v o }
{<ugn.cl><pfof ek >} {<ulnd.c? > <25 v 0 >} Jor alli,j.
= [(PMVRRY) Ap (PY VRS Ap [(QF VRRY) Ap (QY VR SH)] .

Theorem 5.3. Let P, 0¥ RY SM be a CPFSM,,, then
(PY AP Q) VR (R ApSY) =
[(PY AP RY) VR (P ApSE] VR [(QF ApRY) VR (Q2 AP SET)]

Péw [< [alj’a lj’ ’yf_]’
o = [< 12,15, [TI,J nl,] [Gij 2 Sij ] >]
Ri" < [PWP,,] [ 0ij, 0, ] ly ’ja ,J] >]

0
ij’

Consider,

(PY np QM) VR (RY NpSH) =
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<m1n{<a57 1]7/}/1?> <‘u’l?7r’l€7gl? } mln{<a5, 1]7’}/l€> <“1€Jnlg7g1? }) \/R
min <p£, i l]> <}(l],l//lj, >} m1n{<plj7 i T > <XU,IVU, })forallz j

= ( min

AR &R zR
( {< ab Bh. 75 >, < pR. 6k, 1k >},mln{< o, U,yjj> <Pu"’w%>}>
VR (min{< ab, BE.7E >, < 25, W, },min{< AN R RN }
V 0 =0 =0 SR =R =R QQQ><RGR,L.R>
R mln <‘u’l]7nljﬂgl] > <p11761]77:1]> mln <.ul]7nl]agl] p1]7 l]’ l]
o .0 .0
(mln{<.ug7ngags> <xlj7l)l/lj7 >} mln{<“ljﬂnlj7glj > <XU7V/U; >
all i, j
~ ~R ~P QNP ~ ~ ~ ~
:>max{< ab Bh. 75 >,<pij,6,],rl]>} {< o/, l.j,y,.’;>,<xfj,tyfj,w5->},
min{< ol B >, <le’GlJ’le>} {< ol BL Y > < 20 v o }
R xR zR 0 =0
\/anax{< ag,n8.e8 >, <p,J,cr,],r,J>} {< ag,n8.e8 >, <x,j,1//S], }
Q0 0 0 R oR R - <QQQ>< >f i i
mln <ol’l’l]7nl]7g1] > <p1J7 ijo vij .ul]anl]vg;, X,ja‘l/,]a " ora l7.]
:>max{< o/, ,j,yf]’> <le,GU,’L'l]>} {< o/, U,y,’;> <X, 0 },

0 50 =0 0 50 =0
{<,u,jvnlj7gu > <le,Glj,T >} {<,u,jvnljvgu > <x1J7W§7 }7

VR

)
)
5>

> for

R ~R R
m1n{< ol BE v >, <le’6!]’le>} {< of, BE ¥ >, <xl],1//l], }
R ~R R .
{<.ugangagg> <p1J761]7TlJ>} {<.ugangagg> <x,]a‘//,]a }7f0ralll7.]'

= [(BY A R VR (PY Np S| VR [(QF ApR) VR (O AP SYT)]
Theorem 5.4. Let PM QY RM SM pe q CPFSM ), then
(PP AR Q) VP (R AR ST =

[(PY ARRY) Ve (PYARSE)] Ve [(QF ARRY) Ve (OM AR SH)]

Proof:

Let
= [< &), o3 1B, Bl 17573

QM < [u,,,u,,] [n,,,nl,] 62,65 ] >]
= [< [P}, Pl 65, off], (75, 78] >]

NS
SM [< [%1]5%1]] [lllljvll/z]] [wzjaw ] ] >|all € CPFSM(an)

Consider,
(PM AR QM) Vp (RM AR SM) =

<m1n{< ozlj, 5,}75> <,u$ ng,gg } max{< ocl], U,y;[;> <,ufj2,n§,g3 }) \Vp
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(min { < p&,68, 2 >, < 75,05, @5 > | max { < p, o o >, < 5, v, 0f > }) foralli,j

) ~P RP & R ~R =R P RP R ~R -R
- ~P RP & =S &S = P RP
vp<mm{< ar, ,.j,y,-’;>,<x§j,1//l§,wfj>},max{< of, ij,}flﬁ>,<xfj,wf.,wfj>}>
: ~0 =0 =0 R ~R =R o .0 .0 R ~R R
Vp (min{< ag.18.69 > < 25,3, @5 > ,max{< ugn.¢d > <1l v o >}) for

)
all i, j

= max{ < &f, B 7 >, < pR.oF i > {< & BL.7E >, < 25, 95,05 > |
max{< of, BE. v > < pf, oft, o} >} : {< ol BE Y > < x5 v o >}
vpmax { < 12,79.69 >, < p. 68, ik >} {< 197968 >, < 75, 5,05 > |
max{< us.ns.c8 > < pk ok X >} , {< us.ns ¢l > < 1. v o >}f0r alli,j
= max {< af, B9 >, < o, o i >} {< &l BE.9 > < 25, 95,05 > |
{<88.78.68 > < pr.ok#k > {< 1l ng.c8 > < 75.95.05 > }.

max{< of, BE. v > < pf, oft T} >} , {< ol BE Y > < x5 v o >},

{< ug ng.¢9 >, < pk ok <k >} , {< pe. 8,68 > < x3. v o >} forall i, .

= [(PMARRM)vp (PY AgSM)] Vp [(OM ARRM) vp (OM AR SM)].
Theorem 5.5. Let P, QY RM be a CPFSM ., then

(i) PXvp (QF ARRY) = (PYVp Q) Ar (PY VP RY)

(ii) P Ap (QY VRRY) = (PY Ap Q) VR (PY AP RY)

Proof:

Let

M _ &P oP1 I[RP RP] [¥

Pc —[< [aiﬁaij]’[ ij?ﬁij]a[ ) ij] >]
M __ ~0 01 120 0 o 0
Qc _[< [.uijnuij]a[nij?nij]’[ lj’gij] >]

ij
&
RY =[<[pf,pf], (65, 08, 175, 7] >] all € CPFSM .-

Consider,

(i) PLM Vp (QQ/[ /\RRQ/I> =< [a{;va:;]v[ 57 5]7 [’)71};7’}/11;] > Vp
<min{< ﬂg,ﬁg,ég >, < pf, 65,18 >} ,max{< ug,ng,gg >, < pfi,of, tf >}> foralli,j

= (max{<af,B5.7 > < 18.72.60 >} max{ < of BE. 7 >, < g .n.c% > }) A
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<max{< ab BE.7h >, < ﬁ{;,&{;,%{§>},max{< of BV >,<p{§,o{},r§>}>foralli,j
= (min{< af.Bh.7 > < 08.02.60 >} . { < & BE. % >, < p. &8, 2 > })

<max{< ol Bl v >, < ug,ng,gg>},{< o BV >,<p§,6{},r§>}>foralli,j

= (PMvp Q) Ar (PY VP RY).

(ii) P Ap (QF VR RY) =< [ o). [BS. B (75,75 > Ap

<max{< ﬂg,ﬁg,g‘g > < ﬁf;,&f;,i‘f; >} ,min{< ug,ng,gg > < p{;,cff,fs >}>f0r all i, j
= <min{< &l B 7 > < 19.75.65 >} ,min{< o, BEvE > < g 9. ¢8 >}> VR
<min{< b, Bl >, < pR, 6k, T8 >} ,min{< ol BE,Y, >, < pk,of, Tk >}) forall i, j
= (max{< 075, ng,f’;? >, < th,ﬁg,ig >} ) {< 5‘5‘7 ~i§>7£ >, < ’35’65’%5 >}>

<min{< a};’-, g,yg’- >. < ug,ng,gg >} ; {< a{;, i’j’-,y{; > < p{},c{},r{} >}>f0r all i, j

= (BYnp Q) VR (P AP RY).

C
(i) P Vg (QF ApRY) = (P VR Q) Ap (P VR RY)
(i) P! AR (Q2 VP RY) = (PY AR Q) Vp (Y AR R

Theorem 5.6. Let P, QY RM be a CPFSM(,,y ), then

Proof:

Let

Péw = [< [&il;’ai];]v [Nzg? 5]’ [’757%1;] >]

oM = [< (82, 18), (72,08, (69,68 >]

R’C"’ =[< [ﬁ{;,ps], [65-,65], [%{;,rg] >|all € CPFSM ;1)

Consider,

(i) PX Vg (Y np RM) =< [aF, of), [BE, BEL 175,75 > Vi

<min{< ,ﬂg,ﬁg,@g >, < ﬁf},&f;,%{; >} ,min{< ug,ng,gg > < pg,df;,fg >}> foralli,j
= <max{< &l B 7 > < 19.19.65 >} ,min{< o, BEvE >, < 8.9, ¢8 >}> Ap
<min{< b, L7 >, < pR, 6k, T8 >} ,min{< ol BL,Y, >, < pk, of, Tk >}) forall i, j
N (min{< &l BL >, < 19,78, 28 >} : {< af, Bf. 7 > < b 68, 2 >})

. P pP R ~R R .
<m1n{< Otlf;-, i?,yg>,<ug,ng,gg>},{< 0, ij,}/f;>,<pl-j,6ij,‘cij>}>f0ralll,]
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= (P VR Q) Ap (PY VR RY).

(ii) P ne (Q¥ Ve RY) =< [af, of), B BEL 17 v > Aw

<max{< ﬂg,ﬁg,ég >, < pf, 65, tf >} ,max{< ug,ng,gg >, < pfi,of, tf >}) for all
i,J

= (min{< ol B ¥ >0 < 150506 >} ’max{< ofy, B > < momi 6 >}) Ve
(min{< &, BE. 7 >, < pF. 68,28 >} ,max { < of B, o >,< pf,of < >}) for atl i, j
= (max{< & B > < 12 asg.e8 >} , {< al B, 75 >, < pR. 68 4R >}>

<max{< of B > < ugng. b >} : {< of,BEvh >, < pR,of <k >}>f0rall i

= (P! e Q) Vp (PY AR RY).

6. CONCLUSION

In this paper, we have introduced the concept of Cubic Picture Fuzzy Soft Matri-
ces(CPFSMs). Also, we discussed some of its algebraic properties with P-(R)-order of Union,
Intersection of Cubic Picture Fuzzy Soft Matrices. In future, we extend this concept to Internal

and External Cubic Picture Fuzzy Soft Matrices.
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