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Abstract. A graph G is called degree-magic if it admits a labelling of the edges by integers 1,2, ..., |E(G)| such

that the sum of the labels of the edges incident with any vertex v is equal to (1+ |E(G)|)deg(v)/2. Degree-magic

graphs extend supermagic regular graphs. In this paper, a new construction of balanced degree-magic graphs is

introduced.

Keywords: supermagic graphs; degree-magic graphs; cycle graphs.

2010 AMS Subject Classification: 05C78.

1. INTRODUCTION

The finite simple graphs and multigraphs without loops and isolated vertices are considered.

If G is a graph, then V (G) and E(G) stand for the vertex set and the edge set of G, respectively.

Cardinalities of these sets are called the order and the size of G. For any integers p and q, the

set of all integers z satisfying p≤ z≤ q is indicated by [p,q].

Let a graph G and a mapping f from E(G) into the set of positive integers be given. The

index-mapping of f is the mapping f ∗ from V (G) into the set of positive integers defined by

∗Corresponding author

E-mail address: phaisatcha in@outlook.com

Received September 13, 2021
8197



8198 PHAISATCHA INPOONJAI

f ∗(v) = ∑
e∈E(G)

η(v,e) f (e) for every v ∈V (G),

where η(v,e) is equal to 1 when e is an edge incident with a vertex v, and 0 otherwise. An

injective mapping f from E(G) into the set of positive integers is called a magic labelling of G

for an index λ if its index-mapping f ∗ satisfies

f ∗(v) = λ for all v ∈V (G).

A magic labelling f of G is called a supermagic labelling if the set { f (e) : e ∈ E(G)} consists

of consecutive positive integers. A graph G is said to be supermagic (magic) whenever there

exists a supermagic (magic) labelling of G.

A bijective mapping f from E(G) into [1, |E(G)|] is called a degree-magic labelling (or only

d-magic labelling) of a graph G if its index-mapping f ∗ satisfies

f ∗(v) =
1+ |E(G)|

2
deg(v) for all v ∈V (G).

A d-magic labelling f of G is called balanced if for all v ∈V (G) it holds

|{e ∈ E(G) : η(v,e) = 1, f (e)≤ b|E(G)|/2c}|

= |{e ∈ E(G) : η(v,e) = 1, f (e)> b|E(G)|/2c}|.

A graph G is said to be degree-magic (balanced degree-magic) (or only d-magic) when a d-

magic (balanced d-magic) labelling of G exists.

The concept of magic graphs was put forward by Sedláček [10]. Later, supermagic graphs

were introduced by Stewart [11]. Besides, a new constructuion of supermagic complements of

some graphs was recommended [9]. Moreover, the notion of degree-magic graphs was then

suggested by Bezegová and Ivančo [1] as an extension of supermagic regular graphs. Recently,

numerous papers are published on degree-magic and supermagic graphs, see [2, 3, 4, 5, 6, 7, 8]

for more complehensive references.

Let one recall the basic properties of d-magic graphs that will be used in the next.

Theorem 1.1. [1] Let G be a regular graph. Then G is supermagic if and only if it is d-magic.
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Theorem 1.2. [1] Let H1 and H2 be edge-disjoint subgraphs of a graph G which form its

decomposition. If H1 is d-magic and H2 is balanced d-magic, then G is a d-magic graph.

Moreover, if H1 and H2 are both balanced d-magic, then G is a balanced d-magic graph.

2. BALANCED DEGREE-MAGIC GRAPHS

An injective mapping f from E(G) into the set of positive integers is called a single-

consecutive labelling (SC-labelling) of a graph G if its index-mapping f ∗ satisfies

f ∗(V (G)) = [a,a+ |V (G)|−1] for some integer a.

Let fi, i ∈ {1,2}, be a SC-labelling of a graph Gi. The labellings f1 and f2 are called

complementary if f1(E(G1)) ∩ f2(E(G2)) = /0 and f1(E(G1)) ∪ f2(E(G2)) = [1,m], where

m = |E(G1)|+ |E(G2)|. The complementary labellings f1 and f2 are called balanced if all

pairs of vertices u ∈V (G1),v ∈V (G2) satisfy

|{e ∈ E(G1) : η(u,e) = 1, f1(e)≤ bm/2c}|

+|{e ∈ E(G2) : η(v,e) = 1, f2(e)≤ bm/2c}|

= |{e ∈ E(G1) : η(u,e) = 1, f1(e)> bm/2c}|

+|{e ∈ E(G2) : η(v,e) = 1, f2(e)> bm/2c}|.

Now, one is able to prove the following Proposition.

Proposition 2.1. Let H1 and H2 be spanning subgraphs of a graph G which form its decom-

position with vertices v1,v2, ...,vn. Let f be a SC-labelling of H1 such that f ∗(v1) < f ∗(v2) <

· · · < f ∗(vn) and let g be a SC-labelling of H2 such that g∗(v1) > g∗(v2) > · · · > g∗(vn). If f

and g are complementary, then G is a supermagic graph.

Proof. Since f is a SC-labelling of H1 such that f ∗(vi) = f ∗(v1)+(i−1) and g is a SC-labelling

of H2 such that g∗(vi) = g∗(v1)−(i−1) for all i∈ [1,n], f ∗(vi)+g∗(vi) = f ∗(v1)+g∗(v1). Now,

consider a mapping ϕ from E(G) into the set of positive integers defined by

ϕ(viv j) =

 f (viv j) : viv j ∈ E(H1),

g(viv j) : viv j ∈ E(H2).
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Obviously, ϕ∗(vi) = f ∗(vi)+g∗(vi) = f ∗(v1)+g∗(v1). Since ϕ(E(G)) = f (E(H1))∪g(E(H2))

and the labellings f and g are complementary, ϕ is a supermagic labelling of G. Therefore, G

is a desired graph. �

If the graph G in Proposition 2.1 is regular, then G is d-magic by Therorem 1.1. For balanced

d-magic graphs, one can show the following assertion.

Proposition 2.2. Let H1 and H2 be spanning subgraphs of a regular graph G which form its

decomposition with vertices v1,v2, ...,vn. Let f be a SC-labelling of H1 such that f ∗(v1) <

f ∗(v2)< · · ·< f ∗(vn) and let g be a SC-labelling of H2 such that g∗(v1)> g∗(v2)> · · ·> g∗(vn).

If f and g are (balanced) complementary, then G is a (balanced) d-magic graph.

Proof. By using the same proof as Proposition 2.1, G is a supermagic graph. Because G is

regular, G is d-magic by Theorem 1.1. Since f and g are balanced complementary, for each

vertex vi, i ∈ [1,n], of G it holds

|{e ∈ E(G) : η(vi,e) = 1,ϕ(e)≤ b|E(G)|/2c}|

= |{e ∈ E(H1) : η(vi,e) = 1, f (e)≤ b|E(G)|/2c}|

+|{e ∈ E(H2) : η(vi,e) = 1,g(e)≤ b|E(G)|/2c}|

= |{e ∈ E(H1) : η(vi,e) = 1, f (e)> b|E(G)|/2c}|

+|{e ∈ E(H2) : η(vi,e) = 1,g(e)> b|E(G)|/2c}|

= |{e ∈ E(G) : η(vi,e) = 1,ϕ(e)> b|E(G)|/2c}|.
Thus, ϕ is a balanced d-magic labelling of G. That is, G is an expected graph. �

The above two Propositions describe methods to construct supermagic graphs and d-magic

graphs by using SC-labellings respectively. In order to use Proposition 2.2, one needs reason-

able SC-labellings of some graphs.

Lemma 2.3. Let G be a cycle graph of order 4 with vertices v1,v2,v3,v4 and let k,h be positive

integers. Then there are a SC-labelling f of G such that f (E(G)) = {k,k+1,k+4,k+6} and

f ∗(v1) < f ∗(v2) < f ∗(v3) < f ∗(v4) and a SC-labelling g of G such that g(E(G)) = {h,h+

1,h+3,h+5} and g∗(v1) > g∗(v2) > g∗(v3) > g∗(v4). Moreover, if k = 1 and h = 3, then the

SC-labellings f and g are balanced complementary.
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Proof. Consider a mapping f from E(G) into the set of positive integers given by

f (e) =



k : e = v1v3,

k+6 : e = v3v4,

k+1 : e = v4v2,

k+4 : e = v2v1.

It is easy to see that f (E(G)) = {k,k+1,k+4,k+6} and f ∗(v1)< f ∗(v2)< f ∗(v3)< f ∗(v4).

Hence, f is a desired SC-labelling of G. Moreover, consider a mapping g from E(G) into the

set of positive integers defined by

g(e) =



h+1 : e = v1v3,

h+3 : e = v3v4,

h : e = v4v2,

h+5 : e = v2v1.

One can see that g(E(G)) = {h,h+ 1,h+ 3,h+ 5} and g∗(v1) > g∗(v2) > g∗(v3) > g∗(v4).

Thus, g is a required SC-labelling of G. Now, consider the case k = 1 and h = 3, one then has

f (e) =



1 : e = v1v3,

7 : e = v3v4,

2 : e = v4v2,

5 : e = v2v1,

and

g(e) =



4 : e = v1v3,

6 : e = v3v4,

3 : e = v4v2,

8 : e = v2v1.

Clearly, f and g are balanced complementary labellings. �

Lemma 2.4. Let G be a cycle graph of odd order n≥ 3 with vertices v1,v2, ...,vn and let k,h be

positive integers. Then there exist a SC-labelling f of G such that f (E(G)) = [k,k+n−1] and
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f ∗(v1) < f ∗(v2) < · · · < f ∗(vn) and a SC-labelling g of G such that g(E(G)) = [h,h+ n− 1]

and g∗(v1)> g∗(v2)> · · ·> g∗(vn). Moreover, if k = 1 and h = n+1, then the SC-labellings f

and g are balanced complementary.

Proof. Consider a mapping f from E(G) into the set of positive integers given by

f (e) =



k+(n−1)/2 : e = vnv1,

k : e = v1v2,

k+(n−1)/2+1 : e = v2v3,

k+1 : e = v3v4,

k+(n−1)/2+2 : e = v4v5,

k+2 : e = v5v6,

· · ·

k+(n−1)/2−1 : e = vn−2vn−1,

k+n−1 : e = vn−1vn.

One is able to check that f (E(G)) = [k,k+n−1] and f ∗(v1)< f ∗(v2)< · · ·< f ∗(vn). Thus, f

is a desired SC-labelling of G. Besides, consider a mapping g from E(G) into the set of positive

integers defined by

g(e) =



h+(n−1)/2 : e = v1vn,

h : e = vnvn−1,

h+(n−1)/2+1 : e = vn−1vn−2,

h+1 : e = vn−2vn−3,

h+(n−1)/2+2 : e = vn−3vn−4,

h+2 : e = vn−4vn−5,

· · ·

h+(n−1)/2−1 : e = v3v2,

h+n−1 : e = v2v1.

One can get that g(E(G)) = [h,h+ n− 1] and g∗(v1) > g∗(v2) > · · · > g∗(vn). Hence, g is a

required SC-labelling of G. Now, consider the case k = 1 and h = n+1, one then gets
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f (e) =



1+(n−1)/2 : e = vnv1,

1 : e = v1v2,

2+(n−1)/2 : e = v2v3,

2 : e = v3v4,

3+(n−1)/2 : e = v4v5,

3 : e = v5v6,

· · ·

(n−1)/2 : e = vn−2vn−1,

n : e = vn−1vn,

and

g(e) =



n+1+(n−1)/2 : e = v1vn,

n+1 : e = vnvn−1,

n+2+(n−1)/2 : e = vn−1vn−2,

n+2 : e = vn−2vn−3,

n+3+(n−1)/2 : e = vn−3vn−4,

n+3 : e = vn−4vn−5,

· · ·

n+(n−1)/2 : e = v3v2,

2n : e = v2v1.

Evidently, f and g are balanced complementary labellings. �

In the next results, one is able to prove some sufficient conditions for balanced d-magic

graphs.

Theorem 2.5. Let G be a graph which can be decomposable into two spanning cycle subgraphs

of order 4. Then G is a balanced d-magic graph.

Proof. Suppose that two spanning cycle subgraphs of G have vertices v1,v2,v3,v4. Thus, by

Lemma 2.3, there are two balanced complementary SC-labellings f ,g of these cycles such that

f ∗(v1) < f ∗(v2) < f ∗(v3) < f ∗(v4) and g∗(v1) > g∗(v2) > g∗(v3) > g∗(v4). Since these two



8204 PHAISATCHA INPOONJAI

cycles are regular and form its decomposition, G is a regular graph. Therefore, according to

Proposition 2.2, G is a balanced d-magic graph. �

Combining Theorem 1.2 and Theorem 2.5, one immediately has

Corollary 2.6. For any positive integer k, if a graph G can be decomposable into 2k spanning

cycle subgraphs of order 4, then G is a balanced d-magic graph.

Joining Theorem 1.1 and Corollary 2.6, one absolutely has

Corollary 2.7. For any positive integer k, if a graph G can be decomposable into 2k spanning

cycle subgraphs of order 4, then G is a supermagic graph.

Theorem 2.8. Let G be a graph which can be decomposable into two spanning cycle subgraphs

of odd order n≥ 3. Then G is a balanced d-magic graph.

Proof. Assume that two spanning cycle subgraphs of G of odd order n ≥ 3 have vertices

v1,v2, ...,vn. Hence by Lemma 2.4, there are two balanced complementary SC-labellings f ,g of

these cycles such that f ∗(v1)< f ∗(v2)< · · ·< f ∗(vn) and g∗(v1)> g∗(v2)> · · ·> g∗(vn). It is

clear that these two cycles are regular and they form its decomposition, so G is a regular graph.

Therefore, according to Proposition 2.2, G is a balanced d-magic graph. �

Combining Theorem 1.2 and Theorem 2.8, one suddenly has

Corollary 2.9. For any positive integer k, if a graph G can be decomposable into 2k spanning

cycle subgraphs of odd order n≥ 3, then G is a balanced d-magic graph.

Joining Theorem 1.1 and Corollary 2.9, one certainly has

Corollary 2.10. For any positive integer k, if a graph G can be decomposable into 2k spanning

cycle subgraphs of odd order n≥ 3, then G is a supermagic graph.

Notice that there exist SC-labellings f and g of a cycle graph of order 8 with vertices

v1,v2, ...,v8 such that f (E(G)) = [k,k + 3] ∪ {k + 8,k + 9,k + 11,k + 12} and g(E(G)) =

[h,h+ 3]∪{h+ 6,h+ 9,h+ 10,h+ 11} for any positive integers h,k. Moreover, if k = 1 and
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h = 5, then the SC-labellings f and g are balanced complementary. These SC-labellings f and

g are shown as follows.

f (e) =



k : e = v1v4,

k+11 : e = v4v6,

k+2 : e = v6v7,

k+12 : e = v7v8,

k+3 : e = v8v5,

k+9 : e = v5v3,

k+1 : e = v3v2,

k+8 : e = v2v1,

and

g(e) =



h+11 : e = v1v4,

h : e = v4v6,

h+9 : e = v6v7,

h+1 : e = v7v8,

h+6 : e = v8v5,

h+2 : e = v5v3,

h+10 : e = v3v2,

h+3 : e = v2v1.

One can prove that f ∗(v1)< f ∗(v2)< · · ·< f ∗(v8) while g∗(v1)> g∗(v2)> g∗(v3)> g∗(v4)>

g∗(v7) > g∗(v6) > g∗(v5) > g∗(v8). Furthermore, consider the case k = 1 and h = 5, one then

obtains
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f (e) =



1 : e = v1v4,

12 : e = v4v6,

3 : e = v6v7,

13 : e = v7v8,

4 : e = v8v5,

10 : e = v5v3,

2 : e = v3v2,

9 : e = v2v1,

and

g(e) =



16 : e = v1v4,

5 : e = v4v6,

14 : e = v6v7,

6 : e = v7v8,

11 : e = v8v5,

7 : e = v5v3,

15 : e = v3v2,

8 : e = v2v1.

Obviously, f and g are balanced complementary labellings. However, by the method of Proposi-

tion 2.2, one can not construct a balanced d-magic graph by using two balanced complementary

labellings of a cycle subgraph of order 8 upwardly because the condition does not hold.

For the last result, two balanced complementary of SC-labellings of some cycle graphs and

their associated balanced d-magic graphs are presented as follows.

FIGURE 1. Two balanced complementary SC-labellings of a cycle graph C3.
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FIGURE 2. A balanced d-magic graph constructed by two spanning cycle sub-

graphs C3.

FIGURE 3. Two balanced complementary SC-labellings of a cycle graph C4.

FIGURE 4. A balanced d-magic graph constructed by two spanning cycle sub-

graphs C4.

FIGURE 5. Two balanced complementary SC-labellings of a cycle graph C5.
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FIGURE 6. A balanced d-magic graph constructed by two spanning cycle sub-

graphs C5.

FIGURE 7. Two balanced complementary SC-labellings of a cycle graph C7.

FIGURE 8. A balanced d-magic graph constructed by two spanning cycle sub-

graphs C7.
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FIGURE 9. Two balanced complementary SC-labellings of a cycle graph C8.
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[3] L’. Bezegová, J. Ivančo, A characterization of complete tripartite degree-magic graphs, Discuss. Math. Graph

Theory 32 (2012), 243-253.
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