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Abstract. This paper describes nonlinear thermal radiation effects on MHD heat and mass transfer in a thin liquid

film over a permeable unsteady stretching surface taking temperature-dependent fluid viscosity with convective

boundary condition. For the non-linearity of the momentum, energy and mass diffusion equations, the problem is

solved numerically. At first, Similarity transformations is used to the governing equations to reduce the equations

into a set of ordinary differential equations. Then the resulting nonlinear ordinary differential equations are solved

using Runge-Kutta-Felberg method with shooting technique. Different physical parameters effects on heat and

mass transfer in a thin liquid film are presented graphically. It is found that increase in the unsteadiness parameter

leads to increase in the velocity distribution, temperature and concentration gradient. Further, increase in the value

of magnetic parameter results in a decrease in the velocity profile and increase in the temperature and concentration

gradient. For enhancement of thermal radiation decreases the temperature gradient of the thin film flow. Also, for

increase in viscosity variation parameter is to decrease velocity distribution but reverse effects shown in case of

temperature and concentration gradient.
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1. INTRODUCTION

In recent years magnetohydrodynamic heat and mass transfer on a thin liquid film over

stretching surface have become more important in number of engineering application, science

and technology such as wire and fiber coating, metal and polymer extrusion, cooling of metallic

plates, drawing of polymer sheets and thining of copper wires, aerodynamic extrusion of plastic

sheet, artificial fibers, glass fiber, continuous stretching of plastic films.

First, Crane [1] gives an exact solution for the problem of steady two-dimensional boundary

layer flow caused by the stretching of a sheet. Wang [2] studied the flow within a thin liquid

film over an unsteady stretching surface. Later, Andersson et al. [3] extended Wangs problem to

study heat transfer. The effect of variable thermal properties on flow and heat transfer in a liquid

film for viscous Newtonian fluid over a unsteady stretching sheet was studied by Dandapat et.

al. [4]. Lai and Kulacki [5] analyzed the effects of variable viscosity on mixed convection heat

transfer along a vertical surface in a saturated porous medium considering Newtonian fluid. The

heat transfer in a liquid film on an unsteady stretching surface with viscous dissipation in the

presence of external magnetic field was investigated by Abel et al. [6]. Siti et al. [7] investigated

hydromagnetic boundary layer flow over stretching surface with thermal radiation. Hazarika et

al. [8] studied the effect of variable viscosity and thermal conductivity on MHD flow past a

vertical plate. Mohebujjaman et al. [9] considered MHD heat transfer mixed convection flow

along a vertical stretching sheet in the presence of magnetic field with heat generation. Agrawal

et. al. [10] studied MHD flow past a stretching surface embedded in porous medium using

lie similarity analysis along with variable viscosity. Ali [11] observed the effect of variable

viscosity on mixed convection heat transfer along a moving surface. Pantokratoras [12] made

a theoretical study to investigate the effect of variable viscosity on flow and heat transfer on a

continuous moving plate. Mukhopadhaya et al. [13] studied the effect of variable viscosity on

the boundary layer flow through a porous medium towards a stretching sheet in the presence of

heat generation or absorption. Heat transfer in a thin liquid film over a unsteady stretching sheet

in the presence of thermal radiation subject to variable surface heat flux conditions was studied

by Liu and Megahed [14]. Cortell [15] analyzed heat transfer and viscoelastic fluid flow over a

stretching sheet under the effect of a non uniform heat source, viscous dissipation and thermal



8242 PRASENJIT SAHA

radiation. Pantokratorus and Fung [16] used the Rosseland diffusion approximation to study

radiative non-linear heat transfer in different geometries. Aziz et. al. [17] studied heat transfer

in a liquid film over a permeable stretching sheet. The variable viscosity with magnetic field

on flow and heat transfer to a continuous moving flat plate were reported in Seddek and Salem

[18]. Nadeem and Akbar [19] observed the effects of heat transfer on MHD Newtonian fluid

with variable viscosity. Benazir and Sivaraj [20] observed the effect of unsteady MHD casson

fluid over a vertical cone and flat plate saturated with porous medium and non-uniform heat

source/sink. Kumar and Sivaraj [21] investigated heat and mass transfer in MHD viscoelastic

fluid flow over a vertical cone and flat plate with variable viscosity.

The motivation of present study is to investigate the influence of non-linear thermal radiation on

MHD heat and mass transfer with temperature dependent variable viscosity in a thin liquid film

on a permeable unsteady stretching sheet with convective boundary condition. This problem

may have useful applications such as wire coating and food processing.

2. FORMULATION OF THE PROBLEM

Consider two dimensional unsteady fluid flow of a Newtonian fluid in a thin liquid film over

a permeable stretching surface with variable viscosity and magnetic parameter. It is assumed

that the elastic sheet emerges from a narrow slit at the origin of a Cartesian co-ordinate system.

The continuous surface aligned with the x-axis at y=0 moves in its own plane with a velocity

U(x, t) (see Fig. 1). A thin liquid film of uniform thickness h(t) lies on the horizontal surface.

The surface heat flux qt(x, t) at the stretching sheet varies with the power of distance x from the

slit and with the inverse power of time factor t as [22]

(1) qt(x, t) =−k
∂T
∂y

=−Tre f
dx2

(1−at)2

The surface mass flux qm(x, t) at the stretching sheet varies with the power of distance x from

the slit and with the inverse power of time factor t as [23]

(2) qm(x, t) =−D
∂C
∂y

=−Cre f
dx2

(1−at)2
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FIGURE 1. Geometrical configuration of the problem.

where k is the thermal conductivity, Tre f is reference temperature, Cre f is reference concentra-

tion, d is a constant. The applied transverse magnetic field B1(t) is defined by [24]

B1(t) = B0(1−at)−1/2.

where B0 is uniform magnetic field. The boundary layer equations mass, momentum and for

energy conservation are given by,

(3)
∂u
∂x

+
∂v
∂y

= 0,

(4)
∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

=
1
ρ

∂

∂y
(µ

∂u
∂y

)−
σB2

1
ρ

u,

(5)
∂T
∂ t

+u
∂T
∂x

+ v
∂T
∂y

=
k

ρcp

∂ 2T
∂y2 −

1
ρcp

∂qr

∂y
+

Q
ρcp

,

(6)
∂C
∂ t

+u
∂C
∂x

+ v
∂C
∂y

= D
∂ 2C
∂y2 ,

where u and v are components of velocity along the direction of x and y respectively. ρ is the
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fluid density, t is time, µ is the variable viscosity of the fluid, qr called the radiative heat flux

and cp is the specific heat at constant pressure. The term Q is the heat generated(> 0) per unit

volume and absorbed (< 0) per unit volume is defined as (Liu and Megahed [22]):

(7) Q =
kρU
µhx

B∗(T −T0),

where µh is constant viscosity, B∗ denotes the temperature dependent heat generation or absorp-

tion. That is for the generation of heat B∗ is positive and for the absorption of heat B∗ is negative

within the fluid system. Thus for the present problem the corresponding boundary conditions

are:

u =U(x, t),v = vw,−k
∂T
∂y

= qt(x, t),−D
∂C
∂y

= qm(x, t) at y = 0,

∂u
∂y

=
∂T
∂y

=
∂C
∂y

= 0 at y = h(t),(8)

v =
dh
dt

at y = h(t),

where U(x, t) is the surface velocity of the stretching sheet, h be the thickness of the liquid film.

The stretching elastic surface at y = 0 moves continuously in x−direction with the velocity:

(9) U =
bx

1−at
,

where b and a are both positive constant with dimension per time. The elastic sheet’s tempera-

ture is assumed to vary both along the sheet and with time accordance with

(10) Ts = T0−Tre f (
dx2

k
√

ρb/µh
)(1−at)−

3
2 ,

where Tre f is the constant reference temperature.

The radiative heat flux qr is taken according to Rosseland approximation as

(11) qr =−
16σ∗

3k∗
T 3 ∂T

∂y
,

where σ∗ is the Stefan-Boltzman constant, k∗ be the mean absorption coefficient.

Now the system of partial differential equations transformed into a system of nonlinear ordinary
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differential equation by using the similarity transformations which are given as follows

η = (
b

µh/ρ
)1/2(1−at)−1/2y,

u = bx(1−at)−1 f
′
(η),

v =−(µhb
ρ

)1/2(1−at)−1/2 f (η),

T = T0−Tre f (
dx2

k
√

ρb/µh
)(1−at)−3/2

θ(η),

C =C0−Cre f (
dx2

D
√

ρb/µh
)(1−at)−3/2

φ(η),(12)

The dimensionless thin film thickness β is defined by

(13) β = (
b

µh/ρ
)1/2(1−at)−1/2h(t)

The temperature dependent fluid viscosity is given by (Batchelor [25]),

(14) µ = µh[m+n(Ts−T )]

where µh is the constant value of the coefficient of viscosity far away from sheet and m, n are

constants and n(> 0).

This relation can be written in expanded form as, µ = µh[m+A(1−θ)].

where A = n(Ts−T0), being viscosity variation parameter.

The transformed set of ordinary differential equations are:

f ′′′+( f f ′′− f 2−S f ′− S
2

η f ′′−M f ′)− A
m+A(1−θ)

θ
′ f ′′ = 0,(15)

1
Pr

θ
′′+

1
Pr

Nr(1+(θw−1)θ)2[3(θw−1)θ ′2 +(1+(θw−1)θ)θ ′′]

+[ f θ
′−2 f ′θ − 3

2
Sθ − S

2
ηθ
′+

B∗

Pr
θ ] = 0,(16)

φ
′′−Sc[

3S
2

φ +
S
2

ηφ
′+2 f ′φ − f φ

′] = 0,(17)
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subject to the boundary conditions:

f (0) = fw, f ′(0) = 1,θ ′(0) =−1,φ ′(0) =−1,

f ′′(β ) = 0,θ ′(β ) = 0,φ ′(β ) = 0,

f (β ) =
Sβ

2
,(18)

where prime represent differentiation with respect to η , S = a
b be the unsteadiness parameter,

Pr = µhcp
k be the Prandtl number, β be the dimensionless thin film thickness, Nr = 16σ∗T 3

0
3k∗k be

the radiation parameter, θw = Ts
T0

be the temperature ratio parameter, Sc = µh/ρ

D be the Schmidt

number, M =
σB2

0
ρb be the magnetic parameter, fw being the permeability parameter.

3. NUMERICAL METHOD

The Runge-Kutta-Fehlberg method (RKF45) use to solve initial value problem

(19)
dy
dx

= f (x,y),y(xi) = yi

It has a procedure to determine if the proper step size is being used. At each step, two different

approximations are made and compared. If the two results are in close agreement, the approxi-

mation is accepted. If the two result do not give the specified accuracy, the step size is reduced.

If the result agree to more significant digits than required, the step size is increased. Each step

requires the use of following six values since this is fifth order method with six stages that uses

all the points of the first one. Then an approximation to the solution of the initial value problem

(IVP) is made using a Runge-Kutta method of order 4;

(20) yk+1 = xk +
25
216

K1 +
1408
2565

K3 +
2197
4104

K4−
1
5

K5

where

K1 = h f (xk,yk)

K2 = h f (xk +
1
4h,yk +

1
4K1)

K3 = h f (xk +
3
8h,yk +

3
32K1 +

9
32K2)

K4 = h f (xk +
12
13h,yk +

1932
2197K1− 7200

2197K2 +
7296
2197K3)
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K5 = h f (xk +h,yk +
439
216K1−8K2 +

3680
513 K3− 845

4104K4)

where the four functional values K1, K3, K4 and K5 are used. A better value for the solution is

determine using Runge-Kutta method of order 5;

(21) zk+1 = yk +
16

135
K1 +

6656
12825

K3 +
28561
56430

K4−
9
50

K5 +
2

55
K6

where,

(22) K6 = h f (xk +
1
2

h,yk−
8
27

K1 +2K2−
3544
2565

K3 +
1859
4104

K4−
11
40

K5)

The optimal step size sh is determined by multiplying the scaler s times the current step size h,

where the scaler s can be determined from;

(23) s = 0.84(
Tolh

2|zk+1− yk+1|
)1/4

where Tol is the specified error control tolerance.

The non-linear differential Eqs. (15),(16) and (17) with appropriate boundary condi-

tions (18) are solved numerically by using Runge-Kutta-Fehlberg (RKF) fifth order technique

along with shooting method. At a very first step, the higher order non-linear differential

equations (15),(16) and (17) are converted into simultaneous differential equation of first order

and further they are transformed into initial value problem by applying the shooting technique.

Then initial value problem is solved by Runge-Kutta-Fehlberg fifth order method. The ordinary

differential equations (15) to (17) which are of third order in f , second order in θ and second

order in φ are reduced to a system of seven simultaneous equations of first order having seven

unknowns. The convergence criterion is employed in the present work based on the difference

between the value of the dependent variables of the present and previous iterations. When the

absolute values of the difference reaches 10−6 which showed that the solution has converged to

the desired accuracy then the iteration process is stopped. The governing non-linear ordinary

differential equations are reduced to a set of simultaneous first order differential equation as

follows,

y1 = f ,y2 = f ′,y3 = f ′′, y4 = θ ,y5 = θ ′, y6 = φ ,y7 = φ ′,
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F1 = y2, F2 = y3, F3 =−(y1y3− y2
2−Sy2− S

2ηy3−My2)+A(m+A(1− y4))y5y3, F4 = y5,

F5 =−((3Nr(θw−1)y2
5(1+(θw−1))y4)

2

+Pr(y1y5−2y2y4− 3
2Sy4− 3

2ηy4 +
B∗
Pr y4))/(1+Nr(1+(θw−1)y4)

3),

F6 = y7, F7 = Sc(3S
2 y6 +

S
2ηy7 +2y2y6− y1y7) .

The boundary condition becomes

y1 = fw, y2 = 1, y5 =−1, y7 =−1, at η = 0

y3 = 0, y5 = 0, y7 = 0 at η = β

Since the values of y3(0), y4(0), y6(0) are not prescribed, so we have use the multiple

shooting method to find three initial values. Then the resultant system of seven simultaneous

equations is solved numerically by fifth-order Runge-Kutta-Fehlberg integration scheme (for

detail see Pal and Saha [26])

4. RESULTS AND DISCUSSION

The system of highly non-linear differential equations (15)-(17) subject to the boundary con-

ditions (18) is solved numerically by Runge-Kutta-Fehlberg numerical method with shooting

technique. The effects of various important physical parameters such as unsteadiness parameter

S, thermal radiation parameter Nr, Schmidt number Sc, temperature ratio parameter θw, Prandtl

number Pr, magnetic parameter M and viscosity variation parameter A on non dimensional ve-

locity components, temperature gradient, concentration gradient are analyzed and discussed in

detail. Fig. 2 highlights the variations of velocity profile for different values of unsteadiness

parameter S. From this figure we see that the velocity distribution increases for the increase of

the value S. Also, it reduces the thin film thickness η . Fig. 3 represent the effect of unsteadi-

ness parameter S on the temperature gradient of the thin film. For the increase of the value S,
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FIGURE 4. The effect of un-

steadiness parametere S on con-

centration gradient φ ′(η).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

   S=0.8
   Nr=0.5  
   Pr=1.0 
   B*=0.5
   Sc=1.0  
   f

w
=0.1

   M=1.0
   m=1.0
   A=0.5

θ
'(η

)

η

 θ
w
=0.0

 θ
w
=0.5

 θ
w
=1.0

 θ
w
=1.2

 θ
w
=1.4

FIGURE 5. The effect of tem-

perature ratio parametere θw on

temparature gradient θ ′(η).

the temperature gradient of the flow also increases, due to reduction in the dimensionless thin

film thickness. So, the heat transfer rate increases within the thin liquid film. Fig. 4 shows the

effect of unsteadiness parameter S on the concentration gradient of the thin film. It shows that

increasing value of S, the concentration gradient of the flow also increase, due to the reduction

in dimensionless thin film thickness. So mass transfer rate increases within the thin film liquid.

Fig. 5 highlights the effect of temperature ratio parameter θw on the temperature gradient of

the thin film flow. It is found that increase in the value of θw is to decrease in the temperature

gradient of the flow. So the heat transfer rate decreases. Since θw = Ts
T0

, i.e. θw is inversely



8250 PRASENJIT SAHA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

   S=0.8
   θ

w
=1.2  

   Pr=1.0 
   B*=0.5
   Sc=1.0  
   f

w
=0.1

   M=1.0
   m=1.0
   A=0.5

θ
'(η

)

η

 Nr=0.0
 Nr=0.5
 Nr=0.9
 Nr=1.0

FIGURE 6. The effect parame-

tere Nr on temparature gradient

θ ′(η).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

   S=0.8
   θ

w
=1.2

   Nr=0.5  
   B*=0.5
   Sc=1.0   
   f

w
=0.1

   M=1.0
   m=1.0
   A=0.5

θ
'(η

)

η

 Pr=0.8
 Pr=1.0
 Pr=1.5
 Pr=2.0

FIGURE 7. The effect of Prandtl

number Pr on temparature gra-

dient θ ′(η).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

   S=0.8
   θ

w
=1.2

   Nr=0.5  
   Pr=1.0
   B*=0.5 
   f

w
=0.1

   M=1.0
   m=1.0
   A=0.5

φ
'(η

)

η

 Sc=0.5
 Sc=1.0
 Sc=1.5
 Sc=2.0

FIGURE 8. The effect of

Schmidt number Sc on concen-

tration gradient φ ′(η).

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

β=1.2667265
β=1.3758109

β=1.5304010
β=1.7762729

β=1.9709213

   S=0.8
   θ

w
=1.2

   Nr=0.5  
   Pr=1.0
   B*=0.5 
   Sc=1.0
   f

w
=0.1

   m=1.0
   A=0.5f'(

η
)

η

 M=0.5
 M=1.0
 M=2.0
 M=3.0
 M=4.0

FIGURE 9. The effect of mag-

netic parametere M on velocity

profile f ′(η).

proportional to T0, so when θw increase then the value of T0 is decrease i.e. fluid flow system

remain cool, due to the decrease of heat transfer rate. Fig. 6 displays the temperature gradient

profile with η for different values of thermal radiation parameter Nr in the presence magnetic

field. It is found that the effect of thermal radiation is to decrease the the temperature gradient

in the thermal boundary layer. This is due to the fact that when radiation parameter Nr increases

then from the expression for Nr = 16σ∗T 3
0

3k∗k , the Rosseland radiative absorption coefficient k∗ de-

creases and therefore the heat flux qr (=−16σ∗

3k∗ T 3 ∂T
∂y ) decreases.

Fig. 7 represent the variation of temperature gradient for different values of Prandtl number in
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FIGURE 13. The effect of vis-

cosity variation parameter A on

temparature gradient θ ′(η).

the presence magnetic field. it is found that the effect of increasing values of Prandtl number

Pr, results to increase in temperature gradient. Since Pr being the ratio of momentum diffusiv-

ity and thermal conductivity for a fluid, so there would be decrease of thermal boundary layer

thickness with an increase of Prandtl number. Fig. 8 shows the effect of the Schmidt number

Sc on the concentration gradient against η for presence of magnetic field. It is observed that as

Schmidt number increase then there is increase in the concentration gradient. This mean there

is increase in mass transfer rate. Since the Schmidt number is inversely proportional to the dif-

fusion coefficient D. Hence the concentration decreases with increase of Schmidt number Sc.
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FIGURE 14. The effect of viscosity vari-

ation parameter A on concentration gradi-

ent φ ′(η).

Fig. 9 show the effect of magnetic parameter M on the velocity profile. It is observed that the

velocity decreases with η as the values of M increased. Thus the presence and increasing the

magnetic field reduces the boundary layer thickness. Physically the presence of the transverse

magnetic field gives rise to a drag like force known as Lorentz force, which results in retard-

ing the velocity field. Fig. 10 shows the effect of magnetic parameter M on the temperature

gradient. As the value of M increases then the temperature gradient also increase and thin film

thickness decreases. So transverse magnetic field contributes to the thickening of the thermal

boundary layer. Fig. 11 shows the effect of magnetic parameter M on the concentration gradi-

ent. For increasing of the magnetic field a drag force is produce which opposes the flow. Thus

as the magnetic parameter M increases there results in increase the concentration gradient.

Fig. 12 shows the effect of the variable viscosity parameter A on the velocity profile. From

the expression of A [A = n(Ts−T0)] we see that as variable viscosity parameter A increase the

temperature of the thin film which is contact to the sheet increases. i.e. the thin film stay contact

to the sheet for much time than previous. So the velocity profile decrease for the increase of

A. Fig. 13 shows the effect of the viscosity variation parameter A on the temperature gradient.

By increasing A temperature gradient slowly increase. Also, the thin film thickness decreases.

Fig. 14 shows the effect of viscosity variation parameter A on the concentration gradient. As
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viscosity variation parameter increases, there is no change in the concentration gradient upto

some values of η after that concentration gradient slowly increases.

5. CONCLUSION

In this paper the effects of temperature dependent viscosity and external magnetic field on

thin liquid film flow of Newtonian fluid over a permeable unsteady stretching sheet in the pres-

ence of variable heat flux, non-linear thermal radiation are investigated and following conclu-

sions are drawn.

(i) The effect of the thermal radiation is to decrease the cooling rate of the thin liquid film, but

reverse effect is true with the Prandtl number.

(ii) Increasing in the magnetic parameter results in decrease in the velocity distribution and in-

crease in the temperature gradients distribution and concentration gradients.

(iii) The effect of viscosity variation parameter is to decrease velocity distribution in the mo-

mentum boundary layer. Also, increase in viscosity variation parameter results in increase in

the temperature gradient and concentration gradient.

(iv) The mass transfer rate increase with increase in the value of the Schmidt number.

(v) Increase in the unsteadiness parameter results in increase in the velocity distribution due to

decrease in the thin film thickness.
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6. NOMENCLATURE

a,b,d positive constant

A viscosity variation parameter

B∗ temperature dependent heat generation or absorption parameter

B0 uniform magnetic field

B1 transverse magnetic field

C concentration of the fluid

Cp specific heat at constant pressure

Cre f reference concentration

D diffusion coefficient

f dimensionless stream function

fw suction parameter

h thickness of thin liquid film

k thermal conductivity

k∗ Rosseland mean spectral absorption coefficient

M magnetic parameter

Pr Prandtl number

q heat flux

qm surface mass flux at the stretching surface

qr radiative heat flux

qt surface heat flux at the stretching surface

Q heat generation or absorption per unit volume

S unsteadiness parameter

Sc Schmidt number

t time

T temperature of fluid

T0 temperature at the slit

Tre f reference temperature
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Ts elastic sheet temperature

u,v velocity component along x and y direction

U velocity of stretching sheet

vw permeability parameter

x,y direction along and perpendicular to the plate, respectively

Greek symbols

β dimensionless thin film thickness

η similarity variable

µ variable viscosity of the fluid

µh constant viscosity of the fluid

ρ density of the fluid

σ∗ Stefan-Boltzman constant

θ dimensionless temperature

θw temperature ratio parameter

φ dimensionless concentration

Superscripts

′ Differentiation with respect to η
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