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Abstract. In this paper, we investigate the accuracy of numerical solution for chaotic Lorenz system. Mathcad

software is used as case-study, built-in algorithms used are Runge-Kutta of fourth order (RK4), Adams backward

differential formula (AdamsBDF) and developed series method. The numerical integration that are also checked

involves Gauss-quadrature and Simpson’s quadrature rules. All the graphical results are showed for all the different

numerical methods.
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1. INTRODUCTION

Chaos systems are most important theories in applied science. Deterministic system are char-

acterized by sensitive initial conditions,see[1]. Lorenz system is one system that demonstrate

chaotic behavior.

Lorenz system behaves like any other family of equations in that it has fixed points, however
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this equation is chaotic for certain parameter values. Semi-analytical methods [2][3][4], are

used in science and engineering and to help us understand and approximate many nonlinear

equations.

Scientist have used numerical methods in approximating the solution of chaotic systems. [6]

used differentiation to the Duffing equation while examine a defined residual function. The idea

was applied to different type of mathematical software called Mathcadr while using Duffing

equation with periodic excitation as governing equation by [7]. The work of checking the ac-

curacy of numerical solution by means of residual function from mathematical software was

initially done by [5].

The idea of this research article is to carry our out a study of investigating numerical solution

using two built-in algorithms from Mathcad, namely AdamsBDF and Runge-Kutta of order

four (RK-method) using Lorenz system as governing equation. The investigation of numerical

solution using series method is also carried out.

2. GENERAL LORENZ SYSTEM

We consider the Lorenz system in general form

dx
dt

= a(y(t)− x(t))

dy
dt

= bx(t)− cy(t)−dx(t)z(t)(1)

dz
dt

= f x(t)y(t)−gz(t)

where a, b, c, d, f , g, are positive scalar parameters. The system has three steady states

(2)


x1 x2 x3

y1 y2 y3

z1 z2 z3

=


0
√

g(b−c)
d f −

√
g(b−c)

d f

0
√

g(b−c)
d f −

√
g(b−c)

d f

0 b−c
d

b−c
d


Eigenvalues obtained from (1) by its linearization in vicinities of steady-states in (2) are found

from characteristic equations with respect to λ :
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(3) det


−a−λ a 0

b −c−λ 0

0 0 −g−λ

= 0

for x1 = y1 = z1 = 0 and

(4) det


−a−λ a 0

c −c−λ ±
√

dg(b−c)
f

±
√

f g(b−c)
d ±

√
f g(b−c)

d −g−λ

= 0

For x2,3 =±
√

g(b−c)
d f , y2,3 =±

√
g(b−c)

d f , z2,3 =
b−c

d .

In this paper we consider accuracy of numerical solution of Lorenz system (1) at classical values

for parameters a = 10, b = 28, c = d = f = 1, g = 8
3 . In this case all three steady-states (2) are

unstable with the corresponding eigenvalues:

where i2 =−1. Hence, all the three steady-states are unstable.

At the iniitial condition

λ
1
1 ≈ 11.828 λ

1
2 ≈−2.667 λ

1
3 ≈−22.828

λ
2,3
1,2 ≈ 0.099±10.195i λ

2,3
3 ≈−13.858(5)

x0

y0

z0

 =


−1

1

0

 solution of system in (1) obtained by the adapted Runge-Kutta method at

tolerance of 10−15 at t ∈ [0,T = 50] is shown in figure 1.
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FIGURE 1. Solution of the Lorenz system for t ∈ [0,T = 50] where X = x(t),

Y = y(t), Z = z(t).

For comparison with the same initial value problem (IVP) was solved using the AdamsBDF

(Adams backward differential formula) solver at the same tolerance of 10−15. Trajectories

of x(t) solutions obtained by the adapted Runge-Kutta and AdamsBDF solvers with tolerance

10−15 are showed in figure 2 on the interval t ∈ [0,T = 50] .
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FIGURE 2. Solution of the Lorenz system for t ∈ [0,T = 50] where XA= xA(t),

is the solution of x-variable, obtained bu the AdamsBDF, XR = xR(t) is the

solution for x-variable, obtained by the adapted Runge-Kutta method.

Figure 2 we observe, divergence in trajectories at approximately t = 35 due to extreme sensitiv-

ity of the Lorenz system to initial conditions. This sensitivity is stipulated by above mentioned

instability of the steady states. Analogous is the behavior of y(t) and z(t) trajectories. Despite

of the trajectory divergence the integral manifold of system (1) Lorenz attractor obtained by

both methods is of solution is stable and has well-known “butterfly-shaped ”form depicted in

below figure 3.
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FIGURE 3. Lorenz attractor for t ∈ [0,T = 75] .

Accuracy of the above-mentioned initial value problem (IVP) solution depends on the step of

integration h and values of higher derivatives of functions x(t), y(t) and z(t). In the process of

solution these derivatives can be found iteratively by means of differentiation of both sides of

equations (1), which givens us the following formulas

D(m+1)x = a[Dmy−Dmx]

D(m+1)y = bDmx− cDmy−d
m

∑
k=0

Ck
mD(m−k)xDkz(6)

D(m+1)z = f
m

∑
k=0

Ck
mD(m−k)xDky−gDmz.

where Dmu = dmu
dtm , u = u(t) = (x(t),y(t),z(t)), Ck

m = m!
k!(m−k) , 0≤ k ≤ m = 0,1,2, , .....

Graphs of maxima of the fourth, fifth, sixth and seventh derivatives are shown in figure 4 for

t ∈ [0,25] . In the figure max LDm=max (|Dmx|, |Dmy|, |Dmz|) for m = 4,5,6,7.
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FIGURE 4. Values of maxima of the fourth, fifth, sixth and seventh derivatives

pf the Lorenz system for t ∈ [0,T = 25] .

It follows from the this figure that maximum values of the higher derivatives are realized in the

vicinity of the first spikes of function x(t), y(t) and z(t) at t = 1.5 and have approximate values:

max(max LD4)≈ 107 ,max(max LD5)≈ 108.5,

max(max LD6)≈ 1010.3 ,max(max LD7)≈ 1012.2,(7)

Accuracy of numerical solution of initial value problems depend on highest derivatives of the

obtained solution. For the Runge-Kutta method of fourth order (RK4 method) with fixed step

h error of solution can be approximated defined as :

(8) |RK Error| ≈ h5

120
×max LD5.

In the case of the Taylor series method of solution with seven terms (which will be used in the

future simulations) the highest derivative is the six and the error of solution is estimated as:

(9) |Series Error| ≈ h7

7!
×max LD7.

Global errors of the initial value problem solution will be estimated as follows:
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|∆x(t)| = |x(t)− x0−a
t∫

0

[y(τ)− x(τ)]dτ|

|∆y(t)| = |y(t)− y0−
t∫

0

[bx(τ)− cy(τ)−dx(τ)z(τ)]dτ|

|∆z(t)| = |z(t)− z0−
t∫

0

[ f x(τ)y(τ)−gz(τ)]dτ|

(10)

We used the term “global errors ”because we relate solution, obtained at time t to the initial

time instant t0 = 0. In “ideal case”when solution are “exact ”the global errors must be identically

equal to zero. Hence, the global errors of x(t), y(t), z(t) solutions can be characterized by

expression (10).

As we see from (10) estimation of initial value problem solution accuracy depends not only

on accuracy of the obtained x(t), y(t) and z(t) functions, but also on accuracy of numerical

integrations, which are performed by approximate quadrature formulas. It is known that error

of the Simpson rule is calculated as:

(11) |Simpson Error| ≈ h5

90
×max LD4.

The most accurate method of numerical integration of smooth functions is the Gauss quadra-

ture with error:

(12) |Gauss Error| ≈
2(2n+1)×

(
n!)4× (h)(2n+1)

(2n+1)× [(2n)]3
×max LD2n.

In this case n points are located on interval [−h,+h] with coordinates hξk (k = 0,1,2, ...n),

where ξk are the roots of Legendre polynomials Pn (ξ ) = 0. In the future we will use the n = 3-

points on interval t ∈ [0,2h] with the following: ξ1 = h
[

1−
√

3
5

]
, ξ2 = h, ξ3 = h

[
1+
√

3
5

]
.

Values of solution are calculated in there three points and multiplied by the weights w1 =
5
9 =

w3, w2 =
8
9 and summed. In this case the error of integral calculations in accordance with (12)

is :

|Simpson Error|n=3 ≈
h7

15750
×max LD6
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From formulas (8)-(9) and (11) - (12a) it follows that is is worthwhile to select steps, which

quadrature the corresponding error as follows:

• for the fixed step RK4-method

(13) h R≈
(

120×|RK4−Error|
max LD5

) 1
5

;

• for the Taylor series (with seven terms):

(14) h T ≈
(

7!×|Series−Error|
max LD7

) 1
7

;

• for Simpson’s quadrature rule:

(15) h S≈
(

90×|Simpson−Error|
max LD4

) 1
5

;

• for Gauss’s quadrature rule (with three points):

(16) h G≈ 1
2

(
7(6!)3×|Gauss−Error|

(3!)4 max LD4

) 1
7

For example, it follows from figure 4 that max(max LD4) ≈ 107 , max(max LD5) ≈ 108.5,

max(max LD6) ≈ 1010.3 , max(max LD7) ≈ 1012.2. Hence, from equations (13) - (16) the

corresponding minimum steps at |Error| ≈ 10−17 are

min(h R)≈ 2.0×10−5, min(h T )≈ 3.3×10−4,

min(h S)≈ 4.0×10−5, min(h G)≈ 5.0×10−9.

This means that it is possible that select steps of the Series-method and the subsequent Gauss

integration method with approximately order of magnitude larger steps in comparison with the

corresponding RK-method with subsequent Simpson’s integration. On the basis of figure 4 and

formula (14) and (16) we calculated step which quadrature errors of series-method calculations

|Series Error| ≈ 10−16 and Gauss-rule calculations |Gauss Error| ≈ 10−18 for the time interval

t ∈ [0,25] . The errors are shown in below figure 5.
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FIGURE 5. Values of steps which guarantee errors of estimation by the Taylor

series (h T ) with residual term 10−16 Gauss quadrature method (h G) with error

10−18 for t ∈ [0,T = 25] .

This graph shows that for the Taylor series calculations with seven terms which guarantee ac-

curacy ≈ 10−16 it is necessary to perform calculations with variable step h, which is selected

by formula (16) and guarantees accuracy of numerical integration of order ≈ 10−18 i.e it does

not deteriorate accuracy of initial value problem solution. It is necessary to keep in mind that

in Math-cad software numerical calculations are performed with sixteen decimal places and

hence, the rounding errors are substantial. That is why there are no reasons to perform cal-

culations with accuracy higher that 10−17. As it is follows from figure 5 the 3-points Gauss

quadrature rule guarantees accuracy of subsequent integrations. The 3-point Gauss integration

of the errors equations of the Lorenz system are as follows:

∆Sx = x40 − x00 − ha
{
[w1 (x11 + x31)+w2x21] − [w1(x10 + x30)+w2x21]

}

∆Sy = x41− x01−h
{

b [w1 (x10 + x30)+w2x20]− c [w1(x11 + x31)+w2X21]

−d [w1(x10x12 + x30x32)+w2x20x22]
}

(17) ∆Sz = x42− x02−h
{

f [w1 (x10x11 + x30x31)+w2x20x21]−g [w1(x12 + x32)+w2X22]
}

where w1 = w3 = 5
9 , w2 = 8

9 are weights of 3-points Gauss quadrature rule, x1,x2,x3,x4 are (3×1)-

vectors are defined in the next formula, indies “0 ”, “1 ”and “2 ”relate to functions x = x(t), y = y(t) and

z = z(t) correspondingly. These expressions characterize local accuracy of particular ODE-Solver with
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respect to x,y and z-functions. Algorithm of the Lorenz system IVP solver on time interval t ∈ [0,T ]

with adaptive step and local estimator of ODE-solver is as follows:

R = t0← 0

τ ← 0

s← (0 0 0)

R← argument
(

t,xT ,s
)

xis(3×1)-vectors io ICS τ < T

x0← x(
Dx0 Dy0 Dz0

)
← x

f orm=0,1,2,..........M=6

”Evaluationo f higherderivativesby(6)”

”Evaluationo f stephby(16)”

h1← h

(
1−
√

3
5

)
x1← ODESolver (x,0,h1,RHSo f (1),ToL)

x2← ODESolver (x,0,h,RHSo f (1),ToL)

x← x2

”Evaluationo f higherderivativesby(6)”

h2 = h

√
3
5

x3← ODESolver (x,0,h2,RHSo f (1),ToL)

x4← ODESolver (x,0,h,RHSo f (1),ToL)

x← x4

t0← t0 +2h

”(∆sx ∆sy ∆sz)← 3− pointsGaussintegration(17)”

R← stack
(

R argument
(

t,xT ,S
))

(18)
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In the expression ODE-Solver (x,0,h,RHSo f (1),ToL) is a particular solver for initial value problem,

where “RHS of (1)”is the right hand side of Lorenz system (1) and x is (3×1)-vector of initial conditions.

It solves the system of equations on interval t ∈ [0,h] with tolerance “ToL ”. If the tolerance is not

specified the solver uses default value of Tol = 10−6. The Taylor series ODE-solver is used in the

Horner scheme form as follows:

X (t = h) = x0 +h
(

D(1)x0 +
h
2

(
D(2)x0 +

h
3

(
D(3)x0 +

h
4

(
D(4)x0 +

h
5

(
D(5)x0 +

h
6

D(6)x0

)))))
,

Y (t = h) = y0 +h
(

D(1)y0 +
h
2

(
D(2)y0 +

h
3

(
D(3)y0 +

h
4

(
D(4)y0 +

h
5

(
D(5)y0 +

h
6

D(6)y0

)))))
,

Z (t = h) = z0 +h
(

D(1)z0 +
h
2

(
D(2)z0 +

h
3

(
D(3)z0 +

h
4

(
D(4)z0 +

h
5

(
D(5)z0 +

h
6

D(6)z0

)))))
,

(19)

where x0 = x(t = 0), Dmx0 =
dmx(t)

dtx |t=0, m= 1,2, .....,6. As we mentioned before, real error of calculation

is slightly higher than that, which is estimated by (14) due to truncation errors accumulations. That is

why it is not recommended to add other terms in the series, which have orders of magnitude less than

10−17. In this case the accuracy of integration must be of order 10−17÷ 10−18. The real local errors of

numerical solution of the above-mentioned Lorenz initial value problem are calculated in the decimal

logarithmic scale as follows:

L∆x(t) = Log|xt+2h− xt −a
t+2h∫
0

[y(τ)− x(τ)]dτ|

L∆y(t) = Log|yt+2h− yt −
t+2h∫
0

[bx(τ)− cy(τ)−dx(τ)z(τ)]dτ|

L∆z(t) = Log|zt+2h− zt −
t+2h∫
0

[ f x(τ)y(τ)−gz(τ)]dτ|

(20)

For t ∈ [0,T − 2h] where h = h(t) is the variable step. The local errors in the decimal logarithmic

scale of solution of the above mentioned initial valued problem by adapted Runge-Kutta method with

tolerance Tol = 10−15
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(a) Local errors of the Lorenz system solution by the adapted RK-method with tolerance 10−15 for

x = x(t) for t ∈ [0,25] .

(b) Local errors of the Lorenz system solution by the adapted RK-method with tolerance 10−15 for

y = y(t) for t ∈ [0,25]

(c) Local errors of the Lorenz system solution by the adapted RK-method with tolerance 10−15 for

z = z(t) for t ∈ [0,25]

FIGURE 6. comparison of adapted RK-method on with 10−15

As we see from figures (6a) to (6b) local errors of calculations of x(t) and y(t) are of order 10−15

and 10−14 while error of calculation for z(t) figure (6c) is of order 10−14.The global errors of func-

tions x(t),y(t),z(t) calculations in the decimal logarithmic scale can be estimated using formula (10) as

follows.
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LSx(t) = Log|x(t)− x0−a
t∫

0

[y(τ)− x(τ)]dτ|

LSy(t) = Log|y(t)− y0−
t∫

0

[bx(τ)− cy(τ)−dx(τ)z(τ)]dτ|(21)

LSz(t) = Log|z(t)− z0−
t∫

0

[ f x(τ)y(τ)−gz(τ)]dτ|

These errors are displayed in figure 7 for t ∈ [0,25]

FIGURE 7. Global (accumulated) errors of the Lorenz system solution by the

adapted RK-method with tolerance 10−15 with x = x(t),y(t),z = z(t) for t ∈

[0,T = 25] .

As it follows from this figure 7 the global errors of calculations of x = x(t),y(t),z = z(t) functions are of

order 10−14− 10−13 on the above mentioned time interval. For T > 25 the local errors of the solutions

have the same order of magnitude as figures 6(a)− 6(c), but the global errors are increasing due to

random drifts stipulated by the truncation errors. Analogous behavior is demonstrated by the local and

global errors of solutions obtained by series method. The results of computational errors obtained by the

equations (17) to (19) are shown in figures (8a) to (8c) and figure 9. The local errors of computations have

order of magnitude 10−15.5÷10−14 for x(t),y(t) functions and 10−15÷10−14 for z(t) function and hence

slightly better than for the adapted RK-method. Nevertheless, the global errors of solutions obtained by

the series-method, are of the same order of magnitude as solutions obtained by the adapted RK-method.
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(a) Local errors of the Lorenz system solution by the series method for x = x(t) for t ∈ [0,25] .

(b) Local errors of the Lorenz system solution by the series method for y = y(t) for t ∈ [0,25]

(c) Local errors of the Lorenz system solution by the series method for z = z(t) for t ∈ [0,25]

FIGURE 8. comparison of series method on the interval t ∈ [0,25]

FIGURE 9. Global (accumulated) errors of the Lorenz system solution by the

series method with x = x(t),y(t),z = z(t) for t ∈ [0,T = 25] .
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The advantage of the series method of solution in comparison with adapted RK-method in the frames

of algorithm (18) is that the series method is two-to-three times faster than the adapted RK-method.

Let us now consider the local and global errors of solution obtained by the hybrid AdamsBDF-method.

This method is very popular and broadly used because it automatically select regimes for soft and stiff

solutions. Moreover this is the default method for ODESolve routine in Math-cad software. The local

errors of the initial value problem solution obtained by the AdamsBDF method with tolerance 10−15 are

shown in figures 10a,10b and 10c in the decimal logarithmic scale. It follows from there graphs that

the local errors obtained the AdamsBDF method are of two-three orders of magnitude larger that those

obtained by series and adapted Runge-Kutta methods.

(a) Local errors of the Lorenz system solution by the adapted AdamsBDF-method with

tolerance 10−15 for x = x(t) for t ∈ [0,25] ..

(b) Local errors of the Lorenz system solution by the adapted AdamsBDF-method with

tolerance 10−15 for y = y(t) for t ∈ [0,25] .

(c) Local errors of the Lorenz system solution by the adapted AdamsBDF-method with

tolerance 10−15 for z = z(t) for t ∈ [0,25] .

FIGURE 10. Comparison of AdamsBDF method on the interval t ∈ [0,25]
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The global errors of the AdamsBDF-solution are shown in figure 11. Comparison of this figures 7 and 9

shows that the errors, of global solution obtained by the AdamsBDF-method are, analogously to the local

errors, two to three orders of magnitude larger that those obtained by either series or adapted Runge-Kutta

method.

FIGURE 11. Global (accumulated) errors of the Lorenz system solution by

the AdamsBDF method with tolerance 10−15 for x = x(t),y(t),z = z(t) for

t ∈ [0,T = 25] .

In simulations shows in figures 7,9, 11 the steps were the same. Time of evaluation of algorithms (18)

with the AdamsBDF-method is three to four times longer that the series-method. If the tolerance of the

AdamsBDF-method is not specified the local and global errors of solution are approximately two orders

of magnitude larger than for tolerance Tol = 10−15. This is illustrated by figure 12, which shows errors

of solution obtained by the AdamsBDF-method with default accuracy.

FIGURE 12. Global (accumulated) errors of the Lorenz system solution by

the AdamsBDF method with default tolerance for x = x(t),y(t),z = z(t) for

t ∈ [0,T = 25] .
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3. SUMMARY

In this work, After comparing three numerical procedure from Mathcad using the local and global

errors on numerical solution of the Lorenz equation. The critical finding indicates it always advisable to

compare two or more numerical procedures when using numerical techniques from built-in algorithms

to approximate solutions. Gauss-quadrature methods are the best numerical techniques when approx-

imating integrals numerically. Through investigation of figures 10a, 10b, 10c to 12 shows that initial

spike of solution at t ≈ 1.5 substantially deteriorate global accuracy of solution. This means that the

AdamsBDF-method cannot be recommended for solution of chaotic problems, in particular the Lorenz

system.
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