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Abstract: An eco-epidemiological model consisting of a prey-predator system involving disease and 

pollution has been proposed and studied. It is assumed that the disease transmitted between the 

individual of prey species by contact with nonlinear incidence rate, however the predator preys upon  the 

prey according to Holling type-II functional response. The existence, uniqueness and boundedness of the 

solution of the system are studied. The existence of all possible equilibrium points are discussed. The 

local stability of for each equilibrium point is investigated. The global stability of the positive 

equilibrium point is studied with the help of Lyapunov function. Finally further investigations for the 

global dynamics of the proposed system are carried out with the help of numerical simulations. It is 

observed that the system has a Hopf bifurcation near the positive equilibrium. 
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1. Introduction 

  Various kinds of pollutants like oxides of sulphur or oxides of carbon enter into both aquatic and 

terrestrial environment. These pollutants may be emitted into the environment from different sources (e.g. 

vehicles, thermal power plant, industries, refineries, etc.) as well as by incessant use of natural resources 
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without recharging and cleaning them.  

      In recent decades, several investigators have been proposed and analyzed mathematical models 

to study the effects of toxicants on biological species [1-4]. In particular, Hallam et al. [5,6] have 

proposed and analyzed mathematical models to study the effects of toxicants on biological species when 

these are emitted into the environment from external sources. Hauping and Zhien [7] have been proposed 

a mathematical model to study the effect of a toxicant on natural stable two species communities. In 

these investigations the effects of a toxicant simultaneously on growth rate and carrying capacity of the 

species have not been considered. However, Freedman and Shukla [4] Proposed models to study the 

effects of toxicant on single-species and predator-prey system by assuming that the intrinsic growth rate 

of species decreases as the uptake concentration of the toxicant increases, while its carrying capacity 

decreases with the environmental concentration of the toxicant. Shukla et al [8, 9, 10] have been studied 

the survival of two competing species in a polluted environment using similar assumptions and showed 

that the usual competitive outcomes may be altered in the presence of a toxicant. Agarwal and Devi [11] 

proposed and analyzed a mathematical model to study the survival of resource-dependent competing 

species. They assumed that competing species and its resource are affected simultaneously by a toxicant 

emitted into the environment from external sources as well as formed by precursors of competing 

species. Sinha et al [12] have proposed a mathematical model to study the simultaneous effect of 

toxicant and disease on Lotka-Volterra prey-predator system..  

 In this paper however, an eco-epidemiological model consisting of diseased prey-predator involving 

nonlinear incidence rate and Holling type-II functional response has been proposed and analyzed. The 

dynamical behavior of a proposed model under the effect of toxicant has been investigated analytically 

as well as numerically.  

 

2. The mathematical model  

         Consider the eco-epidemic model consisting of susceptible prey denoted by )(tS , infected 

prey denoted by )(tI  and a predator that denoted by )(tY  in which the following assumptions are 

adopted: 

1. The susceptible prey reproduces logistically while the infected prey does not grow, recover and 

reproduce, and do not compete for resources, and this is due to the fact that the disease makes 

http://academic.research.microsoft.com/Author/18705151/sapna-devi
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the infected prey individuals weak so when they compete with individuals of their own species 

(susceptible prey) they always failure. 

2. The disease transmitted from infected prey to susceptible prey by contact, according to the 

following nonlinear incidence rate of the form 
I

SI
1


 used originally by Capasso and Serio 

1978 [13] in their modeling of cholera, SI  measures the infection force of the disease and 

I1
1

 measures the inhibition effect from the behavioral change of the susceptible individuals 

when their number increases or from the crowding effect of the infective individuals [14]. 

3. The predator individuals feed on infected prey and susceptible prey with different rates. Indeed 

they consume the prey individuals ( S   and I ) according to 
mIS

S



1  and 
mIS

I



2 , which 

are known as modified Holling type-II functional response. 

Consequently, the dynamics of this eco-epidemic model can be written as follows 
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where )(),( tItS  and )(tY  represent the population density of the susceptible prey, infected prey 

and predator at time t  respectively. However the parameters in the above system are assumed to be 

positive values and can be described as follows: r  represents the intrinsic growth rate of susceptible 

prey; K  is the carrying capacity of the prey;   represents the infected rate; 21  and  represent 

the predation rate of S  and I  respectively;   is the half saturation constant; m represents the 

predator’s favorite rate between S   and I . 21  and  are the conversion rates of S  and I  

respectively; 21  and   are the natural death rates of I  and Y  respectively. 

In addition to the above if we assume that, there are toxicants (pollutants) in the environment affect 

negatively on the growth of prey population (susceptible as well as infected) but not the predator 

population. Therefore, if we assume that, )(tW  be the toxicant concentration in the prey population 

(i.e. IS  ) at time t ; )(tZ  is the environment concentration of toxicant at time t . Consequently, 

the dynamics of the above eco-epidemic model in a polluted environment can be described by the 
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following set of equations: 
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Here the new parameters can described as follows: 0Q  is the exogenous input rate of the toxicant in 

the environment; 03   is the natural depletion rate of the environmental toxicant; 04   is the 

natural washout rate of the toxicant from the organism; 21  and   are the rates at which susceptible 

and infected are decreasing due to toxicant; 3  is uptake rate of toxicant by organism. In addition, 

since the density of population cannot be negative then the state space of the system (2) is 

 ,0:),,,,( 55  SRWZYISR  0,0,0,0  WZYI . 

 Obviously the interaction functions  4321 ,,, ffff and 5f  of  the system (2) are continuous 

and have continuous partial derivatives on the state space 
5

R ,  therefore these functions are 

Lipschizian on 
5

R  and then the solution of the system (2) with non negative initial condition exists and 

is unique. In addition all the solutions of the system (2) which initiate in the above state space are 

uniformly bounded as shown in the following theorem.  

Theorem 2.1 All the solutions of system (2) that initiate in the state space 
5
R  are uniformly 

bounded. 

Proof. Let   )(),(),(),(),( tWtZtYtItS  be any solution of the system (2) with the non-negative 

initial conditions. From the first equation we have   









K

S
rS

dt

dS
1  

Then by solving the above differential inequality, we obtain  KtSSupLim
t




)( . Let  

)()()()()()( tWtZtYtItStR  ,   then from the system (2) we get 
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Now, since the conversion rate constant from prey population to predator population can not be 

exceeding the maximum predation rate constant of predator population to prey population. Hence from 

biological point of view, we have always ii   ; 2,1i . Hence we obtain that 

RKrQ
dt

dR
  )(   

here  432,1 ,,min   . So again by solving the above linear differential inequality we get that 

 
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t
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  Hence all solutions are uniformly bounded and the proof is complete.  

3. Existence of equilibrium points 

      In this section, the existence of all possible equilibrium points of system (2) has been discussed. The 

system (2) may have five nonnegative equilibriums namely )0,,0,0,0(
3

1 
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E   is obvious, however the existence of the other four equilibrium points is established 

as follows: 

The equilibrium point ),,0,0,(2 WZSE   exists uniquely in the positive region of SZW space 

provided that there is a positive solution to the following set of equations 
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Straightforward computation shows that system (3a) has always the following unique positive solution.  
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Therefore the equilibrium point 2E  always exists in the positive region of SZW space. 
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The disease free equilibrium point  )ˆ,ˆ,ˆ,0,ˆ(3 WZYSE   exists uniquely in the positive region of 

SYZW space provided that there is a positive solution to the following set of equations 
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Again straightforward computation shows that system (4a) has always the following unique positive 

solution.  
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provided that  

21   (5a)                                                                                                  
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Therefore the disease free equilibrium point 3E  exists uniquely in the positive region of 

SYZW space if and only if conditions (5a)-(5b) hold. 

The predator free equilibrium point )
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Straightforward computation gives that   
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While ),0(
~

KS   represents a positive root of the following equation 

           0)())()(()( 34123  ShShSShSH                     (7d)                   

Obviously 3,2,1);( iShi  are positive for all the value of ],0( KS  provided that the following 

conditions are satisfied: 
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





















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where  

0
))](([

))(1(
)(

)(

2
1334

133
3

22

12
1

















ShS

ShQ
Sh

m
Sh
















 

Obviously 0)(1 


Sh


 due to conditions (10a) and from the above we have )()( 11 ShSSh





 always 

true and then 0
dS
Hd


 for all the value of ],0[ KS  due to condition (10d). Therefore, from the 

intermediate value theorem, Eq. (9e) has a unique positive root namely ),0( KS 


 and hence the 

positive equilibrium point 5E  exists uniquely in the 
5. RInt  if and only if conditions (10a)-(10d) are 

satisfied. 
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4. Stability analysis 

     In this section, the stability analysis of each possible equilibrium point of system (2) is carried out 

by using Linearization method with the help of Routh-Huritiz criterion or Lyapunov function.  

The Jacobian matrix for the system (2) at the point  1E  is written as 



































433

333

2

1

1

00

00

0000

0000

0000

)(

33

33













QQ

QQ

r

EV
 

Therefore, )( 1EV  has the following eigenvalues 1 2 30, 0, 0, 0r           and 4 0  . 

Accordingly the equilibrium point  1E  is a saddle point with unstable manifold in the S direction 

and stable manifold in the other directions. 

Now the local stability conditions for 432 ,, EEE  and 5E  of system (2) are established in the 

following theorems. 

Theorem4.1. The equilibrium point ),,0,0,(2 WZSE   of system (2) is locally asymptotically 

stable provided that the following two conditions are satisfied: 

    WS 11                                        (11a)                   

 2
1 






 S

S
                                                   (11b)                                    

     

Proof. It is easy to verify that the Jacobian matrix of the system (2) at the equilibrium point 

),,0,0,(2 WZSE   is given by 

 








































4333

3333

2

21

1

2

0

0)(0

0000
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0

)( 1

1



















SZZ

SZZ

WS

SSS

EV
S

S

S

S

K
r
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Then the characteristic equation of )( 2EV  can be written as: 

  0)( 32
2

1
3

2
1

21 










 AAA

S

S
WS 




  

Hence, either WSI 21    or 2
1 






S

S
Y  or  032

2
1

3  AAA  , here 

I  and Y  represent the eigenvalues of )( 2EV  in the I  and Y  direction respectively and and 

the coefficients of the above third order polynomial can be written as: 

1 4 3 3 0
r

A S S
K

        

 2 4 3 3 4 1 3 0
r r

A S S S SZ
K K

     
 

      
 

 

 3 4 3 3 1 3 3 0
r

A S S SZ
K

          

Also  

  0334334

22
313244321







































SS
K

r
SS

K

r

ZSSZ
K

r
S

K

r
AAA





 

Therefore by using Routh-Huritiz criterion all the roots of the above third order polynomial (the 

eigenvalues of )( 2EV  in the S direction, Z direction and W direction) have negative real 

parts. However the eigenvalues I  and Y  are negative provided that conditions (11a) and (11b) are 

satisfied. Consequently, the equilibrium point 2E  is locally asymptotically stable under the given 

conditions and then the proof is complete.  ■                   

Theorem4.2. Assume that the disease free equilibrium point )ˆ,ˆ,ˆ,0,ˆ(3 WZYSE   of system (2) 

exists. Then it is locally asymptotically stable provided that 

K

r

S

YWS

12

21

ˆ

ˆ)ˆ(ˆ










                                      (12)                         

Proof. It is easy to verify that the Jacobian matrix for the system (2) at )ˆ,ˆ,ˆ,0,ˆ(3 WZYSE   is given 

by 
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


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


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
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
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












 










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ˆ
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1
2
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






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


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


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



SZZ

SZZ

Y

WS

SS
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S

mS

S

Y

S
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S
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S
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Then the characteristic equation of )( 3EV  can be written as: 

0)ˆˆˆˆˆˆˆˆ(ˆˆ
ˆ

ˆ
ˆ

43
2

2
3

1
4

21
2 

















 DDDDW

S

Y
S 




  

So either WS
S

Y
I

ˆˆˆ 21ˆ

ˆ
2 







  or   0)ˆˆˆˆˆˆˆˆ( 43

2
2

3
1

4  DDDD  , where I̂  

represents the eigenvalue of )( 3EV  in the I direction and the coefficients of the above fourth order 

polynomial can be written as:    

1111
ˆˆ RcD  ,  

4311122
ˆˆˆˆˆ RRRcRD  , 

33411213
ˆˆˆˆˆ RRcRRD   

424
ˆˆˆ RRD   

with 

0ˆˆ
3431  SR  , 

0
)ˆ(

ˆˆ
ˆ

3

11
2 




S

YS
R




 

0ˆˆˆ
313  ZSR  , 

0ˆˆ
43434  SR   

Clearly we have 0ˆ I  and 0
ˆ

ˆ

ˆˆ

11
1 
 K

Sr

S

YS
c




 under condition (12). Consequently, we obtain 

that 0ˆ iD  for all values of 4,3,2,1i . Further more since the value 

4
2

13321
ˆˆˆ)ˆˆˆ(ˆ DDDDDD   is determined as below 

0)]ˆ(ˆ)ˆˆˆ([ˆ

]ˆˆ[ˆˆ]ˆˆ2ˆˆˆ[ˆˆ

313113113

4113341413321211









RRDRRcD

RcRRRRRRRRRc
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Thus by Routh-Hurwitz criterion all the roots of the above fourth order polynomial (eigenvalues of 

)( 3EV  in the S direction, Y direction, Z direction and W direction) have negative real 

parts, and hence )ˆ,ˆ,ˆ,0,ˆ(3 WZYSE   is locally asymptotically stable. ■ 

Theorem4.3. Assume that the predator free equilibrium point )
~

,
~

,0,
~

,
~

(4 WZISE   of system (2) 

exists. Then it is locally asymptotically stable provided that 

 21

~
 S                                                               (13a)                                                                

 654213217

~
)

~~
()

~~
(

~
)

~~~
( RRRRRDRRR                                   (13b)                               

   621543334312

~
)

~~
()

~~
(

~
)]

~~
([

~
)

~~
( RISRRZISRRR        (13c) 

 BIS
~~~~~

221                                    (13d) 

Where 7,,2,1;
~

iRi , 4,3,2,1;
~

jD j  and B
~

 are stated in the proof. 

Proof. It is easy to verify that the Jacobian matrix for the system (2) at the point 4E  is given by 

554 )()(  ijcEV  and 5,...,2,1, ji ; where  

,

~

11
K

Sr
c   

212 ~

~

A

S
c


 , 

B

S
c ~

~
1

13


 , 014 c , Sc

~
115  , 

A

I
c ~

~

21


 , 

222 ~

~~

A

IS
c


 , 

B

I
c ~

~
2

23


 , 024 c , ,

~
225 Ic   ,031 c  ,032 c  

,~
)(

~
)(

~
22221

33
B

mIS
c

 
  ,034 c  ,035 c  ,

~
341 Zc   

,
~

342 Zc   ,043 c  )),
~~

(( 3344 ISc    ,045 c  ,
~

351 Zc   

,
~

352 Zc   ,053 c  ),
~~

(354 ISc   .455 c  

here IA
~

1
~

  and ImSB
~~~

  . Therefore the characteristic equation of the )( 4EV  is given 

by: 

 0)~~~~()~( 43

2

2

3

1

4

33  DDDDc   

Then, either  33
~ cY    or 0

~~~~~~~~
43

2
2

3
1

4  DDDD  , where Y
~

 denotes to the 

eigenvalue of )( 4EV  in the Y direction, while the coefficients of the above fourth order polynomial 

are determined as follows:  
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Clearly we have 0
~

4 R  due to conditions (13a), hence 0
~

iD  for all values of 4,3,2,1i . 

Moreover, 4
2

13321
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DDDDDD   can be computed as follows: 

 

 
 

 


 2334321

621543

334312

62154334

65421321721

)]
~~

([
~~~

~
)

~~
()

~~
(

~
)]

~~
([

~
)

~~
(

~
)

~~
()

~~
)](

~~
([

~
)

~~
()

~~
(

~
)

~~~
()

~~
(

~

ISRRR

RISRRZ

ISRRR

RISRRIS

RRRRRDRRRRR



















 

Now it is easy to verify that the first term of 
~

 is positive under conditions (13a) and (13b), while the 

second term is positive under conditions (13a) and (13c). Consequently 0
~
  under the conditions 

(13a)-(13c) and hence by Routh-Hurwitz criterion all the roots of the above fourth order polynomial 

(eigenvalues of )( 4EV  in the S direction, I direction, Z direction and W direction) have 
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negative real parts. In addition to the above, it is clear that condition (13d) guarantees the negativity of 

the eigenvalue Y
~

. Therefore the predator free equilibrium point )
~

,
~

,0,
~

,
~

(4 WZISE   is locally 

asymptotically stable and then the proof is complete.   ■              

Theorem4.4. Assume that the positive equilibrium point ),,,,(5 WZYISE


  of the system (2) 

exists and let the following inequalities hold: 
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4
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where 5,,2,1,,  jidij  are determined in then proof . Then 5E  is locally asymptotically stable. 

Proof. It is easy to verify that, the linearized system of system (2) can be written as 

 UEV
dt

dU

dt

dX
)( 5   

here  , , , ,
t

X S I Y Z W  and  tuuuuuU 54321 ,,,,  with 1u S S  , 2u I I  , 

YYu
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

; 5,...,2,1, ji  

represents the Jacobian matrix of system (2) at the positive equilibrium point 5E  and has the following 
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. 

here IA


1   and ImSB


  . Now, consider the following function 
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where 5,4,3,2,1, iai  are positive constants to be chosen appropriately. It is clearly that 



5:V  and is a continuously differentiable function with 0)0,0,0,0,0( V  and 

0),,,,( WZYISV  for all 
5),,,,( WZYIS  and )0,0,0,0,0(),,,,( WZYIS . Hence it is 

a positive definite function. Now, by differentiating V  with respect to time t , we obtain 
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Substituting the values of ,,,, 4321

dt

du

dt

du

dt

du

dt

du
and 

dt

du5  in the above equation, and after doing some 

algebraic manipulation; we get that: 
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Obviously, condition (14a) guarantees that 031 c


 and 032 c


, condition (14b) guarantees that 

011 c


, while condition (14c) guarantees that 022 c


. Now by choosing the constants as 

1543  aaa , 
Y

Bc
a 



1

31
1 
  and 

Y

Bc
a 



2

32
2 
 . Therefore, by substituting the values of 

5,4,3,2,1, iai  in 
dt
dV  and then rearrange the resulting terms, we get 
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Obviously, conditions (14a) and (14b) guarantee that  11 0d  , while conditions (14a) with 

(14c) guarantee that 22 0d  . Hence due to the given conditions (14d)-(14h), then 
dt
dV  will be 

negative . Consequently 0
dt
dV ,  according to the Lyapunov stability theorem the origin and 

hence ),,,,(5 WZYISE


  is locally asymptotically stable point.             ■ 

Theorem4.5. Assume that the positive equilibrium point ),,,,(5 WZYISE


   is locally 

asymptotically stable.  Then it is a globally asymptotically stable in the sub region Ω of  
5. RInt ,  

that satisfy the following conditions. 
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where AAIIIP


 )1)(1()(1 , BBImSmISISP


 ))((),(2   and 
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5,,2,1,;  jiqij  are given in the proof. 

 

Proof. Consider the following function: 
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where  5,2,1, 


iCi  are positive constants to be determined. It is easy to see that 

),(),,,,( 51 RRCWZYISV  and 0),,,,( WZYISV


, while 0),,,,( WZYISV  for all 

5),,,,( RWZYIS  with ),,,,(),,,,( WZYISWZYIS


 , then 
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Then after doing some algebraic manipulations, we get 
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 which are positive due to the local stability condition (14a). Then we get that 
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Clearly 11q  and 22q  are positive provided that condition (15a) holds. Consequently, due to 

conditions (15b)-(15f),we obtain that 0
dt
dV  is negative definite and hence V  is Lyapunov function 

with respect to ),,,,(5 WZYISE


 . So  ),,,,(5 WZYISE


  is a globally asymptotically stable in 

5.  RInt  that satisfy the given conditions.                 ■ 

 

5. Numerical Simulation 

 In this section the global dynamics of system (2) is investigated numerically. The objectives are 

confirm our analytical results and discuss the role of the existence of disease and toxicant on the 

dynamical behaviour of the system. For the following set of hypothetical, biologically feasible, set of 

parameters, definitely different set of hypothetical parameters can be chosen also, system (2) is solved 

numerically starting at different initial points as illustrated in Fig. (1a)-(1e). 
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05.0,2.0,2.0,5,01.0,001.0,1.0,05.0
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3432121
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



Q

mKr
      (16) 

 

 

 

 

Fig. 1: The solution of system (2) approaches asymptotically to the positive equilibrium point 

)88.13,11.11,42.5,26.3,73.1(5 E  starting from different initial points. (a) Trajectories of S . (b) 

Trajectories of I . (c) Trajectories of Y . (d) Trajectories of Z . (e) Trajectories of W . 

 

It is clear from above figures that, system (2) has a globally asymptotically stable point for the above set 

of data. However, for the above set of data with the intrinsic growth rate of the susceptible prey 
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25.1r , system (2) has a periodic dynamics in the 
5. RInt  as illustrated in Fig. (2).  

 

Fig. 2: The solution of system (2) approaches to periodic dynamics in the 
5. RInt  for the parameter 

values in Eq. (16) with 25.1r . 

 

Further investigation has been down by varying the intrinsic growth rate of the susceptible prey keeping 

the rest of parameters as in Eq. (16), it is observed that, system (2) has a globally stable positive 

equilibrium point for the range 2.1r , while it has a periodic dynamics for the range 2.1r . 

The effect of varying the infected rate on the dynamics of system (2) is studied. For the parameter values 

given in Eq. (16) with 8.0 , 21.18.0    and 22.1  the solution of system (2) approaches 

to periodic attractor, positive equilibrium point 5E   and predator free equilibrium point 4E  

respectively, as illustrated in the following two figures. 

 

Fig. 3: The solution of system (2) approaches to periodic dynamics in the 
5. RInt  for the parameter 

values in Eq. (16) with 8.0 . 
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Fig. 4: The solution of system (2) approaches to predator free equilibrium point 

)11.13,88.11,0,72.3,68.0(4 E for the parameter values in Eq. (16) with 25.1 . 

 

The effect of varying the predation rates 1  and 2  on the dynamics of system (2) is also studied by 

solving the system numerically for the parameters values used in Fig. (2), that is mean Eq. (16) with 

25.1r , with 221   and the trajectories of system (2) are drawn in Fig. (5). 

 

Fig. 5: The solution of system (2) approaches asymptotically to positive equilibrium point 

)88.13,11.11,42.6,52.2,47.2(5 E  in the 
5. RInt  for the parameter values in Eq. (16) with 

25.1r  and 221  . 

 

According to the above figure, the solution of system (2) transfer from periodic as in Fig. (2) to positive 

equilibrium point when the predation rates 1  and 2  increase simultaneously to  221  . 
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Now the effect of varying the half saturation constant   on the dynamics of system (2) is discussed. it 

is observed that, for the data given by Eq. (16) with 10 , 13010    and 130  the system 

approaches to periodic attractor, positive equilibrium point 5E  and predator free equilibrium point 4E  

respectively, as illustrated in the following two figures. 

 

 

Fig. 6: The time series of system (2) for the data given by Eq. (16) with different values of the half 

saturation constant  . (a) System (2) approaches to positive equilibrium point for 11 . (b) ) 

System (2) approaches to small periodic attractor for 10 . (c)  System (2) approaches to large 

periodic attractor for 9 . 
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Fig. 7: The solution of system (2) approaches to predator free equilibrium point 

)32.22,67.2,0,94.25,36.7(4 E  for the parameter values in Eq. (16) with 140 . 

 

According to the Fig. (6), it is clear that system (2) undergo a Hopf bifurcation when the half saturation 

constant passes through the value 10 . Note that, the effect of varying other parameters are also 

studied and the following results are observed. The solution of system (2) approaches asymptotically to 

the positive equilibrium point 5E  in case of increasing the death rate of the infected species 1 , 

however it approaches to predator free equilibrium point 4E  in case of increasing the natural death rate 

of predator species 2 . More over, the solution of system (2) approaches asymptotically to the predator 

free equilibrium point 4E  in case of decreasing the conversion rates 1  and 2  simultaneously. 

Also, it is observed that the solution of system (2) approaches asymptotically to the predator free 

equilibrium point 4E  in case of increasing the reduction rate of the susceptible prey due to the 

existence of toxicant given by 1 .  

 

 Now the effect of varying the reduction rate of the infected prey due to the existence of toxicant , 

that is 2 , on the dynamics of system (2) is investigated by solving the system (2) numerically using 

the data given in Eq. (16). It is observed that for 26.02   the solution of system (2) still has a 

globally asymptotically stable positive equilibrium point however for 26.02   system (2) losses the 



RAID KAMEL NAJI, ARKAN N MUSTAFA                           118 

stability and approaches  to periodic dynamics in 
5. RInt . Further, for the data given by Eq. (16) with 

25.1r , the dynamics of system (2) transfer from periodic to asymptotic stable at the positive 

equilibrium point for  05.02   and then transfer again to periodic dynamic for 2.02   see Fig. 

(8a)-(8c). 

 

Also, the effect of varying the exogenous input rate of the toxicant in the environment Q  on the 

dynamics of system (2) is studied numerically. It is observed that increasing the parameter Q  with the 

rest of parameters given by Eq. (16) with 25.1r  leads to stability of the system, see for example the 

typical figure given by Fig. (9). 

 

  

 

 Fig. 8: The time series of system (2) for the data given by Eq. (16) with 25.1r  for different values 

of the parameter 2 . (a) System (2) approaches to positive equilibrium point for 19.02  . (b) ) 

System (2) approaches to small periodic attractor for 2.02  . (c)  System (2) approaches to large 

periodic attractor for 25.02  . 
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Fig. 9: The time series of system (2) for the data given by Eq. (16) with 25.1r  for different values of 

the parameter Q . System (2) (a) approaches to positive equilibrium point for 9Q . (b) approaches to 

small periodic attractor for 8Q . (c) approaches to large periodic attractor for 7Q . 

 

Clearly, due to Fig. (8a)-(8c)  and Fig. (9a)-(9c) system (2) have a Hopf bifurcation, which occurred 

when the parameters 2  and Q  pass through specific bifurcation values respectively. Finally, it is 

observed that, decreasing the natural depletion rates 3  and 4  keeping the rest of parameters fixed 

at the data given by Eq. (16) with 25.1r  lead to transfer the dynamics of system (2) from periodic to 

asymptotic stability at the positive equilibrium point. However, varying the parameters m   and 3  

do not effect on the pattern of the behaviour of system (2). 

  

6. Discussions and Conclusions 

     In this paper, a prey-predator model with the existence of disease and pollution has been proposed 

and analyzed. The uniqueness and  boundedness of solutions of the system are discussed. The local as 

well as global stability analysis for the proposed system are performed. Moreover, in order to confirm 
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our analytical results and specified which combination of parameters control the dynamical behaviour of 

system (2) numerical simulations are used for biologically feasible set of hypothetical parameters that 

given by Eq. (16). For this set of data, it is observed that: 

 

1. Increasing the intrinsic grow rate of the susceptible prey above a specific value say r ,the 

system loss the stability and approaches to periodic dynamics. Consequently, increasing this 

parameter destabilizing the system. 

2. When the system has an asymptotically stable positive equilibrium point, then increasing the 

infective rate   above a specific value, say 1 , leads to extinction in the predator species and 

hence system (2) losses the persistence and approaches asymptotically to predator free 

equilibrium point. however decreasing the infective rate   has destabilizing effect on the 

dynamics of system (2) and then system (2) approaches asymptotically to periodic dynamics in 

5. RInt . On the other hand, when the system has periodic dynamics then increasing the 

parameter   slightly has stabilizing effect on the dynamics of system (2) however further 

increasing will causes extinction in predator species and the system will approaches to predator 

free equilibrium point. 

3. Varying the half saturation parameter    has the same effect on the dynamics of system (2) as 

that shown in case of varying the infected rate  . In fact the occurrence of Hopf bifurcation is 

clearly shown in case of varying  . 

4. Increasing the predation rates 1  and 2  simultaneously have stabilizing effect on the 

dynamical behavior of system (2). 

5. Increasing each of the parameters, the death rate of the infected species 1  or the exogenous 

input rate of the toxicant in the environment Q  , has stabilizing effect on the dynamics of 

system (2). Further more, the occurrence of Hopf bifurcation is clearly shown in case of 

decreasing the parameter Q . 

6. When the system has an asymptotically stable positive equilibrium point, then increasing the 

natural death rate of predator species 2  above a specific value, leads to extinction in the 

predator species and hence system (2) losses the persistence and approaches asymptotically to 
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predator free equilibrium point. however decreasing the natural death rate of predator species 

2  has destabilizing effect on the dynamics of system (2) and then system (2) approaches 

asymptotically to periodic dynamics in 
5. RInt . On the other hand, when the system has 

periodic dynamics then increasing the natural death rate of predator species 2  will causes 

extinction in predator species and the system will approaches to predator free equilibrium point. 

7. Decreasing the conversion rates 1  and 2  simultaneously causes extinction in predator 

species and the system losses its persistence and approached asymptotically to predator free 

equilibrium point. 

8. Varying the parameters, preference rate m  and the uptake rate of toxicant by organism 3 , 

have no effect on the pattern of the dynamics of system (2). 

9. When the system has an asymptotically stable positive equilibrium point, then varying the 

natural depletion rates 3  and 4  have no effect on the dynamical behaviour of the system. 

However, when the system has periodic dynamics then decreasing the natural depletion rates 

3  and 4  have stabilizing effect on the dynamics of system (2) and the system approaches 

asymptotically to positive equilibrium point.   

10. When the system has an asymptotically stable positive equilibrium point, then increasing the 

reduction rate of the susceptible prey due to the existence of toxicant given by 1  leads to 

extinction in predator species and the system will approaches to predator free equilibrium point. 

However, when the system has periodic dynamics then increasing slightly the parameter 1  

stabilizing the dynamics and hence system (2) approaches asymptotically to positive equilibrium 

point. Moreover, increasing the value of parameter 1  further causes extinction in predator 

species and the system will approaches to predator free equilibrium point.   

11.  When the system has an asymptotically stable positive equilibrium point, then increasing the 

reduction rate of the infected prey due to the existence of toxicant given by 2  leads to 

destabilizing in the system and hence the solution will approaches to periodic dynamics. 

However, when the system has periodic dynamics then increasing slightly the parameter 2  

stabilizing the dynamics and hence system (2) approaches asymptotically to positive equilibrium 
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point. Moreover, increasing the value of parameter 2  further causes destabilizing again in the 

system and then the solution will approaches asymptotically to periodic dynamics in the 

5. RInt . 

Accordingly, system (2) has rich dynamics in the domain 
5
R . In fact it is observed that the system is 

very sensitive to varying in the parameters values  ,  , 1 , 2  and Q , while it has less 

sensitivity in case of varying the other parameters 
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