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Abstract: An eco-epidemiological model consisting of a prey-predator system involving disease and
pollution has been proposed and studied. It is assumed that the disease transmitted between the
individual of prey species by contact with nonlinear incidence rate, however the predator preys upon the
prey according to Holling type-I1 functional response. The existence, uniqueness and boundedness of the
solution of the system are studied. The existence of all possible equilibrium points are discussed. The
local stability of for each equilibrium point is investigated. The global stability of the positive
equilibrium point is studied with the help of Lyapunov function. Finally further investigations for the
global dynamics of the proposed system are carried out with the help of numerical simulations. It is
observed that the system has a Hopf bifurcation near the positive equilibrium.
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1. Introduction

Various kinds of pollutants like oxides of sulphur or oxides of carbon enter into both aquatic and
terrestrial environment. These pollutants may be emitted into the environment from different sources (e.g.

vehicles, thermal power plant, industries, refineries, etc.) as well as by incessant use of natural resources
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without recharging and cleaning them.

In recent decades, several investigators have been proposed and analyzed mathematical models
to study the effects of toxicants on biological species [1-4]. In particular, Hallam et al. [5,6] have
proposed and analyzed mathematical models to study the effects of toxicants on biological species when
these are emitted into the environment from external sources. Hauping and Zhien [7] have been proposed
a mathematical model to study the effect of a toxicant on natural stable two species communities. In
these investigations the effects of a toxicant simultaneously on growth rate and carrying capacity of the
species have not been considered. However, Freedman and Shukla [4] Proposed models to study the
effects of toxicant on single-species and predator-prey system by assuming that the intrinsic growth rate
of species decreases as the uptake concentration of the toxicant increases, while its carrying capacity
decreases with the environmental concentration of the toxicant. Shukla et al [8, 9, 10] have been studied
the survival of two competing species in a polluted environment using similar assumptions and showed
that the usual competitive outcomes may be altered in the presence of a toxicant. Agarwal and Devi [11]
proposed and analyzed a mathematical model to study the survival of resource-dependent competing
species. They assumed that competing species and its resource are affected simultaneously by a toxicant
emitted into the environment from external sources as well as formed by precursors of competing
species. Sinha et al [12] have proposed a mathematical model to study the simultaneous effect of
toxicant and disease on Lotka-Volterra prey-predator system..

In this paper however, an eco-epidemiological model consisting of diseased prey-predator involving
nonlinear incidence rate and Holling type-Il functional response has been proposed and analyzed. The
dynamical behavior of a proposed model under the effect of toxicant has been investigated analytically

as well as numerically.

2. The mathematical model

Consider the eco-epidemic model consisting of susceptible prey denoted by S(t), infected

prey denoted by I(t) and a predator that denoted by Y (t) in which the following assumptions are

adopted:
1. The susceptible prey reproduces logistically while the infected prey does not grow, recover and

reproduce, and do not compete for resources, and this is due to the fact that the disease makes


http://academic.research.microsoft.com/Author/18705151/sapna-devi

RAID KAMEL NAJI, ARKAN N MUSTAFA 96

the infected prey individuals weak so when they compete with individuals of their own species
(susceptible prey) they always failure.

2. The disease transmitted from infected prey to susceptible prey by contact, according to the

following nonlinear incidence rate of the form % used originally by Capasso and Serio

1978 [13] in their modeling of cholera, AS| measures the infection force of the disease and

ﬁ measures the inhibition effect from the behavioral change of the susceptible individuals

when their number increases or from the crowding effect of the infective individuals [14].
3. The predator individuals feed on infected prey and susceptible prey with different rates. Indeed

als 2 |

. .. - (04 .
they consume the prey individuals (S and | ) according to Frsami and Frsaml which
are known as modified Holling type-Il functional response.

Consequently, the dynamics of this eco-epidemic model can be written as follows

SY
6 _ oy S\ A e
dt K) 1+1 L+S+ml
dl Al arlY
==—5§ iyl (1)

dt 1+1° B+S+ml
dyY 6,S+6,l
2 A T2y oY

d  g+S+ml

where S(t), I(t) and Y (t) represent the population density of the susceptible prey, infected prey

and predator at time t respectively. However the parameters in the above system are assumed to be

positive values and can be described as follows: r represents the intrinsic growth rate of susceptible

prey; K is the carrying capacity of the prey; A represents the infected rate; 4 and a, represent
the predation rate of S and | respectively; £ is the half saturation constant; m represents the
predator’s favorite rate between S and | . 6 and 8, are the conversion rates of S and |

respectively; 4 and u, are the natural death rates of | and Y respectively.

In addition to the above if we assume that, there are toxicants (pollutants) in the environment affect

negatively on the growth of prey population (susceptible as well as infected) but not the predator

population. Therefore, if we assume that, W (t) be the toxicant concentration in the prey population

(ie. S+1)attime t; Z(t) is the environment concentration of toxicant at time t. Consequently,

the dynamics of the above eco-epidemic model in a polluted environment can be described by the
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following set of equations:

B g1 A g @ sw—f(s,1,Y,2wW)
dt K) 1+1 L+S+ml

da _ Al S_ aslY
dt  1+1 A+S+ml

— | —o,IW = £,(S,1,Y,Z,W)

dY  6S+6,l

= A2 T2 v Y = £4(S, 1LY, ZW 2
at ~ prsem . #2' = sl ) ?
dz

‘L_Vt\’:asz(s+ )= W = 5(S,1,Y,Z,W)

Here the new parameters can described as follows: Q > 0 is the exogenous input rate of the toxicant in
the environment; 3 >0 is the natural depletion rate of the environmental toxicant; zz, >0 is the
natural washout rate of the toxicant from the organism; oy and o, are the rates at which susceptible
and infected are decreasing due to toxicant; o3 is uptake rate of toxicant by organism. In addition,
since the density of population cannot be negative then the state space of the system (2) is
R®={(S,1,Y,ZW)eR®:$>0, 1>0,Y>0,Z>0W >0}.

Obviously the interaction functions f,, f,, f,, f, and f, of the system (2) are continuous

and have continuous partial derivatives on the state space R’, therefore these functions are

Lipschizian on Rf and then the solution of the system (2) with non negative initial condition exists and
is unique. In addition all the solutions of the system (2) which initiate in the above state space are
uniformly bounded as shown in the following theorem.

Theorem 2.1 All the solutions of system (2) that initiate in the state space Rf are uniformly

bounded.

Proof. Let (S(t), I (t),Y(t),Z(t),W(t)) be any solution of the system (2) with the non-negative

initial conditions. From the first equation we have C:j—f < rS(l— %j

Then by solving the above differential inequality, we obtain LimSupS(t) < K. Let
t—o0

RO =SE)+1{®)+Y({)+Z({t)+W(t), then from the system (2) we get
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dr _ 3(1_§j_¢_alsw_$_ﬂl|_o-2|w
dt K) Bg+S+ml L+S+ml
6,S + 06,1
Y — 1Y +Q — paZ — W
B+semi 1Y +Q— w3l — g

Now, since the conversion rate constant from prey population to predator population can not be

exceeding the maximum predation rate constant of predator population to prey population. Hence from

biological point of view, we have always &; < ;; 1 =1,2. Hence we obtain that

R
d—£Q+(r+y)K—yR
dt
here 4 =min {,ul,,uz y U3, ,u4}. So again by solving the above linear differential inequality we get that

lim R(t) < M Hence all solutions are uniformly bounded and the proof is complete.
t—

3. Existence of equilibrium points

In this section, the existence of all possible equilibrium points of system (2) has been discussed. The

system (2) may have five nonnegative equilibriums namely E; =(0,0,0, ;%, 0), E; = (§,0,0, Z,VV) ,

E; = (SA,O,YA,ZA,V\AI), E, = (§,I~,O,Z~,VV) and Es =(S,1,Y,Z,W). The existence of
E; =(0,0,0, /% ,0) is obvious, however the existence of the other four equilibrium points is established
as follows:

The equilibrium point E, = (S,0,0,Z,W) exists uniquely in the positive region of SZW —space

provided that there is a positive solution to the following set of equations

r(1—§j—alw =0
K

Q—,U3Z —0328 =0 (3&)
032S — W =0

Straightforward computation shows that system (3a) has always the following unique positive solution.

ru,K — ro,KZ

S_ = > O, W = > O
ru, +o,0,KZ 0,0,KZ +ry,
7__ [0 (ru,K —0,QK) + ruy ] (30)
20,0,1,K

4 \/((73 (ru,K —o,QK) + rﬂ3ﬂ4)2 +4rQo o 1, K
20,0,1,K

>0

Therefore the equilibrium point E, always exists in the positive region of SZW —space.
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The disease free equilibrium point Ejz = (SA,O,YA,ZA,V\A/) exists uniquely in the positive region of

SYZW — space provided that there is a positive solution to the following set of equations

= Ho (42)

,U3Z +(73ZS =Q
03ZS — u,W =0

Again straightforward computation shows that system (4a) has always the following unique positive

solution.
S_ P2 5 _ Q0 — 12)
O — 15 uz (6 — ) + o3 Sy (b)
w:ﬁ( Qb j,v:ﬂ+3[r(x_§)_ale]
Ha \ 13 (0 — pp) + 03 B K
provided that
0, > 1, (52)
R r N
W<—(K-5) (5b)
(TlK

Therefore the disease free equilibrium point Ej; exists uniquely in the positive region of
SYZW —space if and only if conditions (5a)-(5b) hold.
The predator free equilibrium point E, = (S~,I~,0,Z~,VV) exists uniquely in the positive region of

SIZW —space provided that there is a positive solution to the following set of equations

r(l—ij—i—olwzo
+

Ls—ﬂl—GZWZO (6)
1+1

Q—y3Z—J3Z(S+|)=0
o3Z(S+1)—uW =0

Straightforward computation gives that

r ~
—I- —(0'1/14‘%)8‘}-61/114‘['(72

%54‘0—21—(0—1/114"‘0'2)

=hy(S) (7a)
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~ Q ~
Z-= < — =h,(S (7b)
113 + 03 (S + 1,(S)) 2(5)

~ 1 lg ~
W=—"|—""— — 1 |=hy(S 7
o5 [1+ f1(S) lJ 3(5) (7c)

While § € (0,K) represents a positive root of the following equation
H(S) = o3h, (S)(S + M (S)) — 14h3(S) =0 (7d)
Obviously h;(S); 1=12,3 are positive for all the value of S € (0, K] provided that the following

conditions are satisfied:

21> St t 1o, (8a)
o,
o +lro
g . T4 7, (8b)
O'lﬂ + e
AS
< (80)
1+h(S)

Moreover, by using intermediate value theorem, Eq. (7d) has a unique positive root namely S~ € (0,K),
if H(S):[0,K]— R is a continuous function with H(0) >0 (or H(0)<0); H(K)<O0 (or
H(K)>0)and 94 =H'(S)<0 forall Se[0,K].

Now, since

03Q(o144 +105) L HakHa
u3(Aoy —oyy —roy) +og(oyy +roy) oy

H(0) =

which positive due to condition (8a). Also we have

o3 (K +h (K))

s+ gk =y (k) M)

H(K)=Q
Clearly H(K) <0 provided that the following condition holds

Q < p4h3(K) (8d)

Further, we have that
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dH _oQ@+h (8) [, oa(S+hy(S)) }
05 p5 +03(S+hy(S)| pig+0(S+hy(S))

+

O
oy (L+hy (8))] 1+ (S)

Note that %—E‘ =H'(S) <0 forall Se[0,K] provided that the following condition holds
1+h; (S)<0, VS €[0,K] (8e)
Consequently, according to the intermediate value theorem, Eq. (7d) has a unique positive root namely

§ € (0,K) and hence the predator free equilibrium point E, exists uniquely in the positive region of

SIZW —space provided that conditions (8a)-(8e) are satisfied.

only if there is a positive solution to the following set of equations

[ M+ (u -6)S _ hy(S)

(92)
0y —Musy
Z = Q =h,(S) (9b)
H3 +03(S +(S))
W =720, (S)(S +hy(9)) = hy(S) (90)
My
~ B+S+mhy(S) S ~ & ~ &
Y = —— —o,N;3(S) - =h, (S 9d
o 1 h@ 7 3(S) — 1y | =hy(S) (9d)
While §e(O,K) represents a positive root of the following equation
- A2LS +hy(S) ~
H(S):r[l_ij_ (“2 — )+ ﬂo'2_51 h3(5)+ﬂ/11:0 (%)
K 1+h(S) oy as

Note that it is easy to verify that ﬁi (S); 1=12,3,4 are positive for all values of S e (0, K] under

the following conditions.

b > u, >0, (10a)
m

AS -
_— > +O'h S 10b
1+ (S) t +0oh3(S) (10b)
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Note that we have that

A(O)=r - P
(O —Muy) + py B
_(01 _ﬂo_zj Qozu Lt
a gLz (0, —mMup) + o Bl ay

Clearly, H(0) >0 under the following conditions

r>A (10c)
at 3(01 - ﬂazj >0 (10d)
Uy  Hg x>

Also, it is easy to verify that

_ A ~ hy (K ~
H(K) = —ﬂ(ﬁ—K—Uzha(K) ﬂ%}‘ﬁ—ﬂ%(m

Here H(K) <O due to condition (10b). Moreover we have

_:____(ﬂm;(mﬂ
ar 2%}

(ﬁl(S)—sﬁl'(S))J

where

! —y)
hy (S) = —0#2 mlj
2 2

o o3Qus(l+hy (9))
hs (S) = — 5
talpzs +03(S + 0y (S))]

Obviously ﬁl (S) > 0 due to conditions (10a) and from the above we have ﬁl(S) > Sﬁl (S) always

I,

d

true and then g < 0 for all the value of S €[0,K] due to condition (10d). Therefore, from the

o

intermediate value theorem, Eq. (9¢) has a unique positive root namely Se (0,K) and hence the

positive equilibrium point Eg exists uniquely in the Int.Rf if and only if conditions (10a)-(10d) are

satisfied.
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4. Stability analysis

In this section, the stability analysis of each possible equilibrium point of system (2) is carried out

by using Linearization method with the help of Routh-Huritiz criterion or Lyapunov function.

The Jacobian matrix for the system (2) at the point  E; is written as

r 0 0 0 0

0 -1y 0

V(E) = OQ OQ ~tHp 00
~03,, ~O03, 0 -u3 O

03% 03% 0 —u

Therefore, V(E;) has the following eigenvalues r >0,—z4 <0,—z, <0,— 6, <0 and —p, <0.

Accordingly the equilibrium point  E, is a saddle point with unstable manifold in the S —direction
and stable manifold in the other directions.

Now the local stability conditions for E,,E3,E4 and Eg of system (2) are established in the
following theorems.

Theorem4.1. The equilibrium point E, =(S,0,0,Z,W) of system (2) is locally asymptotically

stable provided that the following two conditions are satisfied:

a8 < w +oW (11a)
%5 4, (11b)
B+S

Proof. It is easy to verify that the Jacobian matrix of the system (2) at the equilibrium point

E, = (S_,0,0, Z,VV) is given by

_rg _J§ _ S — 5,8

S ) AS B 543 0 o,S
0 AS — 1y — oW 0 0 0
V(Ex)=| 0 0 [ff’g—yz 0 0
—0'32_ —O'3Z_ 0 —(/,l3 +O'38_) 0

o032 o3Z 0 o3S — MUy
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Then the characteristic equation of V (E,) can be written as:

= — 0S5 - _ _
(ﬂS—ﬂl—GZWﬂd(ﬁ—ﬂz—7j(73+A172+A27+A3)=0
Hence, either 7, = AS — 14 —c,W or 7y =§T§§—,u2 or 773+A_L;72+A2;7+A3 =0, here

7, and yy represent the eigenvalues of V(E,) inthe | and Y direction respectively and and

the coefficients of the above third order polynomial can be written as:

Al—%8_+,u4+u3+038_>0
A, = LS_Jr,u4 (;13+03S_)+L,u48_+0'1635_2_>0
K K

A, :%y48_<,t13+0'35_)+0'103y38_2_ >0

Also

Ns r 5 |l& 2525

A:AlAZ—Agz RS+IU4 R,Ll4+0'20'32 S+O'10'SS Z
r - =\ r = =
+(ES + Uy t+ U3 +GSS](RS +,U4](/13 +O'38)> 0

Therefore by using Routh-Huritiz criterion all the roots of the above third order polynomial (the
eigenvalues of V(E,) in the S —direction, Z —direction and W —direction) have negative real
parts. However the eigenvalues », and yy are negative provided that conditions (11a) and (11b) are

satisfied. Consequently, the equilibrium point E, is locally asymptotically stable under the given
conditions and then the proof is complete. =

Theorem4.2. Assume that the disease free equilibrium point E5 = (§,O,\f,2,V\7) of system (2)
exists. Then it is locally asymptotically stable provided that

ié—(y1+02V\7)< Y T
oy ,B+§ oK

(12)

Proof. It is easy to verify that the Jacobian matrix for the system (2) at Ez = (§,O,\f, 2,V\7) is given

by
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@SV S §| - 2+ -am s 0 -0y
(p+S) K (B+9)? (B+3) '
- _ azYA _ _ ]
0 8-t o0 0 0
V(Ejz) = 0,87 vV 0,8+S (0,—-m&)) 0 0 0
(5+9)? (+5)?
~o4? 047 0 —(uzto3S) 0
0'32 0'32 0 O'3§ —Hy

Then the characteristic equation of V (E3) can be written as:

(15—;i§—ﬂl—UZW—7](74+D173+D272+D37+D4)=0

So either 7, = AS —%—yl —oW o G+ I517?3 + I52;?2 + D37 +D,) =0, where 7,
represents the eigenvalue of V (E3) inthe | —direction and the coefficients of the above fourth order
polynomial can be written as:

D, =—ci +Ry,

D3 = RiRy —C131Ry + s15Ry

with
Ry = 13 + 11y +0‘3§ >0,
Y.
(B +3)
Ry = 6103§2 >0,

Ry = p3tg + 034145 >0

N Y 8
Clearly we have <0 and g =220 _ IS
y 7 117 587K

< 0 under condition (12). Consequently, we obtain

that I5i>0 for all wvalues of 1=1234 . Further more since the value

A

A= (DD, - D3)D; - If)l2 D, is determined as below

A = —¢11Ro[RiRy + p13R3 + 2Ry Ry ]+ RiRy [145Rs — C11Ry ]
+ D311 (Ry + RiDy) + Ry (R — )] > 0
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Thus by Routh-Hurwitz criterion all the roots of the above fourth order polynomial (eigenvalues of

V(E3) in the S —direction, Y —direction, Z —direction and W —direction) have negative real
parts, and hence E; = (§,O,\f, 2,V\7) is locally asymptotically stable. m

Theorem4.3. Assume that the predator free equilibrium point E, = (§, I~,O,Z,VV) of system (2)

exists. Then it is locally asymptotically stable provided that

0'18~ >0y (13a)
(R —RiR2)D3 < (R +R,) (Ry +Rs)Re (13b)
(Ro — I:31)('53 — 1y + o3(S + I~)])> 03Z(Ry +Rs) +(07S + 031 )Ry (13c)
6S + 0,1 < u,B (13d)

Where R;;i=12,---,7, ISJ- ;1=12,34 and B are stated in the proof.
Proof. It is easy to verify that the Jacobian matrix for the system (2) at the point E, is given by

V(E4) =(Cij)ss and 1, j=12,...,5; where

rs S a,S ~ Al
Cll__?’ C12__?' 13 ?. ¢y =0, Cy=-0,3, C21:7v
ST a,l =
szz_ﬁ’ C23=—?, C,u =0, Ciy=—0,l, ¢;;=0, ¢; =0,

:S(el—ﬂz)‘i‘l(gz_mﬂZ)_ﬁﬂzl C34:O! 03520’ C4l:_o-3zl

33

Cp=—03Z, C;3=0, C;y=—(3+0,(S+1)), ¢,s=0, ¢, =0,Z,
Csy; =032, C53=0, C5y=05(S+1), Cs5=—4.
here A=1+1 and B= L+ S +ml . Therefore the characteristic equation of the V(E,) isgiven

by:
(033_77)(774+D1773+D2772 +D377+D4):O
Then, either 7y =Cgg or 74+ D7 +D,72+Dsy +D, =0, where 7, denotes to the

eigenvalue of V(E,) inthe Y —direction, while the coefficients of the above fourth order polynomial

are determined as follows:
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Dy =—(R, +Ry)
D, = RiR; + Ry =Ry + a1t + 03(S +1)]
D3 = -RyRs — 1413 + 03(S + 1)IR, + 03Z Ry + Rs) + (015 + 021 )Re
Dy = glpt3 +03(S + )Ry + (R4 +Rs)Rg
with

~ ~r ll~
R, =Ci;+Cop =—S| —+ — <0
1 =011 7020 (K (1+|)2J

~

Ry =Cyg4 +Cs5 :—(ﬂ4 +p3+03(S +1 ))<0

ﬁ _ _ r/1§2I~ AZST 0
3 =C11C22 —C12Cp1 = KLt |~)2 + o I~)3 >

~ Sl =
R4 =C15C2 —C12Co5 = W(Gls —-03)

I’O'ZéT " lO'lgr

—>0
K 1+1

Rs = €11Co5 —C15Cp1 =

Re = C41C54 —C44Cs1 = C42C54 —C44Csp = 413032 >0
R7 = C15051 + C25C52 = —0'32 (618 + Uzl ) < 0
Clearly we have R, >0 due to conditions (13a), hence ISi >0 for all values of 1=12,34.

Moreover, A = (I51 52 - 63)[33 - 512 I54 can be computed as follows:
A=(Ri+Ry) [(R7 —RiR3)D3 = (Ry +R;) (Ry + Rs)Re]
[ty + 056 + TRy +Re) + (015 + 021 IRs

<R = R)(Rs - aalizs + o5 S + )
—032(§4 + §5) _(Glg +02r)§6:|

-~ [~ ~ ~7
+R1R2[R3—ﬂ4[ﬂ3+03(3+|)]]

Now it is easy to verify that the first term of A is positive under conditions (13a) and (13b), while the

second term is positive under conditions (13a) and (13c). Consequently A >0 under the conditions
(13a)-(13c) and hence by Routh-Hurwitz criterion all the roots of the above fourth order polynomial

(eigenvalues of V(E,) in the S —direction, | —direction, Z —direction and W —direction) have
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negative real parts. In addition to the above, it is clear that condition (13d) guarantees the negativity of

the eigenvalue 77Y. Therefore the predator free equilibrium point E,4 =(§,T,O,Z,VV) is locally
asymptotically stable and then the proof is complete. m

Theorem4.4. Assume that the positive equilibrium point Eg =(S,1,Y,Z,W) of the system (2)

exists and let the following inequalities hold:

S < ﬂ o | < ﬂ (14a)
mé, -0, 6,—mg,
r oY
K > é (14b)
%—2 > m?ZZY (14c)
A B
2 4
(d1p)” < §d11d 22 (14d)
o 4
(d15)” < §d11d55 (14e)
2 2 . |4 4
(d14)” =(dpy)” < mln{§ d11d4475d22d44} (14)
o 4
(dgs)” < §d22d55 (149)
4
(d45)2 < §d44d55 (14h)
where dij, Vi, J=12,---,5 are determined in then proof . Then Eg is locally asymptotically stable.

Proof. It is easy to verify that, the linearized system of system (2) can be written as

daxX du
222 _V(E)U
dt dt (Es)

here X =(S,1.Y,ZW) and U=(u,u, U, Us) with u,=S-S , u,=1-I,

u3:Y—V, u4=Z—Z and uy =W ~W . Moreover, V(E5)=(Cij)5X5; i,j=12,...5

represents the Jacobian matrix of system (2) at the positive equilibrium point Eg and has the following

elements:

=~ § alSHYA . _alngA ZSA ~ a1§ _ _O ~ §
011——VE+?, Clz—?—?’ 013——?, Cy=U, Cg=—0,9,
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ﬂi\ aerﬂ _ _—/’i,SAlA maerﬁ ~ a2| & =0 6. = r
f+?’czz— A2 + 52 ,023——?, Cyy =U, Cps =—0,l,

621 -

_ BOY + (MO -6)IY  _ BOY +(0, - mel)sv
C31= 52 » C32 = 52

Cis =0, C; =0, C35 =0,
Cs1=-03Z, Cpy =032, C43=0,Cay =—p13—03(S +1), C45 =0,
Co=0,Z, Gy =0,7, Gy =0, Coy=0,(S+T) and Cy =11,

here A=1+1 and B= p+ S+ml. Now, consider the following function

2 2 2 2 2
u u u u
V=a-5+-+a, 2+a,—=+a, —+a, —
2S 21 2Y 2 2
where @;,1=12,345 are positive constants to be chosen appropriately. It is clearly that

V:%i—)ﬂ% and is a continuously differentiable function with V(0,0,0,0,0)=0 and

V(S, 1Y, Z,W)>0 for all (S,I,Y,Z,W)eiRi and (S,1,Y,Z,W) #(0,0,0,0,0). Hence it is

a positive definite function. Now, by differentiating V with respect to time t, we obtain

dv u, du, u, du, u, du, du, dug

—=a=—+a, =—=+a8=——+aUu, —+au, —

dt S dt | dt Y dt dt dt

dy dup dug duy dus . . .

Substituting the values of ot dt Tt ar ,and <t In the above equation, and after doing some
algebraic manipulation; we get that:

E:al ?Ul +a2 =Uu, +a4C44U4 +a5C55U5

C C C C ~
+ ulu{a1 2 ta, %) + ulu3(al % +a, %j + uluk.,[a1 L a2c51j

23 632 625 /R N
+U,U, aZITjLa3 +U,Ug| @, = +a,Cy, |+a,C,u,u,
+8,C4yU U, +85C5,U,Ug

Obviously, condition (14a) guarantees that Cg; >0 and C3, >0, condition (14b) guarantees that

Ci1 <0, while condition (14c) guarantees that C,, <O. Now by choosing the constants as

a;, =a, =a, =1, =% and a, :% Therefore, by substituting the values of
a;,1=12345 in d—V and then rearrange the resulting terms, we get
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dv dig 2 22 2 O 2 dss 2
— =——=U;" +doUuuy ——=5U," ——=U;" +dqgUUs ——>U
qt 3 1 124tz =7 3 15815 ~ 77 Us
dig . 2 dgg . 2 dpp 2 dss 2
——==U;" +dyUlUy —— U ——25U,° +doclsls ——22 U
3 N 14t1ts == ls 3 2 252ts =" Us
dyy 2 dgg 2 daa 2 dss 2
——25Us" +doUoly ——Uy” ——=Uy” +dgelue ——2U
3 2 2442ta =7 la 3 U4 451atls =" s
Where
dll=—631i8 L—&Y’\ d12 =—631§ aleA—i +632§ i+a2Yf\ d14 =—O'32
aY \K B2) oY B2 A?) aY\A B?)
/B _ B Y
d15 =— 31 01+(73 d22—C3—2A %—Sz—a%rg d24——O'3Z
oq azY A B
C:,Bo - ~ - P
dps =— 302[\?2“732! dyg=p3+03(S+1), dgs=03(S+1), dss =14
2

Obviously, conditions (14a) and (14b) guarantee that d,, >0, while conditions (14a) with

(14c) guarantee that d,, > 0. Hence due to the given conditions (14d)-(14h), then 9% will be

negative . Consequently %—\t/ <0, according to the Lyapunov stability theorem the origin and

Theorem4.5. Assume that the positive equilibrium point Es; =(S,1,Y,Z,W) s locally

asymptotically stable. Then it is a globally asymptotically stable in the sub region Q of Int.Rf,

that satisfy the following conditions.

V<min{rpz(s,|), ASPZ(S,I)} (152
alK asz’l(l)

4
(02)° < g 122 (15b)
. |4 4
(01a)* = (G4)* < m'”{g 011944, 9 Q22C144} (15c)
4
(‘3115)2 < 9 G119s5 (15d)
4
(025)° < o J220s5 (15e)
4
(CI45)2 < 9 Q44055 (15f)

where B (D)=A+DA+1)=AA .  Py(S,1)=(B+S+mI)(f+S+mI)=BB  and
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Qij; Vi, j=12,---,5 aregiven in the proof.

Proof. Consider the following function:

V(S,1,Y.ZW) =61(s —§—§ln(§j]+c“2(| e “”(.LD

+é{v —Y—Yln%)}@ 2-2) o w-w)

w

2

where éi,Vi=1,2,---5 are positive constants to be determined. It is easy to see that

‘jj—\t/=él(s —SA)[r(l—ij—/l—l—ﬂ—alW}

AS  asY ~ ~| 6;S +6,1
+c2<|—|>[——%—u1 UZW}CBW—Y)[%—M}

+C4(Z-2)Q-13Z —53Z (S +1)]-Cs W -W)[53Z (S + 1) — 124V

Then after doing some algebraic manipulations, we get
v _ &1 Y a2 A AS maY | s
dt C{K P, (S, |)}( S)° 2{Pl(l) PZ(S,I)}(I )
~Cylus +03(S + DJZ ~Z)2 - CouyW ~W)?
+[é[ale 2 J C{ZA A H(S—S”)(l—f)
P, (S, 1) R(l) P(l) PS5 1)
ClaB o e\ v
J{Pz(s ) Pz(S,D}(S =
—C405Z(S -S)(Z - Z) +|Cs03Z - 5,1 kS - S)W ~W)
Czaz

I —1)(Y =Y
+{PZ(SI) RS, )}( =)

—CyoZ(1 - 1)(Z - Z) +|Cs05Z — 7,C, (1 - 1YW —W)
+Ceoy(S+1)(Z -Z)W -W)

[915 +(0m—6,) f]—

[‘92,3 +(0, - elm)s]

So by choosing the constants éi ,Vi=12,---5 asfollow

-1 é :051(92,3+(6’2—91m)§) 6 _ al(ﬂ+§+mr)~ an
e+ Em-6)T) T s+ (Bm-6y)I o,
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which are positive due to the local stability condition (14a). Then we get that

dv
—<

O11 &\ 2 & o 22 ™2
ot —?(S—S) +q12(3—5)(|—|)—7(|—|)

-8 (5-9)” +a1(5-)2-2) -4z -2)?
_%(5 ~8)? +q(S -S)W —W)—q—:sf(W ~W)?
021 1)1 - 12 -2)- (2 - 2)°
_‘%u )2+ qps(1 - )W —W)—q%(w -W)?

-2 -2) + Qus(2 - Z)W W) -2 W W)’

where
q :|:L_ C(]_YA :| :a1(92ﬂ+(¢92—91m)§){ ﬁ,§ _ ma2Y:|
HOLK RS ay (O +(Om-0,)1) [ R(1) Py(S,1)]’
Q44=i[ﬂ3 +03(§+f)], Q55=iﬂ4’
O3 O3
_ aleA _ A 0(1(92ﬂ+(92—01m)§) ﬂ/& azf _ __
q”_(Pz(s,l) am}az(elm(elm—ezﬁ)(a(lfPASJ)J’q14 G4 =2

ths=Z-0y, Ops=2Z-0, and Qgs=S+1

Clearly 0, and Q,, are positive provided that condition (15a) holds. Consequently, due to

conditions (15b)-(15f),we obtain that %—\t/ < 0 is negative definite and hence V is Lyapunov function

with respectto E5 =(S,1,Y,Z,W).So Eg=(S,1,Y,Z,W) isaglobally asymptotically stable in

Qc Int.Rf that satisfy the given conditions. n

5. Numerical Simulation

In this section the global dynamics of system (2) is investigated numerically. The objectives are
confirm our analytical results and discuss the role of the existence of disease and toxicant on the
dynamical behaviour of the system. For the following set of hypothetical, biologically feasible, set of
parameters, definitely different set of hypothetical parameters can be chosen also, system (2) is solved

numerically starting at different initial points as illustrated in Fig. (1a)-(1e).
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r=1,K =500,4=1a; =1a, =1, B=20,m=1 6, =05, 6, =05,

16
44 =0.05, 11, =0.1, 7 =0.001, o =0.01,Q =5, y15 =0.2, 1, =0.2,55 =0.05 (o
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Fig. 1: The solution of system (2) approaches asymptotically to the positive equilibrium point

Es =(1.73,3.26,5.42,11.1113.88) starting from different initial points. (a) Trajectories of S. (b)

Trajectories of | . (c) Trajectories of Y . (d) Trajectories of Z . (e) Trajectories of W .

It is clear from above figures that, system (2) has a globally asymptotically stable point for the above set

of data. However, for the above set of data with the intrinsic growth rate of the susceptible prey
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r=1.25, system (2) has a periodic dynamics in the Int.Rf as illustrated in Fig. (2).

250
5
—1I
2200 — 7T 1
g —z
g — W
3150 1
5
3
£100 1
-
& 50 -
0 ; . . .
7 75 8 85 9 9.5 10

i 4
Time x 10

Fig. 2: The solution of system (2) approaches to periodic dynamics in the Int.Rf for the parameter

values in Eq. (16) with r=1.25.

Further investigation has been down by varying the intrinsic growth rate of the susceptible prey keeping
the rest of parameters as in Eq. (16), it is observed that, system (2) has a globally stable positive
equilibrium point for the range r <1.2, while it has a periodic dynamics for the range r>1.2.

The effect of varying the infected rate on the dynamics of system (2) is studied. For the parameter values

given in Eq. (16) with 1 <0.8, 0.8<A1<1.21 and A>1.22 the solution of system (2) approaches
to periodic attractor, positive equilibrium point Eg and predator free equilibrium point E,

respectively, as illustrated in the following two figures.

1501

1001

Populations & Concentrations

50F

I

8 85 9 95 10
Time

Fig. 3: The solution of system (2) approaches to periodic dynamics in the Int.Rf for the parameter

values in Eq. (16) with 4 =0.8.
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Fig. 4: The solution of system (2) approaches to predator free equilibrium point

E, =(0.68,3.72,0,11.88,13.11) for the parameter values in Eq. (16) with 4 =1.25.

The effect of varying the predation rates ¢ and a5 on the dynamics of system (2) is also studied by
solving the system numerically for the parameters values used in Fig. (2), that is mean Eq. (16) with

r=1.25, with oy =a, =2 and the trajectories of system (2) are drawn in Fig. (5).

Populations & Concentrations

L 1
0 5000 10000 15000
Time

Fig. 5: The solution of system (2) approaches asymptotically to positive equilibrium point

Es =(2.47,2.52,6.42,11.1113.88) in the Int.Rf for the parameter values in Eq. (16) with

r=125and oy =0,=2.

According to the above figure, the solution of system (2) transfer from periodic as in Fig. (2) to positive

equilibrium point when the predation rates o; and «a, increase simultaneously to o =ap =2.
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Now the effect of varying the half saturation constant £ on the dynamics of system (2) is discussed. it
is observed that, for the data given by Eq. (16) with £ <10, 10< <130 and £ >130 the system

approaches to periodic attractor, positive equilibrium point Eg and predator free equilibrium point E,4

respectively, as illustrated in the following two figures.

(a) (b)
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: | \ '\ g
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Fig. 6: The time series of system (2) for the data given by Eq. (16) with different values of the half

saturation constant . (a) System (2) approaches to positive equilibrium point for S =11. (b))
System (2) approaches to small periodic attractor for f=10. (c) System (2) approaches to large

periodic attractor for £ =9.
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Fig. 7: The solution of system (2) approaches to predator free equilibrium point

E, =(7.36,25.94,0,2.67,22.32) for the parameter values in Eq. (16) with £ =140,

According to the Fig. (6), it is clear that system (2) undergo a Hopf bifurcation when the half saturation

constant passes through the value £ =10. Note that, the effect of varying other parameters are also

studied and the following results are observed. The solution of system (2) approaches asymptotically to

the positive equilibrium point Eg in case of increasing the death rate of the infected species y4,
however it approaches to predator free equilibrium point E, in case of increasing the natural death rate
of predator species 1, . More over, the solution of system (2) approaches asymptotically to the predator

free equilibrium point E, in case of decreasing the conversion rates &, and 6, simultaneously.
Also, it is observed that the solution of system (2) approaches asymptotically to the predator free

equilibrium point E, in case of increasing the reduction rate of the susceptible prey due to the

existence of toxicant given by o7 .

Now the effect of varying the reduction rate of the infected prey due to the existence of toxicant ,

that is o5, on the dynamics of system (2) is investigated by solving the system (2) numerically using
the data given in Eq. (16). It is observed that for oy <0.26 the solution of system (2) still has a

globally asymptotically stable positive equilibrium point however for o, > 0.26 system (2) losses the
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stability and approaches to periodic dynamics in Int.R_‘E. Further, for the data given by Eq. (16) with
r=1.25, the dynamics of system (2) transfer from periodic to asymptotic stable at the positive
equilibrium point for o, =0.05 and then transfer again to periodic dynamic for o, =0.2 see Fig.

(8a)-(8c).

Also, the effect of varying the exogenous input rate of the toxicant in the environment Q on the

dynamics of system (2) is studied numerically. It is observed that increasing the parameter Q with the

rest of parameters given by Eq. (16) with r =1.25 leads to stability of the system, see for example the

typical figure given by Fig. (9).
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Fig. 8: The time series of system (2) for the data given by Eq. (16) with r =1.25 for different values

of the parameter o, . (a) System (2) approaches to positive equilibrium point for o, =0.19. (b))
System (2) approaches to small periodic attractor foro, =0.2. (c) System (2) approaches to large

periodic attractor foro, =0.25.
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Fig. 9: The time series of system (2) for the data given by Eq. (16) with r =1.25 for different values of

the parameter Q. System (2) (a) approaches to positive equilibrium point for Q =9 . (b) approaches to

small periodic attractor for Q = 8. (c) approaches to large periodic attractor forQ = 7.

Clearly, due to Fig. (8a)-(8c) and Fig. (9a)-(9c) system (2) have a Hopf bifurcation, which occurred

when the parameters o, and Q pass through specific bifurcation values respectively. Finally, it is

observed that, decreasing the natural depletion rates x5 and ¢, keeping the rest of parameters fixed
at the data given by Eq. (16) with r =1.25 lead to transfer the dynamics of system (2) from periodic to
asymptotic stability at the positive equilibrium point. However, varying the parameters m and o3

do not effect on the pattern of the behaviour of system (2).

6. Discussions and Conclusions
In this paper, a prey-predator model with the existence of disease and pollution has been proposed
and analyzed. The uniqueness and boundedness of solutions of the system are discussed. The local as

well as global stability analysis for the proposed system are performed. Moreover, in order to confirm
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our analytical results and specified which combination of parameters control the dynamical behaviour of

system (2) numerical simulations are used for biologically feasible set of hypothetical parameters that

given by Eq. (16). For this set of data, it is observed that:

1.

Increasing the intrinsic grow rate of the susceptible prey above a specific value say T ,the
system loss the stability and approaches to periodic dynamics. Consequently, increasing this
parameter destabilizing the system.

When the system has an asymptotically stable positive equilibrium point, then increasing the
infective rate 4 above a specific value, say A, , leads to extinction in the predator species and

hence system (2) losses the persistence and approaches asymptotically to predator free
equilibrium point. however decreasing the infective rate 4 has destabilizing effect on the

dynamics of system (2) and then system (2) approaches asymptotically to periodic dynamics in

Int.Rf. On the other hand, when the system has periodic dynamics then increasing the

parameter A slightly has stabilizing effect on the dynamics of system (2) however further
increasing will causes extinction in predator species and the system will approaches to predator

free equilibrium point.
Varying the half saturation parameter /£ has the same effect on the dynamics of system (2) as

that shown in case of varying the infected rate A . In fact the occurrence of Hopf bifurcation is

clearly shown in case of varying f3.

Increasing the predation rates o and «a, simultaneously have stabilizing effect on the
dynamical behavior of system (2).

Increasing each of the parameters, the death rate of the infected species 4 or the exogenous

input rate of the toxicant in the environment Q , has stabilizing effect on the dynamics of
system (2). Further more, the occurrence of Hopf bifurcation is clearly shown in case of
decreasing the parameter Q.

When the system has an asymptotically stable positive equilibrium point, then increasing the
natural death rate of predator species ., above a specific value, leads to extinction in the

predator species and hence system (2) losses the persistence and approaches asymptotically to
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10.

11.
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predator free equilibrium point. however decreasing the natural death rate of predator species

Mo has destabilizing effect on the dynamics of system (2) and then system (2) approaches

asymptotically to periodic dynamics in Int.Rf. On the other hand, when the system has

periodic dynamics then increasing the natural death rate of predator species 1, will causes
extinction in predator species and the system will approaches to predator free equilibrium point.
Decreasing the conversion rates &; and @, simultaneously causes extinction in predator

species and the system losses its persistence and approached asymptotically to predator free
equilibrium point.
Varying the parameters, preference rate m and the uptake rate of toxicant by organism o3,

have no effect on the pattern of the dynamics of system (2).

When the system has an asymptotically stable positive equilibrium point, then varying the
natural depletion rates 3 and 1, have no effect on the dynamical behaviour of the system.
However, when the system has periodic dynamics then decreasing the natural depletion rates
M3 and 1, have stabilizing effect on the dynamics of system (2) and the system approaches

asymptotically to positive equilibrium point.

When the system has an asymptotically stable positive equilibrium point, then increasing the
reduction rate of the susceptible prey due to the existence of toxicant given by o7 leads to
extinction in predator species and the system will approaches to predator free equilibrium point.
However, when the system has periodic dynamics then increasing slightly the parameter oy
stabilizing the dynamics and hence system (2) approaches asymptotically to positive equilibrium
point. Moreover, increasing the value of parameter o further causes extinction in predator

species and the system will approaches to predator free equilibrium point.

When the system has an asymptotically stable positive equilibrium point, then increasing the
reduction rate of the infected prey due to the existence of toxicant given by o, leads to
destabilizing in the system and hence the solution will approaches to periodic dynamics.
However, when the system has periodic dynamics then increasing slightly the parameter o,

stabilizing the dynamics and hence system (2) approaches asymptotically to positive equilibrium
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point. Moreover, increasing the value of parameter o, further causes destabilizing again in the
system and then the solution will approaches asymptotically to periodic dynamics in the

Int.R>.

Accordingly, system (2) has rich dynamics in the domain Rf. In fact it is observed that the system is

very sensitive to varying in the parameters values A, S, oy, o, and Q, while it has less

sensitivity in case of varying the other parameters
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