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Abstract. In this paper, we have introduced the idea of rough Cauchyness of sequences in a cone metric space.

We have also discussed several basic properties of rough Cauchy sequences in a cone metric space using the idea

of Phu [8].
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1. INTRODUCTION

Metric spaces have been generalized in many ways. Huang and Zhang [5] introduced the idea

of cone metric spaces where the idea of real numbers were replaced by an ordered Banach

space and the idea of distance have been generalized to a vector through the idea of a cone

defined in an ordered Banach space. Many works[4, 5] have been done in the setting of a cone

metric space.

Phu [8] introduced the idea of rough convergence of sequences as a generalization of

ordinary convergence of sequences in a normed linear space in 2001. There he also introduced

the idea of rough Cauchyness of sequences as a generalization of Cauchyness of sequences.
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Phu [8] discussed about the usefulness of rough convergence and some of its basic properties.

Phu [9] also extended the idea of rough convergence of sequences in an infinite dimensional

normed linear space in 2003 and also in 2008 Ayter [1] introduced the idea of rough statistical

convergence. Many works have been done by many authors [2, 6, 7] using the idea of Phu.

Recently Banerjee and Mondal [3] studied the idea of rough convergence of sequences in a

cone metric space. Here in this paper we define the idea of rough Cauchy sequences in a cone

metric space and discuss some its basic properties.

2. PRELIMINARIES

Definition 2.1.[8] Let {xn} be a sequence in a normed linear space (X ,‖.‖), and r be a non-

negative real number. Then {xn} is said to be r-convergent to x if for any ε > 0, there exists a

natural number k such that ‖xn− x‖< r+ ε for all n≥ k.

Definition 2.2. [5] Let E be a real Banach space and P be a subset of E. Then P is called a cone

if and only if (i) P is closed nonempty, and P 6= {0}.

(ii) a,b ∈ R, a,b≥ 0, x,y ∈ P implies ax+by ∈ P.

(iii) x ∈ P and −x ∈ P implies x = 0.

Let E be a real Banach space and P be a cone in E. Let us use the partial ordering [5] with

respect to P by x ≤ y if and only if y− x ∈ P. We shall write x < y to indicate that x ≤ y but

x 6= y.

Also by x << y, we mean y− x ∈ intP, the interior of P. The cone P is called normal if there

is a number K > 0 such that for all x,y ∈ E, 0≤ x≤ y implies ||x|| ≤ K||y||.

Definition 2.3. [5] Let X be a non empty set. If the mapping d : X ×X −→ E satisfies the

following three conditions

(d1) 0≤ d(x,y) for all x,y ∈ X and d(x,y) = 0 if and only if x = y;

(d2) d(x,y) = d(y,x) for all x,y ∈ X ;

(d3) d(x,y)≤ d(x,z)+d(z,y) for all x,y,z ∈ X ; then d is called a cone metric on X , and (X ,d)

is called a cone metric space.

It is clear that a cone metric space is a generalization of metric spaces. Throughout (X ,d) or

simply X stands for a cone metric space which is associated with a real Banach space E with a
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cone P, R for the set of all real numbers, N for the set of all natural numbers, sets are always

subsets of X unless otherwise stated.

Definition 2.4. [5] Let (X ,d) be a cone metric space. A sequence {xn} in X is said to be con-

vergent to x ∈ X if for every c∈ E with 0 << c there is k ∈N such that d(xn,x)<< c, whenever

for all n > k.

We know that in a real Banach space E with cone P. If x0 ∈ intP and c(> 0) ∈ R then

cx0 ∈ intP and if x0 ∈ P and y0 ∈ intP then x0 + y0 ∈ intP. Hence we can also say that if

x0,y0 ∈ intP then x0 + y0 ∈ intP. Also it has been discussed in [3] that a real normed linear

space is always connected and if E be a real Banach space with cone P then 0 /∈ intP.

Definition 2.5.[8, 3] Let (X ,d) be a cone metric space. A sequence {xn} in X is said to be

r-convergent to x for some r ∈ E with 0 << r or r = 0 if for every ε with 0 << ε there exists a

k ∈ N such that d(xn,x)<< r+ ε for all n≥ k.

Let (X ,d) be a cone metric space with normal cone P and normal constant k. Then from [3]

we can say that for every ε > 0, we can choose c ∈ E with c ∈ intP and k‖c‖< ε and also for

each c ∈ E with 0 << c, there is a δ > 0, such that ‖x‖ < δ implies c− x ∈ intP. We will use

these ideas in the next section of our work.

3. MAIN RESULTS

Definition 3.1. cf.[5] Let (X ,d) be a cone metric space. A sequence {xn} in X is said to

be a Cauchy sequence in X if for every (0 <<)ε there exists a natural number m such that

d(xi,x j)<< ε for all i, j ≥ m.

Definition 3.2. A sequence {xn} in a cone metric space (X ,d) is said to be a r-Cauchy sequence

for some(0 <<)r or r = 0 if for every (0 <<)ε there exists a natural number m such that

d(xi,x j)<< r+ ε fior all i, j ≥ m.

Example 3.3. Let X =R2 and E =R2 with P = {(x,y)∈ E : x,y≥ 0} and consider the function

d : X×X −→ E be defined by:

d(η ,ξ ) = (‖η−ξ‖ ,‖η−ξ‖) where ‖η−ξ‖=
√
(η1−ξ1)2 +(η2−ξ2)2 for η = (η1,η2) ∈

R2 and ξ = (ξ1,ξ2) ∈ R2. It can be easily clarified that (X ,d) is a cone metric space without

being a metric space.

Now let us consider the sequence {ξn} = {((−1)n,(−1)n)} in X . Clearly the sequence is
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not a Cauchy sequence in (X ,d) since if we consider ε = (1,1) then we can not able to find any

k ∈ N for which we can write d(ξm,ξn)<< ε for all m,n≥ k. Because of the fact that

d(ξm,ξn) = (0,0); if both of m,n are even

d(ξm,ξn) = (0,0); if both of m,n are odd

d(ξm,ξn) = (2
√

2,2
√

2); if m is even and n is odd

d(ξm,ξn) = (2
√

2,2
√

2); if m is odd and n is even

But if we consider r = (2
√

2,2
√

2) then for every (0 << ε) we can write d(ξm,ξn) << r+ ε

for all n,m≥ 1. Hence {ξn} is not a Cauchy sequence in (X ,d) but it is a r-Cauchy sequence in

(X ,d), where r is the degree of roughness. Also we should note that if we consider r = (g,h),

where g≥ 2
√

2 and h≥ 2
√

2 then {ξn} is a r-Cauchy sequence in X .

It should be noted that when r = 0 then the idea of rough Cauchyness coincides with the

notion Cauchyness.

Theorem 3.4. If a sequence {xn} is r-Cauchy in X then it is also p-Cauchy in X for some

(r <<)p.

Proof. Let {xn} be a r-Cauchy sequence in the cone metric space X and let (0<<)ε be arbitrary.

Now for (0 <<)ε we can find a k ∈ N such that d(xi,x j) << r+ ε for all i, j ≥ k. So we can

write 0 << (r+ε)−d(xi,x j) for all i, j≥ k. We also have 0 << (p−r) and hence we can write

d(xi,x j)<< p+ ε for all i, j ≥ k. Hence the result follows. �

Theorem 3.5. Every r
2 -convergent sequence in a cone metric space (X ,d) is r-Cauchy for every

r as defined above.

Proof. Let {xn} be a r
2 -convergent sequence in a cone metric space (X ,d) and converges to x

in X and consider a arbitrary ε ∈ intP. Now for the (0 <<)ε there exists a natural number m

such that d(xn,x) << r
2 +

ε

2 for all n ≥ m, so [ r
2 +

ε

2 ]− d(xn,x) ∈ intP for all n ≥ m. Now if

r ∈ intP then for any two natural numbers i, j we have d(xi,x j)≤ d(xi,x)+d(x j,x) −→ (i). So

[d(xi,x)+d(x j,x)]−d(xi,x j) ∈ P. Also for i ≥ m and j ≥ m we have [ r
2 +

ε

2 ]−d(xi,x) ∈ intP

and [ r
2 +

ε

2 ]−d(x j,x)∈ intP. Hence [r+ε]− [d(xi,x)+d(x j,x)]∈ intP−→ (ii) Therefore using

(i) and (ii) we have d(xi,x j)<< r+ ε . �
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The idea of boundedness of a sequence in cone metric spaces is similar as in the case of a

metric space and it has been thoroughly discussed in [3]. We recall that a sequence {xn} in a

cone metric space (X ,d) is bounded if there is a g ∈ intP such that d(xm,xn)<< g for all m ∈N

and n ∈ N.

Example 3.6. Let us consider the cone metric space (X ,d) as defined in the example

3.1. Now if we consider the sequence {ξn} = {(1,2n)} in X then there does not exists any

0 << (r,s) such that d(ξm,ξn) << (r,s) holds for every m,n ∈ N. Because of the fact that for

every s ∈ R there exists m,n such that ‖(1,2n)− (1,2m)‖ > s. Hence {ξn} is not a bounded

sequence in X .

Now if we consider (0 <<)ε = (p1, p2) then for every k ∈N there exists m,n > k(∈N) such

that ‖(1,2n)− (1,2m)‖ > p2 and hence for any (0 <<)ε we can not find any k ∈ N such that

d(ξm,ξn)<< ε holds for every m,n≥ k. Therefore {ξn} is not a Cauchy sequence in X .

Theorem 3.7. A bounded sequence in a cone metric space is always r-Cauchy for some r as

defined above.

Proof. Let {xn} be a bounded sequence in a cone metric space (X ,d). So there exists a (0 <<)s

such that d(xn,xm)<< s for all m,n∈N. Therefore [s−d(xn,xm)]∈ intP for all m,n∈N. Hence

for any (0<<)ε we have [s−d(xn,xm)]+ε ∈ intP for all m,n∈N. Therefore d(xn,xm)<< s+ε

for all m,n ∈ N. So {xn} is a s-Cauchy sequence in X . �

Theorem 3.8. A sequence in a cone metric space is r-Cauchy then it is bounded in that space.

Proof. Let ηn be a r-Cauchy sequence in a cone metric space (X ,d). Now since ηn is a r-

Cauchy sequence for some (0 <<)ε we can find a k ∈ N such that d(ηn,ηm) << r+ ε for all

m,n≥ k.

Now if we consider the sum ∑d(ηn,ηm) = S, where the summation runs over m,n not both

greter equals to k then clearly (0 ≤)S. So (0 <<)S + r + ε because 0 << ε . Now clearly

0<< (S+r+ε)−d(ηi,η j) for i, j not both greater equals to k. Also 0<< (r+ε)−d(ηi,η j) for

all i, j ≥ k.Hence we have 0 << S+(r+ε)−d(ηi,η j) for all i, j ≥ k because 0≤ S. Therefore

we can write d(ηi,η j)<< S+(r+ ε) for all i, j ∈ N, where 0 << S+ r+ ε . �
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Theorem 3.9. Let (X ,d) be a cone metric space with normal cone P and normal constant k

and with the given condition ∗ as given bellow. If {xn} and {yn} be two r
2k2 -Cauchy sequence

(0 << r) in X then the sequence {d(xn,yn)} is ||r||-Cauchy.

(∗) If p≤ c and −p≤ c with c ∈ P then ||p|| ≤ k||c||, where p, c ∈ E.

Proof. Let ε > 0 be preassigned real number. So by using the property of a normal cone there

exists a c ∈ intP such that k||c|| < ε . Since c ∈ intP, we have c
2 ∈ intP and also r

2k2 ∈ intP.

Now there exists two positive integers k1 and k2 such that d(xi,x j) << r
2k2 +

c
2 for all i, j ≥ k1

and d(yi,y j) << r
2k2 +

c
2 for all i, j ≥ k2. If k be the maximum of k1 and k2 then by using the

property of normal cone we have ||d(xi,x j)|| ≤ k|| r
2k2 +

c
2 || and ||d(yi,y j)|| ≤ k|| r

2k2 +
c
2 || for all

i, j ≥ k.

Now d(xi,yi)−d(x j,y j)≤ d(xi,x j)+d(yi,y j) and d(x j,y j)−d(xi,yi)≤ d(xi,x j)+d(yi,y j).

Since [d(xi,x j) + d(yi,y j)] ∈ P, by the given condition we have ||d(xi,yi)− d(x j,y j)|| ≤

k||d(xi,x j)+d(yi,y j)|| ≤ k||d(xi,x j)||+k||d(yi,y j)||. Hence for all i, j ≥ k we have ||d(xi,yi)−

d(x j,y j)|| ≤ ||r||+ k||c||< ||r||+ ε . �

Theorem 3.10. Let {xn} and {yn} be two sequences in a cone metric space (X ,d) such that

d(xn,yn)−→ 0 as n−→ ∞. Then {xn} is r-Cauchy if and only if {yn} is r-Cauchy.

Proof. Let {xn} be a r-Cauchy sequence in (X ,d). Then for 0(<< ε) there exists two positive

integers k1 and k2 such that d(xi,x j)<< r+ ε

3 for all i, j ≥ k1 and d(xi,yi)<< ε

3 for all i≥ k2.

Now d(yi,y j) ≤ d(xi,yi)+d(xi,y j) and also d(xi,y j) ≤ d(xi,x j)+d(x j,y j). Hence d(x j,y j) ≤

d(xi,yi)+d(xi,x j)+d(x j,y j). If k = max(k1,k2), then for all i, j≥ k we have d(xi,y j)<< r+ε

and hence {yn} is r-Cauchy.

Conversely if {yn} is r-Cauchy then similarly we can show that {xn} is r-Cauchy. �

Theorem 3.11. Let (X ,d) be a cone metric space with normal cone P and normal constant

k. If a sequence {xn} in (X ,d) is r-Cauchy and also converges to x in X then the sequence

{d(xn,x)− r} is converges to 0 in E, provided that {d(xn,x)− r} is a sequence in P.

Proof. Let {xn} be a r-Cauchy sequence and converges to x in X . Let ε > 0 be preassigned.

Then we have an element c ∈ E with 0 << c and k‖c‖ < ε . Now for 0 << c there exists

k1,k2 ∈ N such that d(xn,xm) << r + c
2 for all n,m ≥ k1 and d(xm,x) << c

2 for all m ≥ k2.
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Hence 0 ≤ d(xn,x)− r << c for all n ≥ k, k is the maximum of k1 and k2. Now by using

the property of a normal cone we have ‖d(xn,x)− r‖ ≤ k‖c‖ < ε for all n ≥ k. Therefore

{d(xn,x)− r} converges to 0 in E. �
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