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1. INTRODUCTION 

 Ideals in a topological space (𝑋, 𝜏) is treated in the classic text by kuratowski. An ideal I 

on a topological space (𝑋, 𝜏) is a nonempty collection of subsets of X which satisfies (i) 𝐴 ∈ 𝐼 

and 𝐵 ⊆ 𝐴 implies 𝐵 ∈ 𝐼  (ii) 𝐴 ∈ 𝐼  and 𝐵 ∈ 𝐼  implies 𝐴 ∪ 𝐵 ∈ 𝐼 . A topological space together 

with an ideal I is called an ideal space and is denoted by (𝑋, 𝜏, 𝐼𝒫). He also defined the local 

function for each subset of X with respect to an ideal I and 𝜏. Given a topological space (𝑋, 𝜏) 

with an ideal I on X and if 𝓅(𝑋) is the set of all subsets of X, a set operator (. )∗: 𝓅(𝑋) → 𝓅(𝑋) 

is called a local function of A with respect to 𝜏 and 𝐼 is defined as follows: For 𝐴 ⊆ 𝑋, 𝐴∗(𝐼, 𝜏) =
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{𝑥 ∈ 𝑈/𝑈⋂𝐴 ∉ 𝐼𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑈 ∈ 𝑟(𝑥)}  where 𝑟(𝑥) = {𝑈 ∈ 𝜏/𝑥 ∈ 𝑈} . A Kuratowski closure 

operator (𝑐𝑙)∗ (.) for a topology 𝜏∗(𝐼, 𝜏)  called the ∗ -topology finer than 𝜏  is defined by 

(𝑐𝑙)∗(𝐴) = 𝐴 ∪ 𝐴∗(𝐼, 𝜏) . We denote 𝐴∗  for 𝐴∗(𝐼, 𝜏)  and (𝜏)∗  for 𝜏∗(𝐼, 𝜏) . Further 

Vaidyanathaswamy extended the study of ideals and local functions. The properties of the 

topology generated by the ideal I and 𝜏, called the star topology which is finer than 𝜏, denoted by 

𝜏∗ are studied by Vaidyanathaswamy, Hashimoto, Hayashi and Samuels. In 1990, Jankovic and 

Hamlet in addition to their findings, consolidated all the results. In 2021[7] we introduce 

prime ideals in topological space and studied some properties. In this research paper we 

introduced maximal ideal and compare with the already existing ideals. 

Let (𝑋, 𝜏) be a topological space and 𝐴 ⊂ 𝑋. A point 𝑥 ∈ 𝑋 is called an accumulation 

point or limit point of A if every open set containing x contains a point of A other than x. The 

derived set of A is the collection of all limit points of A. It is denoted by D(A). Any point of A 

which is not a limit point is called an isolated point of A. A subset A of a space (𝑋, 𝜏) is said to 

be discrete if every point of A is not an accumulation point of A. 𝐷(𝐴) = 𝜙 iff A is closed and 

discrete. Let A be a subset of a topological space X. Then 𝑥 ∈ 𝑐𝑙(𝐴) if and only if every open set 

containing x intersects A other than x. A subset A of a topological space (𝑋, 𝜏) is said to be 

nowhere dense in X if the interior of its closure is empty. 

 

2. PRELIMINARIES 

Definition2.1[7]: 

An ideal 𝐼𝒫 in a topological space (𝑋, 𝜏) is said to be a prime ideal if it satisfies the following 

condition: if 𝐴⋂𝐵 ∈ 𝐼𝒫  then either 𝐴 ∈ 𝐼𝒫 or 𝐵 ∈ 𝐼𝒫. 

The topological space with prime ideal is said to be a prime ideal topological spaces and denoted 

by (𝑋, 𝜏, 𝐼𝒫). 

Definition2.2[7]: 

A set operator (. )𝒫
∗ : 𝓅(𝑋) → 𝓅(𝑋) is called a local function of A with respect to 𝜏 and 𝐼𝒫  is 

defined as follows: For 𝐴 ⊆ 𝑋, 𝐴∗(𝐼𝒫 , 𝜏) = {𝑥 ∈ 𝑈/𝑈⋂𝐴 ∉ 𝐼𝒫𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑈 ∈ 𝑟(𝑥)} where  

𝑟(𝑥) = {𝑈 ∈ 𝜏/𝑥 ∈ 𝑈}  

Definition 2.3[7]: 

A kuratowski closure operator 𝑐𝑙𝒫
∗ (. ) for a topology 𝜏𝒫

∗ (𝐼𝒫 , 𝜏), called the ∗𝒫-topology finer than 

𝜏 is defined by 𝑐𝑙𝒫
∗ (𝐴) = 𝐴 ∪ 𝐴∗(𝐼𝒫 , 𝜏) 
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We denote 𝐴𝒫
∗  for 𝐴∗(𝐼𝒫 , 𝜏) and 𝜏𝒫

∗  for 𝜏∗(𝐼𝒫 , 𝜏). 

Theorem 2.4[8]: 

Let X be a topological space and 𝑋1 = 𝑋 − {𝑥}, 𝑥 ∈ 𝑋, then ℘(𝑋1) is a prime ideal in X. 

Theorem 2.5[8]: 

Let X be a topological space with n elements. Then 𝐼𝒫 is a prime ideal in X iff it is 𝓅(𝑌) where 

Y contains n-1 elements or n elements in X. 

Theorem 2.6:[8] 

Let X be a topological space with n elements then it has n+1 prime ideals. 

Definition 2.7[7]: 

Let (𝑋, 𝜏, 𝒫) be a prime ideal space and let A be the nonempty collection of the subsets of X. 

Then the radical of A is denoted by 𝑅𝑎𝑑(𝐴) or √𝐴 and it is defined by √𝐴 = ⋂{P/P is a prime 

ideal containing A} 

Theorem 2.8[7]: 

Radical of any prime ideal is itself. 

 

3. SEMI-PRIME IDEAL IN TOPOLOGICAL SPACES 

In this section we introduce semi-prime ideal and discuss  of its basic properties. 

Definition 3.1: 

A semi-prime ideal 𝒮 on a topological space (𝑋, 𝜏) is a nonempty collection of subsets of X 

which satisfies (i) 𝐴 ∈ 𝒮 and 𝐵 ⊆ 𝐴 implies 𝐵 ∈ 𝒮 (ii) If 𝐴⋂𝐵 ∈ 𝒮 then either 𝐴 ∈ 𝒮 or 𝐵 ∈ 𝒮. 

The space (𝑋, 𝜏, 𝒮) is said to be a semi-prime ideal space. 

Example3.2: 

Consider 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {𝜙, {𝑎}, {𝑏, 𝑐}, 𝑋}, 𝒮 = {𝜙, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}} . Then 𝒮  is a 

semi-prime ideal. The collection {𝜙, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑐}} is not a semi prime ideal. 

Remark 3.3: 

Let X be a nonempty set. Then the collections 𝓅(𝑋) forms semi prime ideal and it is called a 

trivial semi prime ideal. A proper semi prime ideal is called non trivial semi prime ideal. 

Note 3.4: 

From definition of semi prime ideal, clearly 𝜙 ∈ 𝒮. Also if 𝑋 ∈ 𝒮, then 𝒮 = 𝓅(𝑋). 

Theorem 3.5: 

Every prime ideal is a semi-prime ideal. 
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Proof: 

Let 𝒮 be a prime ideal in a topological space X. Then it satisfies the condition of semi prime 

ideal. Hence 𝒮 is a semi prime ideal. 

Remark3.6: 

The converse of the above theorem need not be true as shown in the following example. 

Example3.7: 

Consider𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {𝜙, {𝑎}, {𝑏, 𝑐}, 𝑋}, 𝒮 = {𝜙, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑏, 𝑐}}. Then 𝒮 is semi-

prime ideal but not prime ideal. 

Remark 3.8: 

The concepts ideal and semi-prime ideal are independent to each other. 

For, Consider 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {𝜙, {𝑎}, {𝑏, 𝑐}, 𝑋}, 𝒮 = {𝜙, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑏, 𝑐}}. Then 𝒮 is a 

semi-prime ideal but not ideal. 

Consider 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {𝜙, {𝑎}, {𝑏, 𝑐}, 𝑋}, 𝒮 = {𝜙, {𝑎}}. Then 𝒮  is ideal but not semi-prime  

ideal. 

Theorem3.9: 

Union of two semi-prime ideal is also a semi-prime ideal. 

Proof: Let 𝒮1, 𝒮2 be two semi-prime ideals in a topological space X. 

i)Let 𝐴 ∈ 𝒮1⋃𝒮2  and 𝐵 ⊆ 𝐴 . Since 𝐴 ∈ 𝒮1⋃𝒮2 , either 𝐴 ∈ 𝒮1  or 𝐴 ∈ 𝒮2 . Since 𝒮1, 𝒮2  be two 

semi-prime ideals and 𝐵 ⊆ 𝐴, either 𝐵 ∈ 𝒮1 or 𝐵 ∈ 𝒮2which implies 𝐵 ∈ 𝒮1⋃𝒮2. 

ii) Let 𝐴 ∩ 𝐵 ∈ 𝒮1⋃𝒮2. Then  𝐴 ∩ 𝐵 ∈ 𝒮1 or 𝐴 ∩ 𝐵 ∈ 𝒮2. Since 𝒮1 and 𝒮1 are semi-prime ideals, 

(𝐴 ∈ 𝒮1  or 𝐵 ∈ 𝒮1 ) or (𝐴 ∈ 𝒮2  or 𝐵 ∈ 𝒮2 ). This gives 𝐴 ∈ 𝒮1  or 𝐴 ∈ 𝒮2  or 𝐵 ∈ 𝒮1  or 𝐵 ∈ 𝒮2 

which implies 𝐴 ∈ 𝒮1⋃𝒮2 or 𝐵 ∈ 𝒮1⋃𝒮2. Hence 𝒮1⋃𝒮2 is semi-prime ideal. 

Remark3.10: 

Intersection of two semi-prime ideal need not be a semi-prime ideal as shown in the following 

example. 

Example3.11: 

Consider 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {𝜙, {𝑎}, {𝑎, 𝑏}, 𝑋} with 

  𝒮1 = {𝜙, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑏, 𝑐}},  𝒮2 = {𝜙, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}}. 

Then 𝒮1, 𝒮2 are semi-prime ideal. But 𝒮1⋂𝒮2 = {𝜙, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏} is not semi-prime ideal. 

Note 3.12: 
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The set of all collection of semi prime ideals in a topological space  (𝑋, 𝜏) forms a semi group 

under the union operation. 

Note3.13: 

The set of all closed and discrete subsets of a topological space X is not semi prime ideal. 

For, consider 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {𝜙, {𝑎}, 𝑋} . Then the only closed and discrete subset is 𝜙 . 

Clearly it is not a semi prime ideal. 

Theorem 3.14: 

𝒮𝑛, the set of all nowhere dense sets in (𝑋, 𝜏) is a semi prime ideal. 

Proof: 

Let 𝐴 ∈ 𝒮𝑛  and 𝐵 ⊆ 𝐴 . Then 𝑖𝑛𝑡(𝑐𝑙(𝐴)) = 𝜙 . Since 𝐵 ⊆ 𝐴 , 𝑖𝑛𝑡(𝑐𝑙(𝐵)) ⊆ 𝑖𝑛𝑡(𝑐𝑙(𝐴)) = 𝜙 . 

Hence 𝑖𝑛𝑡(𝑐𝑙(𝐵)) = 𝜙 . Therefore 𝐵 ∈ 𝒮𝑛 . Let 𝐴, 𝐵 ∈ 𝓅(𝑋)  with 𝐴⋂𝐵 ∈ 𝒮𝑛 . Then 

𝑖𝑛𝑡(𝑐𝑙(𝐴⋂𝐵)) = 𝜙. That is, there is no open set contained in 𝑐𝑙(𝐴⋂𝐵). This implies there is no 

open set contained in 𝑐𝑙(𝐴)⋂𝑐𝑙(𝐵). That is there is no open set G such that 𝐺 ⊄ 𝑐𝑙(𝐴)⋂𝑐𝑙(𝐵). 

This implies either 𝐺 ⊄ 𝑐𝑙(𝐴) or 𝐺 ⊄ 𝑐𝑙(𝐵). Hence either 𝑖𝑛𝑡(𝑐𝑙(𝐴)) = 𝜙  or 𝑖𝑛𝑡(𝑐𝑙(𝐵)) = 𝜙 

and hence either 𝐴 ∈ 𝒮𝑛 or 𝐵 ∈ 𝒮𝑛. Therefore 𝒮𝑛 is a semi prime ideal. 

 

4. ALGEBRAIC STRUCTURE OF SEMI PRIME IDEAL 

Theorem4.1: 

Let X be a topological space. Then the collection 𝓅(𝑋) − {𝑋, 𝑋1}, where 𝑋1 = 𝑋 − 𝑥, 𝑥 ∈ 𝑋 is a 

semi prime ideal. 

Proof: 

Let 𝒮 = 𝓅(𝑋) − {𝑋, 𝑋1} and let 𝐴 ∈ 𝒮  with 𝐵 ⊆ 𝐴. Then clearly 𝐵 ∈ 𝒮 . Let 𝐴, 𝐵 ∈ 𝓅(𝑋) with 

𝐴⋂𝐵 ∈ 𝒮. We have to prove that either 𝐴 ∈ 𝒮 or 𝐵 ∈ 𝒮. In either cases 𝐴 = 𝐵, 𝐴 ⊆ 𝐵 or 𝐵 ⊆ 𝐴 

the proof is obvious. Assume that A and B are unequal and one is not contained in another. 

Suppose 𝐴, 𝐵 ∉ 𝒮. Then 𝐴, 𝐵 ∈ {𝑋, 𝑋1} which gives 𝐴⋂𝐵 = 𝑋1 ∉ 𝒮 gives a contradiction to our 

assumption. Hence either 𝐴 ∈ 𝒮 or 𝐵 ∈ 𝒮 and therefore 𝒮 is a semi prime ideal. 

Note4.2: 

In a topological space X, 𝓅(𝑋) − {𝑋, 𝑋1}, where 𝑋1 = 𝑋 − 𝑥, 𝑥 ∈ 𝑋 is not a prime ideal. Then 

𝒮 = {𝜙, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑏, 𝑐}} is not a prime ideal. For {𝑎, 𝑏}{𝑏, 𝑐} ∈ 𝒮 but {𝑎, 𝑏}⋃{𝑏, 𝑐} ∉ 𝒮. 

 



6 

V. THAMARAISELVI, P. SIVAGAMI, G. HARI SIVA ANNAM 

Theorem4.3: 

Let X be a topological space. Then 𝓅(𝑋) − 𝑋 is a semi prime ideal. 

Proof: 

Let 𝒮 = 𝓅(𝑋) − 𝑋 and let 𝐴 ∈ 𝒮 with 𝐵 ⊆ 𝐴. Then clearly 𝐵 ∈ 𝒮. Let 𝐴, 𝐵 ∈ 𝓅(𝑋) with 𝐴⋂𝐵 ∈

𝒮 . We have to prove that either 𝐴 ∈ 𝒮  or 𝐵 ∈ 𝒮 . In either cases 𝐴 = 𝐵, 𝐴 ⊆ 𝐵  or 𝐵 ⊆ 𝐴 the 

proof is obvious. On the other hand, Suppose 𝐴, 𝐵 ∉ 𝒮. Then 𝐴, 𝐵 ∈ {𝑋} which gives 𝐴⋂𝐵 =

𝑋 ∉ 𝒮 gives a contradiction to our assumption. Hence either 𝐴 ∈ 𝒮 or 𝐵 ∈ 𝒮 and therefore 𝒮 is a 

semi prime ideal. 

Note4.4: 

In a topological space X, 𝓅(𝑋) − 𝑋  is not prime ideal. Then 𝒮 =

{𝜙, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑎, 𝑐}} is not a prime ideal. For {𝑎, 𝑏}{𝑏, 𝑐} ∈ 𝒮 but {𝑎, 𝑏}⋃{𝑏, 𝑐} ∉

𝒮. 

Theorem4.5: 

Let X be a topological space and let 𝑋1 = 𝑋 − {𝑥}, 𝑥 ∈ 𝑋. Then 𝓅(𝑋1) is a semi prime ideal. 

Proof: 

Since 𝓅(𝑋1) is a prime ideal, 𝓅(𝑋1) is a semi prime ideal. 

Note4.6: 

The set of all collections of semi prime ideals in a topological space X is the union of two 

disjoint sets 𝒫 and 𝒮 where 𝒫 is the collection of prime ideals and 𝒮 is the collection of semi 

prime ideals which are not prime ideals.  

We say the semi prime ideals which are not prime ideals is strictly semi prime ideals. 

Theorem4.7: 

A semi prime ideal of the topological space X is of the form either 𝓅(𝑋) − 𝑋 or 𝓅(𝑋) − {𝑋, 𝑋1} 

or 𝓅(𝑋1) where 𝑋1 = 𝑋 − {𝑥}, 𝑥 ∈ 𝑋. 

Proof: 

Let 𝒮 be a semi prime ideal. then it may be prime ideal or strictly semi prime ideal. 

If 𝒮 is a prime ideal, then it is of the form 𝓅(𝑋1), where 𝑋1 = 𝑋 − 𝑥, 𝑥 ∈ 𝑋. 

If 𝒮 is a strictly semi prime ideal, then we have the following cases. 

Case(i): 

Suppose 𝒮 = 𝓅(𝑋) − 𝐴,  where A is any non empty subset of X and 𝐴 ≠ 𝑋. Then 𝑋 ∈ 𝒮 and 

𝐴 ∉ 𝒮. Hence 𝒮 is not a semi prime ideal. similarly we can prove that 𝓅(𝑋) − ℂ is not a semi 

prime ideal, where ℂ𝓅(𝑋) − 𝑋. 
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Case(ii) 

Suppose 𝒮 = 𝓅(𝑋) − {𝑋, 𝐴},  where A is any proper non empty subset of X and 𝐴 ≠ 𝑋′ where 

𝑋′ = 𝑋 − {𝑥}, 𝑥 ∈ 𝑋. Then 𝑋 ∉ 𝒮  and 𝐴 ∉ 𝒮 . But 𝐴 ⊆ 𝑋′  for some 𝑋′  and 𝑋′ ∈ 𝒮 . Hence 𝒮  is 

not a semi prime ideal. Similarly we can prove that 𝓅(𝑋) − {𝑋, ℂ} is not a semi prime ideal, 

where ℂ ⊆ 𝓅(𝑋) − 𝑋′. 

Case(iii): 

Suppose 𝒮 = 𝓅(𝑋) − {𝑋, 𝑋1, 𝑋2}, where A is any non empty subset of X and 𝑋1 ≠ 𝑋2 such that 

𝑋1 = 𝑋 − {𝑥}, 𝑋2 = 𝑋 − {𝑦}, 𝑥, 𝑦 ∈ 𝑋. Here 𝑋1⋂𝑋2 ∈ 𝒮, but 𝑋1 ∉ 𝒮 and 𝑋2 ∉ 𝒮 Hence 𝒮 is not 

a semi prime ideal. Similarly we can prove that 𝓅(𝑋) − {𝑋, ℂ} is not a semi prime ideal, where 

ℂ ⊆ ℂ𝒊, ℂ𝒊 = {𝑋 − {𝑥𝒊}/𝑥𝒊 ∈ 𝑋, 𝑖 = 1,2, … |𝑋|} with 2 ≤ |ℂ| ≤ |𝑋|. 

In similar way we can prove that 𝓅(𝑋) − {𝑋, ℂ} is not a semi prime ideal, where ℂ ⊆ ℂ𝒊, ℂ𝒊 =

{𝑋 − 𝐴/𝐴 ⊆ 𝑋} with 2 ≤ |ℂ| ≤ |𝑋|. 

From above discussions and 4.1,4.3 we conclude that there is is not a strictly semi prime ideal 

except of the form 𝓅(𝑋) − 𝑋 or 𝓅(𝑋) − {𝑋, 𝑋1}. 

Theorem4.8: 

Let X be topological space with n elements (n>2). Then their exists 2(n+1) semi prime ideals in 

X. 

Proof: 

The number of semi prime ideals in X is equal to the sum of the number of prime ideals in X and 

the number of strictly semi prime ideals in X. Clearly the number of prime ideals in X is n+1. 

The number of strictly semi prime ideals is equal to the number of elements in the format 

𝓅(𝑋) − {𝑋, 𝑋1} or 𝓅(𝑋) − 𝑋 which is equal to n+1 and hence the total number of semi prime 

ideals is n+1+n+1=2(n+1). 

Theorem 4.9: 

For every proper prime ideal 𝒫, there exists a strictly semi prime ideal 𝒮 such that 𝒫 ⊂ 𝒮. 

Proof: 

Since 𝒫 is a proper prime ideal, by 2.5 it is of the form 𝓅(𝑋1), where 𝑋1 = 𝑋 − {𝑥}, 𝑥 ∈ 𝑋. Then 

clearly 𝒫 ⊂ 𝓅(𝑋) − 𝑋. From 4.3 and 4.4 𝓅(𝑋) − 𝑋 is a  strictly semi prime ideal which gives 

the proof. 
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Theorem 4.10: 

Consider the topological space (𝑋, 𝜏). Then there is no proper prime ideal between the strictly 

semi prime ideal and the power set of X. 

Proof: 

Proof is obvious from above theorem. 

Note 4.11: 

Let 𝒮 be a proper stricly semi prime ideal in a topological space X, then the only prime ideal 

containing itself is the power set of X. 

Theorem 4.12: 

The radical of any semi prime ideal in a topological space X is either itself or the power set of X. 

Proof: 

Let 𝒮 be any semi prime ideal. We have to prove this in two cases. 

Case (i): If 𝒮 is prime ideal. Then radical of 𝒮 is 𝒮. 

Case (ii): If 𝒮  is not prime ideal, then the only prime ideal containing 𝒮  is 𝓅(𝑋) and hence 

radical of 𝒮 is 𝓅(𝑋). 

 

5. LOCAL FUNCTIONS ON SEMI PRIME IDEALS 

Definition 5.1: 

Given a topological space (𝑋, 𝜏) with a semi-prime ideal 𝒮 on X and if 𝓅(𝑋) is the set of all 

subsets of X, a set operator (. )𝒮
∗ : 𝓅(𝑋) → 𝓅(𝑋) is called a semi prime local function of A with 

respect to 𝜏  and 𝒮  is defined as follows: For 𝐴 ⊆ 𝑋, 𝐴𝒮
∗ (𝒮, 𝜏) = {𝑥 ∈ 𝑈/𝑈⋂𝐴 ∉

𝒮 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑈 ∈ 𝑟(𝑥)} where 𝑟(𝑥) = {𝑈 ∈ 𝜏/𝑥 ∈ 𝑈}. 

Theorem 5.2: 

𝐴𝒮
∗ (𝓅(𝑋), 𝜏) = 𝜙 for every 𝐴 ⊂ 𝑋. 

Proof: 

𝐴𝒮
∗ (𝓅(𝑋), 𝜏) = {𝑥 ∈ 𝑈/𝑈⋂𝐴 ∉ 𝓅(𝑋)𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑈 ∈ 𝑟(𝑥)} = 𝜙  

Theorem5.3: 

Let (𝑋, 𝜏) be a  topological space with 𝒮1, 𝒮2 be two semi-prime ideals on X and let A and B be 

two subsets on X. Then  

i) 𝐴 ⊆ 𝐵 ⇒ 𝐴𝒮
∗ ⊆ 𝐵𝒮

∗  

ii) 𝒮1 ⊆ 𝒮2 ⇒ 𝐴𝒮
∗ (𝒮2) ⊆ 𝐴𝒮

∗ (𝒮1) 
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iii) 𝐴𝒮
∗ ∪ 𝐵𝒮

∗ ⊆ (𝐴 ∪ 𝐵)𝒮
∗ . 

iv) (𝐴⋂𝐵)𝒮
∗ = 𝐴𝒮

∗ ⋂𝐵𝒮
∗ for any semi-prime ideal 𝒮. 

v) 𝜙𝒮
∗ = 𝜙 

vi) 𝑋𝒮
∗ ⊆ 𝑋 

Proof: 

i)Let 𝑥 ∈ 𝐴𝒮
∗ . Then 𝑈⋂𝐴 ∉ 𝒮 for every 𝑈 ∈ 𝑟(𝑥). Since 𝐴 ⊆ 𝐵 and 𝑈⋂𝐴 ∉ 𝒮, using semi-prime 

ideal condition we have 𝑈⋂𝐵 ∉ 𝒮 for every 𝑈 ∈ 𝑟(𝑥). This gives 𝑥 ∈ 𝐵𝒮
∗. Therefore 𝐴𝒮

∗ ⊆ 𝐵𝒮
∗. 

ii)Let 𝒮1 and 𝒮2 being semi-prime ideals on X such that 𝒮1 ⊆ 𝒮2. Let 𝑥 ∈ 𝐴𝒮
∗ (𝒮2). Then 𝑈⋂𝐴 ∉

𝒮2  for every 𝑈 ∈ 𝑟(𝑥). Since 𝒮1 ⊆ 𝒮2, we have 𝑈⋂𝐴 ∉ 𝒮1for every 𝑈 ∈ 𝑟(𝑥). This gives 𝑥 ∈

𝐴𝒮
∗ (𝒮1) and hence 𝐴𝒮

∗ (𝒮2) ⊆ 𝐴𝒮
∗ (𝒮1). 

iii)using (i) its obvious. 

iv)using (i), obviously (𝐴⋂𝐵)𝒮
∗ ⊆ 𝐴𝒮

∗ ⋂𝐵𝒮
∗                   .......(1) 

Let 𝑥 ∈ 𝐴𝒮
∗ ⋂𝐵𝒮

∗ . Then 𝑥 ∈ 𝐴𝒮
∗  and 𝑥 ∈ 𝐵𝒮

∗  which implies (𝑈⋂𝐴) ∉ 𝒮  for every 𝑈 ∈ 𝑟(𝑥)  and 

(𝑈⋂𝐵) ∉ 𝒮 for every 𝑈 ∈ 𝑟(𝑥).This implies (𝑈⋂𝐴)⋂(𝑈⋂𝐴) ∉ 𝒮 for every 𝑈 ∈ 𝑟(𝑥) and hence 

𝑈⋂(𝐴⋂𝐵) ∉ 𝒮 for every 𝑈 ∈ 𝑟(𝑥). This implies 𝑥 ∈ (𝐴⋂𝐵)𝒮
∗ . Therefore  

𝐴𝒮
∗ ⋂𝐵𝒮

∗ ⊆ (𝐴⋂𝐵)𝒮
∗                     ....(2) 

From (1) and (2) we have (𝐴⋂𝐵)𝒮
∗ = 𝐴𝒮

∗ ⋂𝐵𝒮
∗. 

(v) and (vi) are obvious. 

Example5.4: 

In the above theorem equality does not holds in (iii) and (vi). For consider the semi prime ideal 

space 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {𝜙, {𝑎}, 𝑋}, 𝒮 = {𝜙, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑏, 𝑐}}. Let 𝐴 = {𝑎} and 𝐵 = {𝑐}. 

Then 𝐴𝒮
∗ = 𝜙   𝐵𝒮

∗ = 𝜙, 𝐴𝒮
∗ ∪ 𝐵𝒮

∗ = 𝜙 , 𝐴 ∪ 𝐵 = {𝑎, 𝑐}  and (𝐴 ∪ 𝐵)𝒮
∗ = {𝑏, 𝑐}  which gives 𝐴𝒮

∗ ∪

𝐵𝒮
∗ ≠ (𝐴 ∪ 𝐵)𝒮

∗ . 

In the above space 𝑋𝒮
∗ = {𝑏, 𝑐} ≠ 𝑋 

Theorem5.5: 

Let (𝑋, 𝜏) be a topological space with a semi-prime ideal 𝒮 on X and let A and B be two subsets 

on X. Then  

i) 𝐴𝒮
∗ = 𝑐𝑙(𝐴𝒮

∗ ) ⊂ 𝑐𝑙(𝐴) 

ii) (𝐴𝒮
∗ )𝒮

∗ ⊆ 𝐴𝒮
∗  

iii) 𝑈 ∈ 𝜏 ⇒ 𝑈⋂𝐴𝒮
∗ ⊆ (𝑈⋂𝐴)𝒮

∗  

iv) 𝑈 ∈ 𝜏 ⇒ 𝑈⋂𝐴𝒮
∗ = 𝑈⋂(𝑈⋂𝐴)𝒮

∗  
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v) (𝐴 − 𝐵)𝒮
∗ ⊆ 𝐴𝒮

∗ − 𝐵𝒮
∗ 

Proof: 

(i)We know that 𝐴𝒮
∗ ⊆ 𝑐𝑙(𝐴𝒮

∗ ). For other inclusion, let 𝑥 ∈ 𝑐𝑙(𝐴𝒮
∗ ). Then 𝑈⋂𝐴𝒮

∗ ≠ 𝜙 for every 

neighbourhood U of x. Let 𝑦 ∈ 𝑈⋂𝐴𝒮
∗ . Then 𝑦 ∈ 𝑈  and 𝑦 ∈ 𝐴𝒮

∗  which implies 𝑉⋂𝐴 ∉ 𝒮  for 

every 𝑉 ∈ 𝑟(𝑦). In particular U⋂𝐴 ∉ 𝒮. Therefore  𝑈⋂𝐴 ∉ 𝒮 for every 𝑈 ∈ 𝑟(𝑥) and hence 𝑥 ∈

𝐴𝒮
∗  which gives 𝑐𝑙(𝐴𝒮

∗ ) ⊆ 𝐴𝒮
∗ . Therefore 𝐴𝒮

∗ = 𝑐𝑙(𝐴𝒮
∗ ). 

Let 𝑥 ∈ 𝐴𝒮
∗ . Then 𝑈⋂𝐴 ∉ 𝒮  for every 𝑈 ∈ 𝑟(𝑥) . Since 𝜙 ∈ 𝒮 , 𝑈⋂𝐴 ≠ 𝜙  for every 

neighbourhood U of x. This gives 𝑥 ∈ 𝑐𝑙(𝐴) and hence 𝐴𝒮
∗ = 𝑐𝑙(𝐴𝒮

∗ ) ⊂ 𝑐𝑙(𝐴). 

(ii) (𝐴𝒮
∗ )𝒮

∗ ⊆ 𝑐𝑙(𝐴𝒮
∗ ) = 𝐴𝒮

∗ . 

(iii)Let 𝑥 ∈ 𝑈⋂𝐴𝒮
∗ . Then 𝑥 ∈ 𝑈 and 𝑥 ∈ 𝐴𝒮

∗ . This implies 𝑉⋂𝐴 ∉ 𝒮  for every 𝑉 ∈ 𝑟(𝑥). Since 

𝑥 ∈ 𝑈, 𝑈 ∈ 𝑟(𝑥) and 𝑈⋂𝑉 ∈ 𝑟(𝑥) for every 𝑉 ∈ 𝑟(𝑥). This gives (𝑈⋂𝑉)⋂𝐴 ∉ 𝒮 for every 𝑉 ∈

𝑟(𝑥). Hence 𝑉⋂(𝑈⋂𝐴) ∉ 𝒮 for every 𝑉 ∈ 𝑟(𝑥). Therefore 𝑥 ∈ (𝑈⋂𝐴)𝒮
∗  which gives 𝑈⋂𝐴𝒮

∗ ⊆

(𝑈⋂𝐴)𝒮
∗ . 

 (iv) 𝑈⋂𝐴𝒮
∗ = 𝑈⋂(𝑈⋂𝐴𝒮

∗ ) ⊆ 𝑈⋂(𝑈⋂𝐴)𝒮
∗  (using (iii)) 

Let 𝑥 ∈ 𝑈⋂(𝑈⋂𝐴)𝒮
∗ . Then 𝑥 ∈ 𝑈 and 𝑥 ∈ (𝑈⋂𝐴)𝒮

∗ . This implies 𝑉⋂(𝑈⋂𝐴) ∉ 𝒮 for every 𝑉 ∈

𝑟(𝑥). Since 𝑥 ∈ 𝑈, 𝑥 ∈ 𝑈⋂𝑉  and 𝑈⋂𝑉 ∈ 𝑟(𝑥). Therefore (𝑈⋂𝑉)⋂𝐴 ∉ 𝒮  for every 𝑉 ∈ 𝑟(𝑥). 

This gives 𝑥 ∈ 𝐴𝒮
∗  and hence 𝑥 ∈ 𝑈⋂𝐴𝒮

∗ . Therefore 𝑈⋂(𝑈⋂𝐴)𝒮
∗ ⊆ 𝑈⋂𝐴𝒮

∗  and hence 𝑈⋂𝐴𝒮
∗ =

𝑈⋂(𝑈⋂𝐴)𝒮
∗ . 

(v)Let 𝑥 ∈ (𝐴 − 𝐵)𝒮
∗ . Then 𝑈⋂(𝐴 − 𝐵) ∉ 𝒮  for every 𝑈 ∈ 𝑟(𝑥) . Which implies (𝑈⋂𝐴) −

(𝑈⋂𝐵) ∉ 𝒮. Since 𝒮 is a semi prime ideal and (𝑈⋂𝐴) − (𝑈⋂𝐵) ⊆ 𝑈⋂𝐴, 𝑈⋂𝐴 ∉ 𝒮 for every 

𝑉 ∈ 𝑟(𝑥). Hence 𝑥 ∈ 𝐴𝒮
∗ . Suppose 𝑥 ∈ 𝐵𝒮

∗. Then 𝑈⋂𝐵 ∉ 𝒮 for every 𝑈 ∈ 𝑟(𝑥). Now ((𝑈⋂𝐴) −

(𝑈⋂𝐵))⋂(𝑈⋂𝐵) = 𝜙 ∈ 𝒮 . Since 𝒮  is a semi prime ideal, either (𝑈⋂𝐴) − (𝑈⋂𝐵) ∈ 𝒮  or 

(𝑈⋂𝐵) ∈ 𝒮 . This is a contradiction. Hence 𝑥 ∉ 𝐵𝒮
∗ . Therefore 𝑥 ∈ 𝐴𝒮

∗ − 𝐵𝒮
∗  and hence (𝐴 −

𝐵)𝒮
∗ ⊆ 𝐴𝒮

∗ − 𝐵𝒮
∗ 

Example 5.6: 

In the above theorem equality does not hold. For, consider the prime ideal space 𝑋 =

{𝑎, 𝑏, 𝑐}, 𝜏 = {𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}, 𝑋}, 𝒮 = {𝜙, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}} . Let 𝐴 = {𝑏, 𝑐} . Then 

𝐴𝒮
∗ = {𝑐} and (𝐴𝒮

∗ )𝒮
∗ = 𝜙 . Therefore (𝐴𝒮

∗ )𝒮
∗ ≠ 𝐴𝒮

∗ . In this space, let 𝐴 = {𝑏, 𝑐}, 𝐵 = {𝑏}. Then 

𝐴𝒮
∗ = {𝑐}, 𝐵𝒮

∗ = 𝜙, 𝐴𝒮
∗ − 𝐵𝒮

∗ = {𝑐}, 𝐴 − 𝐵 = {𝑐} and (𝐴 − 𝐵)𝒮
∗ = 𝜙 . Therefore (𝐴 − 𝐵)𝒮

∗ ≠ 𝐴𝒮
∗ −

𝐵𝒮
∗. 
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Consider the prime ideal space 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {𝜙, {𝑎}, {𝑎, 𝑐}, 𝑋}, 𝒮 = {𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}}. Let 

𝐴 = {𝑐}  and 𝑈 = {𝑎, 𝑐} . Then 𝐴𝒮
∗ = {𝑏, 𝑐}, 𝑈⋂𝐴𝒮

∗ = {𝑐}, 𝑈⋂𝐴 = {𝑐}, (𝑈⋂𝐴)𝒮
∗ = {𝑏, 𝑐} . Hence 

𝑈⋂𝐴𝒮
∗ ≠ (𝑈⋂𝐴)𝒮

∗ . In this topology, let 𝐴 = {𝑏}. Then 𝐴𝒮
∗ = 𝜙, 𝑐𝑙(𝐴) = {𝑏}. Hence 𝐴𝒮

∗ ≠ 𝑐𝑙(𝐴). 

Theorem5.7: 

Let (𝑋, 𝜏, 𝒮) be a ideal topological space and let A and B be two subsets on X. Then 

i) 𝐴𝒮
∗ ⋂(𝐵𝒮

∗ ∪ 𝐶𝒮
∗) = (𝐴𝒮

∗ ⋂𝐵𝒮
∗) ∪ (𝐴𝒮

∗ ⋂𝐶𝒮
∗) 

ii) 𝐴𝒮
∗ ∪ (𝐵𝒮

∗⋂𝐶𝒮
∗) = (𝐴𝒮

∗ ∪ 𝐵𝒮
∗)⋂(𝐴𝒮

∗ ∪ 𝐶𝒮
∗) 

iii) (𝐴𝒮
∗ ⋂𝐵𝒮

∗) ∪ (𝐴𝒮
∗ ⋂𝐶𝒮

∗) ⊆ (𝐴⋂(𝐵 ∪ 𝐶))
𝒮

∗
 

iv) (𝐴𝒮
∗ ∪ 𝐵𝒮

∗)⋂(𝐴𝒮
∗ ∪ 𝐶𝒮

∗) ⊆ (𝐴 ∪ (𝐵⋂𝐶))
𝒮

∗
 

v) (𝐴 ∪ 𝐵)𝐶
𝒮

∗
= 𝐴𝐶

𝒮
∗

⋂𝐵𝐶
𝒮
∗
 

vi) 𝐴𝐶
𝒮
∗

∪ 𝐵𝐶
𝒮
∗

⊆ (𝐴⋂𝐵)𝐶
𝒮

∗
 

Proof: 

Proof of (i) and (ii) are obvious using set theory. 

iii) (𝐴𝒮
∗ ⋂𝐵𝒮

∗) ∪ (𝐴𝒮
∗ ⋂𝐶𝒮

∗) = 𝐴𝒮
∗ ⋂(𝐵𝒮

∗ ∪ 𝐶𝒮
∗) ⊆ 𝐴𝒮

∗ ⋂(𝐵 ∪ 𝐶)𝒮
∗ = (𝐴⋂(𝐵 ∪ 𝐶))

𝒮

∗
. 

iv) (𝐴𝒮
∗ ∪ 𝐵𝒮

∗)⋂(𝐴𝒮
∗ ∪ 𝐶𝒮

∗) = 𝐴𝒮
∗ ∪ (𝐵𝒮

∗⋂𝐶𝒮
∗) = 𝐴𝒮

∗ ∪ (𝐵⋂𝐶)𝒮
∗ ⊆ (𝐴 ∪ (𝐵⋂𝐶))

𝒮

∗
. 

Proof of (v) and (vi) are obvious using demargan’s law in set theory and theorem 5.3. 

Theorem 5.8: 

In a semi prime ideal space  (𝑋, 𝜏, 𝒮), if 𝐴 ∈ 𝒮, then 𝐴𝒮
∗ = 𝜙. 

Proof: 

𝐴𝒮
∗ = {𝑥 ∈ 𝑋/𝑈⋂𝐴 ∉ 𝒮 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑈 ∈ 𝑟(𝑥)}. Since 𝐴 ∈ 𝒮  and 𝒮  is a semi prime ideal space 

𝑈⋂𝐴 ∈ 𝒮 for every 𝑈 ∈ 𝑟(𝑥). Hence 𝐴𝒮
∗ = 𝜙. 

Theorem 5.9: 

If 𝑉 ∈ 𝒮 and A is any non empty subset of a semi prime ideal space (𝑋, 𝜏, 𝒮), then (𝑉 − 𝐴)𝒮
∗ = 𝜙. 

Proof: 

(𝑉 − 𝐴)𝒮
∗ ⊆ 𝑉𝒮

∗ − 𝐴𝒮
∗ . Since 𝑉 ∈ 𝒮, 𝑉𝒮

∗ = 𝜙. Hence (𝑉 − 𝐴)𝒮
∗ = 𝜙. 

Definition5.10: 

Consider the semi prime ideal space (𝑋, 𝜏, 𝒮). Then the semi prime closure of any subset of X is 

denoted by 𝐶𝑙𝒮
∗ (𝐴) = 𝐴⋃𝐴𝒮

∗ . The set of all collections of semi prime closures denoted by 𝐶𝒮
∗(𝑋). 
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Note 5.11: 

Clearly 𝐴 ⊆ 𝐶𝑙𝒮
∗ (𝐴) and 𝐴𝒮

∗ ⊆ 𝐶𝑙𝒮
∗ (𝐴) 

Theorem 5.12: 

If 𝐴 ∈ 𝒮, then 𝐶𝑙𝒮
∗ (𝐴) = 𝐴. 

Proof: 

Since 𝐴 ∈ 𝒮, 𝐴𝒮
∗ = 𝜙. Now 𝐶𝑙𝒮

∗ (𝐴) = 𝐴⋃𝐴𝒮
∗ = 𝐴. 

Theorem 5.13:  

Let (𝑋, 𝜏, 𝒮) be a semi prime ideal space. Then the following results holds. 

i) 𝐶𝑙𝒮
∗ (𝜙) = 𝜙 

ii) 𝐶𝑙𝒮
∗ (𝑋) = 𝑋 

iii) If 𝐴 ⊆ 𝐵, then 𝐶𝑙𝒮
∗ (𝐴) ⊆ 𝐶𝑙𝒮

∗ (𝐵) 

iv) 𝐶𝑙𝒮
∗ (𝐴)⋃𝐶𝑙𝒮

∗ (𝐴) ⊆ 𝐶𝑙𝒮
∗ (𝐴⋃𝐵) 

v) 𝐶𝑙𝒮
∗ (𝐴⋂𝐵) ⊆ 𝐶𝑙𝒮

∗ (𝐴)⋂𝐶𝑙𝒮
∗ (𝐴) 

Proof:  

Proof of (i) and (ii) are obvious. 

(iii)Assume 𝐴 ⊆ 𝐵. 𝐶𝑙𝒮
∗ (𝐴) = 𝐴⋃𝐴𝒮

∗ ⊆ 𝐵⋃𝐵𝒮
∗ = 𝐶𝑙𝒮

∗ (𝐵) 

(iv)Since 𝐴 ⊆ 𝐴⋃𝐵, 𝐵 ⊆ 𝐴⋃𝐵 , from (iii) 𝐶𝑙𝒮
∗ (𝐴) ⊆ 𝐶𝑙𝒮

∗ (𝐴⋃𝐵)  and 𝐶𝑙𝒮
∗ (𝐵) ⊆ 𝐶𝑙𝒮

∗ (𝐴⋃𝐵)  and 

hence 𝐶𝑙𝒮
∗ (𝐴)⋃𝐶𝑙𝒮

∗ (𝐵) ⊆ 𝐶𝑙𝒮
∗ (𝐴⋃𝐵) 

(v) 𝐴⋂𝐵 ⊆ 𝐴 and 𝐴⋂𝐵 ⊆ 𝐵, from (iii) 𝐶𝑙𝒮
∗ (𝐴⋂𝐵) ⊆ 𝐶𝑙𝒮

∗ (𝐴)⋂𝐶𝑙𝒮
∗ (𝐵) 

Note 5.14: 

Equality does not holds in the above theorem. For consider the semi prime ideal space 𝑋 =

{𝑎, 𝑏, 𝑐}, 𝜏 = {𝜙, {𝑎}, 𝑋}, 𝒮 = {𝜙, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑏, 𝑐}}. Let 𝐴 = {𝑎, 𝑐} and 𝐵 = {𝑏, 𝑐}. Here 

𝐶𝑙𝒮
∗ (𝐴) = 𝑋 , 𝐶𝑙𝒮

∗ (𝐵) = {𝑏, 𝑐}, 𝐶𝑙𝒮
∗ (𝐴⋂𝐵) = {𝑐}  𝐶𝑙𝒮

∗ (𝐴)⋂𝐶𝑙𝒮
∗ (𝐵) = {𝑏, 𝑐} . Then 𝐶𝑙𝒮

∗ (𝐴⋂𝐵) ≠

𝐶𝑙𝒮
∗ (𝐴)⋂𝐶𝑙𝒮

∗ (𝐵). 

Consider 𝐴 = {𝑎}  and 𝐵 = {𝑐} . Here 𝐶𝑙𝒮
∗ (𝐴) = {𝑎} , 𝐶𝑙𝒮

∗ (𝐵) = {𝑐}, 𝐶𝑙𝒮
∗ (𝐴⋃𝐵) = 𝑋 

𝐶𝑙𝒮
∗ (𝐴)⋃𝐶𝑙𝒮

∗ (𝐵) = {𝑎, 𝑐}. Then 𝐶𝑙𝒮
∗ (𝐴⋃𝐵) ≠ 𝐶𝑙𝒮

∗ (𝐴)⋃𝐶𝑙𝒮
∗ (𝐵). 

Note 5.15: 

From above discussions 𝐶𝑙𝒮
∗ (. ) is not a kuratowski operator. 
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6. CONCLUSION 

In this paper, we have defined semi prime ideal in topological space and introduced semi prime 

closure using them. Also we proved that semi prime closure operator is not a kuratowski closure 

operator. 
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