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Abstract: Portfolio optimization is an important research field in modern finance. An important goal in portfolio 

optimization is to maximize risk-adjusted returns. In addition, momentum investing has gained a wide acceptance by 

asset managers. Besides, genetic algorithms (GA), which are based on the ideas of evolution and the concepts of 

Darwin’s natural selection, have been widely used to generate high-quality solutions to optimization problems. In this 

paper, we propose an approach using genetic algorithms to construct a momentum-based 130-30 stock fund. We use 

the Sharpe Ratio as the fitness function for portfolio evaluation and a Mean-Variance Model with Monte Carlo 

simulation to optimize the portfolio’s long and short positions. Using 2020 market data for the S&P500, our fund 

outperforms a variety of stock portfolios as well as the S&P500 ETF Fund SPY measured by Total Return, Sharpe 

Ratio, and Information Ratio. 
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1. INTRODUCTION 

1.1 Genetic Algorithms 

 

Genetic Algorithms [1] are a class of heuristic algorithms used to solve optimization problems 

without using close-formed analytical solutions. They are based on the ideas of evolution and the 

concepts of Darwin’s natural selection, i.e., “survival of the fittest”. In general, Genetic Algorithms 

(GA) is an iterative process which starts from a random population having a number of 

chromosomes, where each chromosome contains a list of genes. In each step (generation), the 

genetic algorithm selects chromosomes from a population based on their fitness value to produce 

new offspring chromosomes. Each chromosome is measured by its fitness, which is its capability 

to adapt to its “environment”. Fitness in GA is measured by the value of an objective function to 

be optimized. Like natural selection, chromosomes with high fitness values are preserved and have 

a chance to pass their genes to the next generation while the chromosomes with low fitness values 

are replaced by offspring chromosomes. A new population is then formed with preserved 

chromosomes from last generation (with high fitness values) and offspring chromosomes, in the 

hope that it will survive better than the previous population. The number of chromosomes in the 

populations from generation to generation is constant. When the GA process is terminated, the 

chromosome with the highest fitness value is selected as the solution to the optimization problem.  

 

Important operations in a GA process include chromosome selection, crossover, mutation, fitness 

calculation, and determination of termination criteria. They are detailed as follows and shown in 

Figure 1:       

 

Chromosome Selection: The main purpose of the selection process is that the better an individual 

is, the higher its chance of being a parent [2]. Suppose there are N chromosomes in a population, 

we select M chromosomes with the highest fitness values (1 < M < N) to be parent chromosomes 

for crossover. 
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Crossover: is implemented by selecting a random point on the chromosomes where the gene 

exchange happens between two parent chromosomes. The offspring chromosomes from crossover 

will have genes chosen from both parents based on the exchange point. Such crossover is also 

called one-point crossover.  

 

Suppose there are n genes s1, s2, …, sn on each chromosome. If S1= {s11, s12, …, s1n}, S2= {s21, 

s22, …, s2n}, are two parent chromosomes, select a random integer number 1 < r < n, two offspring 

chromosomes, S3 and S4, acre created by crossing over genes as follows:   

 S3 = {si | if i ≤ r, si ∈ S1, else si ∈ S2},  

 S4 = {si | if i ≤ r, si ∈ S2, else si ∈ S1}. 

 

Mutation: is a genetic operation to maintain genetic 

diversity from one generation to the next. A mutation is 

carried out by selecting one gene at random from a 

chromosome to be replaced by another gene from a separate 

chromosome which is randomly selected in the population.  

 

Suppose chromosome S1= {s11, s12, …, s1n}, and Sk is another 

chromosome randomly selected from the population, Sk= 

{sk1, sk2, …, skn}. A mutation on S1 occurs when a random 

selected gene s1r (1 ≤ r ≤ n) from chromosome S1 is replaced 

by the gene skr from the chromosome Sk, i.e., a mutation of 

S1 = {s1i | if i=r, s1i =ski, else s1i=s1i, 1≤ r ≤ n}. 

 

 

 

 

 

 

 

Figure 1: The iterative process of genetic algorithms 
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The mutation operation mentioned above, which makes random change to one gene on a 

chromosome after crossover, is based the biological point mutation, and called single point 

mutation. This mutation operation involves a probability that a gene will be changed on a 

chromosome. The probability is called mutation rate or mutation probability, which is in the range 

of [0, 1], usually low, such as 3%. A common method of implementing the mutation operation 

involves generating a random variable for a gene on a chromosome. If the random variable is less 

than or equal to the mutation rate, the gene will be mutated [3].  

 

Fitness Calculation: A fitness function measures the strength of a chromosome’s ability to survive. 

The value calculated from the fitness function is used to select chromosomes for better surviving 

in the evolution process. In our GA, we use Sharpe Ratio as the fitness function.  

 

Determination of Termination Criteria: A genetic algorithm performs the operations described 

above, i.e., chromosome selection, crossover, mutation, fitness calculation in sequence for a 

population. After these operations are performed, a new population is created for next generation 

(shown in Figure 1). Because of the nature of genetic algorithms, most of the time, it is not clear 

when the algorithm should stop so the algorithm must check the termination criteria at each 

generation. Termination criteria are usually based on statistical information such as the maximum 

number of generations, or convergence to a single fitness value for the best chromosome over 

multiple generations. 

1.2 Portfolio Optimization 

 

Portfolio optimization is a process to select the “best” portfolio among a set of potential portfolios. 

Modern portfolio theory [4] introduced the concept of the efficient frontier, which is a curve of the 

highest expected returns for each separately given risk level (Figure 2). Using the risk-free rate, 

we can plot a tangent from the expected return axis to the efficient frontier and the tangent point 

locates the portfolio with the highest Sharpe Ratio of return per risk [5]. Therefore, in our studies, 

the portfolio with the highest Sharpe Ratio is selected as the “best” portfolio for back-testing. 
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Figure 2: Efficient Frontier (en.wikipedia.org/wiki/Efficient_frontier) 

 

Momentum investing assumes the past stock returns predict their future returns. A momentum 

portfolio is typically constructed by buying stocks with past high or positive returns and short-

selling stocks with past low or negative returns. The academic literature has documented the 

efficacy of momentum investments over multiple time periods, in different markets, and among a 

variety of asset classes [6][7][8][9]. Additionally, it was found that 77% of US mutual funds that 

relied on momentum strategies realized significantly better performance as compared with other 

funds [10]. In this paper, we use GA to optimize the S&P500 component stocks and their weight 

in momentum portfolios. Back-testing with market data from 2020 indicates our optimized GA 

portfolio achieves the best Total Return and highest Sharpe Ratio by comparing with a set of 

momentum and mean-reversion portfolios as well as the S&P500 ETF Fund SPY. 

 

Although portfolio optimization problem could be solved analytically, financial reality may 

complicate both the object functions and constraints facing financial agents, making it difficult to 

find an analytical solution for the optimization problem. Therefore, genetic algorithms could be 

used as an alternative approach [11]. For example, general algorithms were used to select technical 

rules for trading S&P500 index and found the selected rules had the ability to identify the periods 

to buy the index when the daily returns were positive and volatility was low, and sell when the 

reverse was true [12]. 
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2. PRELIMINARIES 

2.1 Long/Short Determination – Short Ratio 

 

The method to determine long or short direction is based on a factor named “Short Ratio”, which 

is the shares shorted by the market over the Average Daily Trading Volume 

(http://regsho.finra.org/regsho-Index.html). In a momentum strategy, a stock that is shorted with a 

low short ratio is expected to continue its upward momentum and so is purchased, while a stock 

with a high short ratio is sold short. Based on the “Short Ratio”, we sort and divide all component 

stocks of S&P 500 into 10 groups, with groups given scores from 1 to 10 as the “Short Ratio” 

increased, each group will have 10% of S&P500 component stocks. In our GA method, stocks 

with ranks 9 and 10 are available for selling short, while stocks with ranks 1 and 2 are for purchase 

selection. Other stock groups are not taken into consideration. More details of our stock selection 

will be covered in next section (section 2.2). 

 

2.2 The Description of Our GA Method 

 

Our GA algorithm has 20 populations in each generation, with 50 portfolios (chromosomes) in 

each population, and each portfolio (chromosome) had 10 stocks (genes). 

 

To generate a portfolio for the 1st generation, 5 stocks randomly selected from groups 1 & 2 are 

purchased, while 5 stocks from groups 9 & 10 are made short. The long and short stocks are 

arranged alternatively in each portfolio, i.e., the odd numbers are long stocks and even numbers 

are for short. The stock selection is a random draw with replacement, i.e., a stock could be present 

in different portfolios in a generation.  

 

Optimal stock weights are calculated via the Markowitz Mean-Variance Model [4]. The details of 

our stock weight calculation procedure are presented in next section (section 2.3). The same 

procedure is applied 50 times to create the optimal stock weights for each portfolio in a population. 
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Then the Sharpe Ratio is used as the fitness for evaluating portfolios. Our portfolios are rebalanced 

every week, as detailed in section 3.1. 

 

The Sharpe Ratio is calculated for each portfolio in a population and ranked among the 50 

portfolios from high to low. Two portfolios from the top 30 portfolios are randomly selected to 

pair for one-point crossover (as defined in section 1.1). Each one-point crossover creates two 

offspring portfolios as shown in Figure 3. The procedure continues until 20 offspring portfolios 

are created. Therefore, a new population will be formed with the 30 top portfolios and the 20 

offspring portfolios (the bottom 20 portfolios are replaced by the offspring portfolios).  

 

Finally, mutation is performed to introduce a random modification to each offspring portfolio as 

shown in Figure 4. 

• One-point crossover: 

The first 5 stocks of Portfolio 1 join with the last 5 stocks of Portfolio 2 to generate the first 

offspring portfolio. Similarly, the last 5 stocks of Portfolio 1 are combined with the first 5 stocks 

of Portfolio 2 to create the second offspring portfolio. 

 

Parent Chromosomes 

Stock No 1 2 3 4 5 6 7 8 9 10 

Symbol A1 B1 C1 D1 E1 F1 G1 H1 I1 J1 

 

Stock No 1 2 3 4 5 6 7 8 9 10 

Symbol A2 B2 C2 D2 E2 F2 G2 H2 I2 J2 

 

 

Offspring Chromosomes 

Stock No 1 2 3 4 5 6 7 8 9 10 

Symbol A1 B1 C1 D1 E1 F2 G2 H2 I2 J2 

 

Stock No 1 2 3 4 5 6 7 8 9 10 

Symbol A2 B2 C2 D2 E2 F1 G1 H1 I1 J1 

 

Figure 3: One-point Crossover 
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• Mutation 

To simulate mutation for the offspring portfolios, a stock is randomly selected from an offspring 

portfolio, and assigned with a normalized random number between 0 and 1. If the random number 

is less than the 3% mutation rate (as defined in Section 1.1), the stock will be replaced by any stock 

from the same set of either longed or shorted stocks, i.e., group 1 & 2 for longs and group 9 & 10 

for shorts. For each offspring portfolio, the mutation operation would repeat 10 times, so the 

probability for mutation will be statistically applied to every stock in the portfolio. The mutation 

operation is equally applicable to all the 20 offspring portfolios in each new population. 

 

Before mutation (An offspring portfolio from crossover) 

 

Stock No 1 2 3 4 5 6 7 8 9 10 

Symbol A1 B1 C1 D1 E1 F2 G2 H2* I2 J2 

 

 

After mutation 

 

Stock No 1 2 3 4 5 6 7 8 9 10 

Symbol A1 B1 C1 D1 E1 F2 G2 W2* I2 J2 

 

* Assume both stocks H2 and W2 are either long or short stocks. 

 

Figure 4: Mutation 

 

This process of portfolio (chromosome) selection, crossover, mutation, and fitness calculation 

(Sharpe Ratio) will iterate until the termination criteria are meet. The termination criteria are either 

the best portfolio converged upon a single value or the max number of generations, which is 100 

generations in our studies, is reached. The best portfolio from each population in the last generation 

is selected for back-testing.  
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2.3 Weight Determination of Portfolio Constituents and Portfolio Fitness  

 

Our portfolios are constructed as 130-30 funds, in which a ratio of 130% of starting capital is 

allocated to long positions by taking in 30% of the starting capital from shorting stocks. Therefore, 

each of our portfolios had a 130% leverage built in. A 130-30 fund is a “long-short” approach 

often lumped into long-short equity mutual funds [13][14]. As we mentioned previously, for our 

portfolios, stocks with ranks 9 and 10 are sold short and stocks with ranks 1 and 2 are purchased. 

Stocks in other ranks are not taken into consideration. 

 

The Markowitz Mean-Variance Model [4] is applied to determine the optimized dollar weight for 

each stock in a portfolio. Specifically, Monte-Carlo Simulation is used to generate 10,000 random 

weight combinations for the 10 stocks in a portfolio. With 10,000 weights, each portfolio has 

10,000 different fitness values (Sharpe Ratios). The highest Sharpe Ratio is selected as the 

portfolio’s fitness, and the corresponding weights are the optimal weights for the stocks in the 

portfolio. The same process is applied to all the 50 portfolios in each population. 

 

The process of calculation is shown below: 

 

Since each portfolio contained 10 stocks, a matrix of 10 × 10 is built to store the covariance 

between any two stocks in this portfolio.  

∑ = (

𝜎1,1 ⋯ 𝜎1,10

⋮ ⋱ ⋮
𝜎10,1 ⋯ 𝜎10,10

) 

 

𝑊 is a matrix of 10 × 10000. Each column has 10 rows, which represent the weight for each 

stock.  

 

𝑊 = (

𝑤1,1 ⋯ 𝑤1,10000

⋮ ⋱ ⋮
𝑤10,1 ⋯ 𝑤10,10000

) ,  𝑤𝑖 = (𝑤1,𝑖 . . . 𝑤10,𝑖)𝑇 
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The expected Return of 10 stocks is calculated based on historical data from eodhistoricaldata.com 

and Yahoo Finance in 2019 and 2020: 

𝜇 = (𝜇1 . . . 𝜇10 )𝑇 

 

𝜇𝑖 =
1

𝑁
∑ 𝑟𝑖

𝑁

𝑗=1

, 𝑤ℎ𝑒𝑟𝑒 𝑟𝑖 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑑𝑎𝑖𝑙𝑦 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑠𝑡𝑜𝑐𝑘 

 

The Expected Return, Volatility, Sharpe Ratios and Fitness for Portfolio i are: 

 

𝑅𝑖 = 𝑤𝑖
𝑇 ∙ 𝜇 = (𝑤1,𝑖 . . . 𝑤10,𝑖) ∙ (𝜇1 . . . 𝜇10 )𝑇  

 

𝑉𝑜𝑙𝑖 = 𝑤𝑖
𝑇 ∙ ∑ ∙ 𝑤𝑖 = (𝑤1,𝑖 . . . 𝑤10,𝑖) ∙ (

𝜎1,1 ⋯ 𝜎1,10

⋮ ⋱ ⋮
𝜎10,1 ⋯ 𝜎10,10

) ∙ (𝑤1,𝑖 . . . 𝑤10,𝑖)𝑇 

 

   𝑆𝑅𝑖 =
𝑅𝑖−𝑅𝑓

𝑉𝑜𝑙𝑖
  Rf is the risk-free rate. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑜𝑟 𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑖 = 𝑚𝑎𝑥 (𝑆𝑅1  … 𝑆𝑅10000 ) 

 

3. MAIN RESULTS 

3.1 Our Way of Portfolio Rebalancing 

 

The back-test period is the entire year of 2020. This is a weekly rebalanced strategy, where we 

open positions on the first trading day of the week and exit on the last trading day of the week. 

Each week, our GA method generates 20 populations, based on the daily price data from the first 

trading date of 2019 to the last trading day before the week for rebalancing, as described in Section 

2.2. Each population has 50 portfolios, and each portfolio has 10 stocks, with 5 stocks from groups 

1 and 2 for long positions and 5 stocks from groups 9 and 10 as short positions. The best portfolio 

from each population is selected, and 5% of our current capital is invested into each portfolio with 

130% leverage. The optimized weight of each stock in each portfolio is determined by Mean-
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Variance Model with Monte Carlo simulation as described in section 2.3. All the long and short 

positions will be closed out on the last trading date of the week. 

 

3.2 Funds for Comparison 

 

There are two common and simple strategies for S&P 500 stocks: 1) current best performers will 

continue to be the future best performers; 2) current worst performers will become the future best 

performers. Therefore, at the 1st trading day of a week we select best and worst performers based 

on their cumulative return in the week just past for rebalancing and application during the week.  

 

In addition, we create a 130-30 fund with the 5 best performed stocks and 5 worst performed stocks 

and rebalance the fund weekly. We call the fund “WML” (Winner Minus Loser). Therefore, we 

have a total of 6 investment strategies to compare: 

• The S&P500 ETF fund, SPY, which serves as the benchmark for market performance. 

• The Long-only fund with 10 weekly best performers, named as WIN in the following 

diagrams and tables. 

• The Long-only fund with 10 weekly worst performers, named as LOS. 

• The 130-30 momentum fund, with 5 weekly best performers and 5 weekly worst 

performers, WML. 

• The 130-30 momentum fund created by our genetic algorithm strategy with equally dollar-

weighted stocks, GA-EW-MOM.  

• The 130-30 momentum fund created by our genetic algorithm strategy, while using Mean-

Variance Model/Monte Carlo optimization of stock’s weights, GA-MOM. 

 

Besides SPY, the component stocks of each fund are updated weekly based on our rebalance 

strategies. 
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3.3 Fund Performance Evaluation 

 

The following (Figure 5 and Table 1) are the performance measurements of the 6 funds, i.e., GA-

MOM, GA-EW-MOM, WML, WIN, LOS, and SPY. 

 

Figure 5: Cumulative Returns of the 6 Funds in 2020 

 

Metrics GA-MOM GA-EW-MOM WIN LOS WML SPY 

Total Return 59.0% 49.2% -24.8% 49.2% -43.7% 14.2% 

Volatility 32.9% 30.3% 41.9% 53.5% 54.2% 28.0% 

Max Drawdown 17.6% 15.5% 43.2% 41.3% 52.7% 21.1% 

Alpha 49.0% 39.0% -40.5% 29.1% -57.3% 0 

Beta 0.72 0.73 1.09 1.42 0.95 1.0 

Sharpe Ratio 1.8 1.63 -0.59 0.92 -0.81 0.51 

Information 

Ratio 

1.34 1.18 -1.18 0.93 -1.8 - 

 

Note: 

1. The best value in each row is shown as highlighted. 

2. Total Return is the cumulative profit for all the trading days in 2020. 

3. Volatility is the annualized standard deviation of daily returns for all the trading days in 2020. 

4. Max drawdown is the maximum loss from the local maximum, expressed as a percentage, annualized.  
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5. Beta is a measure of how an individual asset moves (on average) when the overall stock market increases or 

decreases. 

𝐵𝑒𝑡𝑎 =
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 , 𝑅𝑚𝑎𝑟𝑘𝑒𝑡)

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝑚𝑎𝑟𝑘𝑒𝑡)
 

6. Alpha is referred to as the annualized excess return to describe how much a strategy beats the market. 

𝐴𝑙𝑝ℎ𝑎 = 𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 − 𝑅𝑓 − 𝐵𝑒𝑡𝑎 ∗ (𝑅𝑚𝑎𝑟𝑘𝑒𝑡 − 𝑅𝑓) 

 

7. Sharpe Ratio (SR) is a measure of return used to compare the performance of portfolios by adjusting for risk. 

𝑆𝑅 =
𝑎𝑣𝑔(𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 − 𝑅𝑓)

𝑠𝑡𝑑(𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 − 𝑅𝑓)
  

𝑤ℎ𝑒𝑟𝑒 "𝑎𝑣𝑔" 𝑎𝑛𝑑 "𝑠𝑡𝑑" 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑎𝑛𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜′𝑠 𝑑𝑎𝑖𝑙𝑦 𝑟𝑒𝑡𝑢𝑟𝑛 

8. Information Ratio (IR) is a measurement of portfolio returns beyond the returns of a benchmark, usually an 

index, compared to the volatility of those returns. It is calculated by the difference between the return of a 

portfolio and the benchmark divided by the standard deviation of the difference: 

𝐼𝑅 =
𝑎𝑣𝑔(𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 − 𝑅𝑚𝑎𝑟𝑘𝑒𝑡)

𝑠𝑡𝑑(𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 − 𝑅𝑚𝑎𝑟𝑘𝑒𝑡)
 

 

Table 1: Performance Measurements of the 6 Funds in 2020 

 

Both the table and graph (Figure 5 and Table 1) indicate that our GA-MOM fund performed the 

best, having the highest Total Return, Alpha, Sharpe Ratio, and Information Ratio while the Max 

Drawdown and Volatility were controlled well despite the several circuit breakers in 2020. 

 

The performance of GA-EW-MOM was close to GA-MOM. But the simple 130-30 momentum 

without using GA performed worst among 6 funds in almost all the matrices.  

 

For both long funds, although the LOS fund (Long-only fund with 10 weekly worst performers) 

lost considerably during March, it rebounded quickly afterwards, and exceeded GA-MOM several 

times. However, its Volatility was extremely high, with several big Drawdowns. The WIN fund 

(Long-only fund with 10 weekly best performers) was shown to be a poor portfolio with respect 

to return. 
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3.4 Quarterly Performance Evaluation 

 

Although our momentum fund GA-MOM had the best cumulative return in 2020, other funds 

performed better in some quarters (Figure 6 and Table 2). 

 

 

 

Figure 6: Quarterly Cumulative Returns for the 6 Funds in 2020 

 

1st Quarter 

Metrics GA-MOM GA-EW-MOM WIN LOS WML SPY 

Total Return 14.0% 12.7% -13.4% -11.4% -18.1% -3.9% 

Annualized Return 58.8% 53.4% -56.2% -47.9% -76.2% -16.6% 

Volatility 49.1% 44.7% 42.9% 85.9% 36.8% 46.2% 

Max Drawdown 17.6% 15.5% 22.3% 41.3% 18.9% 21.1% 

Alpha 72.9% 67.5% -41.9% -22.6% -67.7% 0 

Beta 0.85 0.85 0.87 1.53 0.51 1.0 

Sharpe Ratio 1.2 1.19 -1.31 -0.56 -2.07 -0.36 

Information Ratio 2.47 3.03 -2.62 -0.41 -1.95 - 
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2nd Quarter 

Metrics GA-MOM GA-EW-MOM WIN LOS WML SPY 

Total Return 23.8% 15.7% -17.9% 42.1% -20.2% 9.0% 

Annualized Return 95.4% 62.8% -71.8% 168.5% -80.8% 35.8% 

Volatility 33.3% 29.9% 61.3% 55.0% 88.1% 25.2% 

Max Drawdown 9.2% 9.6% 38.7% 13.8% 50.0% 8.2% 

Alpha 86.8% 52.7% -134.0% 115.3% -153.9% 0 

Beta 0.24 0.28 1.73 1.48 2.04 1.0 

Sharpe Ratio 2.86 2.1 -1.17 3.06 -0.92 1.42 

Information Ratio 1.3 0.59 -2.04 2.98 -1.34 - 

3rd Quarter 

Metrics GA-MOM GA-EW-MOM WIN LOS WML SPY 

Total Return 0.9% 2.2% 2.0% 4.3% -7.6% 4.9% 

Annualized Return 3.5% 8.8% 7.8% 16.9% -29.9% 19.1% 

Volatility 23.6% 22.4% 21.1% 28.7% 34.1% 14.3% 

Max Drawdown 9.7% 8.0% 7.5% 8.3% 16.1% 7.1% 

Alpha -18.0% -8.8% -8.8% -2.8% -49.9% 0 

Beta 1.13 1.07 0.87 1.03 1.05 1.0 

Sharpe Ratio 0.15 0.4 0.37 0.59 -0.88 1.34 

Information Ratio -0.85 -0.59 -0.64 -0.08 -1.52 - 

4th Quarter 

Metrics GA-MOM GA-EW-MOM WIN LOS WML SPY 

Total Return 10.9% 10.2% 16.0% 19.4% 6.6% 7.5% 

Annualized Return 43.1% 40.2% 63.1% 76.5% 25.9% 29.6% 

Volatility 19.2% 19.0% 24.8% 23.2% 29.6% 13.9% 

Max Drawdown 7.0% 4.6% 9.4% 4.9% 11.6% 4.1% 

Alpha 23.9% 17.4% 29.9% 47.7% -4.2% 0 

Beta 0.65 0.77 1.12 0.97 1.02 1.0 

Sharpe Ratio 2.25 2.12 2.55 3.29 0.88 2.13 

Information Ratio 0.68 0.59 1.63 2.31 -0.13 - 

 

Table 2: Quarterly Performance Measurements of the 6 Funds in 2020 

 

In the first quarter, our momentum fund GA-MOM performed the best, with well controlled risk 

and Max Drawdown. This proves that in a steeply declining and extremely volatile market, our 

momentum fund can be profitable and antifragile [15]. 
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In the second quarter, the market recovered, and SPY earned about 9%. During this time, the past 

losers performed the best in respect of Total Returns, Alpha, Sharpe Ratio, and Information Ratio. 

However, its Volatility and Beta were high, which means the high return of past losers was mainly 

from the market. In contrast, our momentum fund GA-MOM was the second best with low Max 

Drawdown and Beta. More importantly, as shown in Table 3, we calculated the Pearson 

Correlation Coefficient between market (SPY) and all the 5 funds for the 2nd Quarter in 2020: 

 

Fund Name Coefficient P-Value 

WIN 0.713721 5.19E-11 

LOS 0.679851 8.94E-10 

WML 0.584282 4.97E-07 

GA-EW-MOM 0.238972 0.059264 

GA-MOM 0.180884 0.155984 

 

Table 3: Coefficient and P-Value between Market (SPY) and the Five Funds 

 

It is indicated that our GA-MOM fund has lowest correlation coefficient value, 0.180884, while 

its p-value is the highest, which means that the correlation between GA-MOM fund and market is 

the least significant. This an important characteristic for a momentum fund in a volatile market. 

 

In the third quarter, no portfolio beat the market. SPY stood out among all the funds. The market 

stabilized with reduced volatility and generally trended higher in the 3rd quarter. We believe in 

such a market situation, index funds could perform better than our momentum funds, which 

presents an interesting area for further research.  

 

In the fourth quarter, all portfolios performed relatively well. Although our momentum fund GA-

MOM did not achieve the best performance, it still had lowest Beta and its risk-adjusted return 

beat market. 
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3.5 Summary 

 

To summarize, although our GA momentum fund might not have been the best performer in every 

quarter, it performed best while the market was in its worst decline in the year and most volatile 

condition in 2020. Furthermore, by comparison to other funds, it had a relatively high Sharpe Ratio 

in most quarters. In other words, it accumulated profits through risk-adjusted returns. Therefore, 

in the end, it had the highest Total Return, Alpha, Sharpe Ratio and Information Ratio, Lowest 

Beta, second-lowest Max Drawdown, and second-lowest Volatility. 

 

We also constructed an “Equally Dollar-Weighted Momentum” fund (GA-EW-MOM) to compare 

with our optimized weighted “Momentum” fund (GA-MON). As presented in the above diagrams 

and tables, the trend of these two funds’ returns is very similar and most metrics are also close. 

However, the optimized portfolio (GA-MOM) improves the Total Return by about 20% in 2020, 

which successfully proves the effect of optimization. 

 

4. CONCLUSION AND DISCUSSION 

This paper has applied Genetic Algorithms in selecting and optimizing S&P500 investment 

portfolios for a 130-30 momentum fund. The portfolio’s stock weights are optimized through 

Mean-Variance Model and Monte Carlo simulation. The fitness of each portfolio is measured by 

its Sharpe Ratio. Through portfolio selection, crossover, and mutation, the “better” portfolios are 

preserved through multiple generations while abandoning the “worse” portfolios. In the end, the 

portfolio with the highest fitness in the last generation is added to our fund. The same strategy is 

repeated until the 20 best portfolios are selected with 5% investment funding for each portfolio. 

From the results of the back-testing, we conclude a simple 130-30 fund fails to beat the market, 

while our GA constructed 130-30 fund excels in total return as well as risk-adjusted return. This 

indicates that the application of Genetic Algorithms could be a useful and effective approach in 

portfolio optimization.  
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In our current studies, we have not included transaction costs for the weekly portfolio rebalancing 

for back testing, as we assume the same transaction costs are applicable to all the funds in 

comparisons described in section 3.2. We are further investigating the robustness of our results by 

including transaction costs of 0.1% or 0.5% of the total trade value. In addition, we are expanding 

the time duration of our studies to 22 years, from the year 2000 to current date, and trying longer 

rebalance periods, such as monthly, every 3, 6 and 12 month frequencies.   

 

In the future, more fitness functions, and a strategy to avoid short squeezing will be tested to further 

increase portfolio robustness and reduce maximum drawdown in a volatile market. In addition, it 

would be interesting to find out at what market conditions passive investment strategies such as 

ETFs and index funds would perform better than our momentum fund.  

 

5. TECHNICAL ASPECTS OF OUR RESEARCH 

Market Data used in our research are from EOD Historical Data Services 

(https://eodhistoricaldata.com) and Yahoo Finance. More specifically, S&P500 component stock 

list, S&P500 historical daily prices, and fundamental data, S&P500 Index ETF (SPY) historical 

prices are downloaded from eodhistoricaldata.com. Treasury Yield 10 Years (TNX) is used as a 

risk-free rate and downloaded from Yahoo Finance. Daily Short Sale Data are from FINRA 

(http://regsho.finra.org/regsho-Index.html).  

 

As shown in the Table 4, the parameter settings for our GA strategy are: 

No Parameters Values 

1 Population Size 50 

2 Crossover Single Point 

3 Mutation Rate 3% 

4 Chromosome Selection Ranking 

5 Fitness Calculation Sharpe Ratio 

6 Termination Criteria Fitness Value Convergence or 100 generations 

 

Table 4: All the Parameter Settings for Our GA 
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All the coding is done in C++ and Python. A SQLITE database is built for data persistency. All 

the source codes and the database are available to share upon request. 
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