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Abstract: Graph partitioning is crucial step in resolving real time applications in the field of image analysis, smart 

city designing, wireless communications, data analysis etc. Though considerable research has been done for getting 

an optimal partitioning of graphs still it demands enhancement for diverse application problems. Hybrid graph 

partitioning approaches are promising and possess ability to partition graphs with large number of vertices. In our 

research we have developed multilevel particle swarm optimization algorithm for graph partitioning. Size of the graph 

is reduced by heavy edge matching algorithm and then greedy graph growing partitioning is used to divide the graph. 

Discrete particle swarm optimization used at the most important stage of refinement. Performance is evaluated by 

using Walshaw’s Benchmark graphs and from analysis it has been observed that proposed algorithm generates optimal 

partitioning with reduced cut values and computational cost. 
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1. INTRODUCTION 

Graph partitioning problems are extensively utilised in variety of application ranges such as 

optimal node deployments in IoT networks, Image Processing, Data Analysis, Corona Virus Graph 

Analysis etc. [1-6]. Optimal graph partitioning is NP-hard and hence for real time applications 

hybrid partitioning approaches are preferred. Multilevel graph partitioning is one of the most 

popular method to attain fast and optimum regions. In multilevel partitioning, original graph of 

larger size is reduced to the smaller graph by applying various schemes. This reduced graph is 

optimally partitioned and then those partitions are mapped revert with the input graphs. Multiple 

iterations are performed to get an optimal solution by using refinement method after each iteration. 

METIS [7], JOSTLE [8], Scotch [9], and DiBaP [10] are the examples of benchmark graphs in 

which multilevel partitioning scheme is implemented. From the methods reported in the literature 

it is observed that an appropriate combination of swarm intelligence-based optimization technique 

can improve the partitioning quality for all types of graphs. Multiple partitioning heuristics have 

been developed for the graphs involving influence regulation degrees dispersal [11]. Combinations 

of these algorithms can be useful for extensive range of partitioning applications. Machine learning 

methods can be explored for the choice of an appropriate partitioning techniques to solve particular 

application problem [12-13]. Particle Swarm Optimization (PSO) [14], a field of swarm 

intelligence-based computations, possess the capability of automatically producing [15] and 

enhancing heuristic techniques for a diverse set of applications [16]. Employing PSO to enhance 

multilevel partitioning technique can offer two different advantages. Primarily, the evolutionary 

progression will ponder heuristic which may be ignored all through the manual progress since they 

are not inbuilt. Subsequently, the outline designed for developing routine heuristic for the 

particular application can be swiftly utilised to solve numerous partitioning problems.  

We have investigated the potentiality of discrete particle swarm optimization algorithm in 

automating the procedure of modifying multilevel partitioning algorithm, enhancing its 

performance in comparison with general state-of-the-art partitioning techniques. 

Structure of the remaining paper is: Graph partitioning is described in depth in Section 2. Section 

3 reviews of existing graph partitioning algorithms. Discrete Particle Swarm Optimization 

Technique is explained in Section 4.   Multilevel Particle Swarm Optimization algorithm for graph 

partitioning is developed in Section 5. Performance evaluation of the developed algorithm using 

some benchmark graphs is presented and compared with existing techniques in Section 6. Lastly, 
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Section 7 concludes the paper. 

 

2. GRAPH PARTITIONING 

If G = (P, Q) is weighted and graph in which P and Q represents set of nodes and edges 

respectively and every edge is assigned with positive weight, then the graph partitioning problem 

is to divide node set into m – blocks (𝑚 ∈ 𝑁,𝑀 > 1), 𝑃1, 𝑃2, … , 𝑃𝑚  such that  𝑃1 ∪ 𝑃2 ∪ …∪

 𝑃𝑚 = 𝑃 and 𝑃𝑟 ∩ 𝑃𝑠 = ∅, ∀ 𝑟 ≠ 𝑠. Balanced partition is the one in which each block has similar 

weight. Objective function for the graph partitioning problem is to minimize the cut value of 

partition between two sets 𝑃𝑟  𝑎𝑛𝑑 𝑃𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑃𝑟 , 𝑃𝑠 ⊆ 𝑃   

𝐶𝑢𝑡 (𝑃𝑟 , 𝑃𝑠)

= ∑ ∑ 𝑤(𝑙,𝑚)                                                                                                                                    (1)

𝑚∈𝑃𝑠𝑙∈𝑃𝑟

 

An example of graph partitioning for undirected weighted graph is illustrated in Fig. 1. 

 

 

Figure 1. Graph Partitioning Example 

 

2.1. Multi-level Graph Partitioning 

Multilevel graph partitioning is most commonly utilised partition estimate method. Coarsening, 

partitioning and refinement are the stages involved in it. Multilevel graph partitioning is illustrated 

in Figure 2. 
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Fig. 2: Multilevel Graph Partitioning 

 

2.1.1. Coarsening. In the coarsening stage, a reduced form of the input graph is generated. The 

process of coarsening generates a series of reduced and coarser graphs, till the dimensions of the 

coarsest graph are appropriately smaller.  Maximal matching approach is used in it to select edges 

for contraction; which includes either random matching or heavy edge matching. In random edge 

matching vertices are visited in arbitrary order and edges between them are also arbitrarily chosen 

for contraction. Whereas in heavy edge matching an edge with maximal weight is chosen for 

contraction. Edge matching scheme during the coarsening is well suited for few application 

scenarios [6]. It has also been observed that coarsening of graphs only with edge matching is 

complex for graphs whose degrees are distributed by power law. For such type of graphs, enhanced 

coarsening can be attained by contraction of smaller and extremely connected subgraphs rather 

than contracting edges [11]. 

2.1.2. Partition. In this phase coarsened graphs are partitioned; smaller size of the graph is an 

added advantage for getting an optimal partitioning in very less time. Spectral partitioning [17], 

KL -partitioning [18] are the methods used for partitioning of coarsened graphs but they are 

computationally expensive. Karypis et al. [19] have proposed graph growing partition (GGP) and 

greedy graph growing partition (GGGP) which generates quality partitions. GGP starts by 

randomly visiting a vertex and then breadth first search approach is used to add it to the partition 

and the process is continued still the partition comprises the required vertex weight. GGGP is same 

as that of GGP but adjacent nodes  
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2.1.3. Uncoarsening and Refinement.  In this phase coarsened partitioned graphs are mapped 

back to the coarsest graph and then the refinement is used for the quality improvement. This 

uncoarsening and refinement procedure is repetitive till an optimal partitioning is obtained. In KL-

refinement coarsened partitioned graph is used as primary input, excluding individual run of an 

algorithm dismisses if a scalable number of node switches do not decline the cut value. On the 

contrary, in greedy refinement KL-refinement procedure is restricted to only one run. 

 

3. RELATED WORK 

For the graphs with innovative stages of complexity, a novel range of partitioning methods on 

the basis of multilevel model have been proposed. Fiduccia et. al [20] proposed block gain 

approach and developed speedy heuristic method to bisect graph with edge weights. But weight 

among two nodes is not considered while calculating the gain. Multiple improvements in 

multilevel partitioning have been proposed but most of them fail to attain optimal partitioning of 

hypergraphs. These methods are widely clubbed with metaheuristics; viz. simulated annealing, 

tabu search, genetic algorithm (GA), ant colony optimization (ACO) and particle swarm 

optimization (PSO). Simulated annealing proposed for bipartition of graphs in [21] is used by C. 

Bichot at al. [22] to divide the graph into k – parts. Simulated annealing is flexible towards 

adaptability of distinct objective functions and partition conditions. However, its convergence 

speed is very low.  

Genetic algorithm combined with multilevel method for k- partitioning of the graph in [23] uses 

jostle evolutionary and promising results are generated with minimal cut value. Ant Colony 

Optimization for partitioning of graphs uses the fundamental idea that the distinct colonies of 

ants in a region fights among them and every colony is considered as part of the graph. Multi-ant 

colony optimization approach proposed in [24] is based on the concept of grid shielded by region 

of ants in which every grid is associated by a vertex.   Multilevel graph partitioning is united with 

ACO by S. Bachet al. [25], this approach produces optimal partitioning at the cost of higher time. 

Green et al. [26] proposed a graph partitioning technique for large size graphs by the combination 

of breadth first search (BFS) with particle swarm optimization (PSO).  It uses the principle of 

communication among the partitions and inside the partition with the objective of minimizing 

communication among the partitions and maximizing communication inside the partition. It 

improves convergence rate of an algorithm.  This approach is limited to canonical graphs. 
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Dynamic airspace configuration model proposed in [27] is defined as weighted graph partitioning 

problem with an objective of minimizing workload by appropriate sectorization.  PSO is 

incorporated with multilevel method to partition the weighted graph of region to be sectorized. It 

has been observed that proposed approach has produced the sectors satisfying the balance of 

workload. Ghorpade et al. [28] proposed energy centered approach y characterized as graph cut. 

An objective function attained in this method bits optimal value after segmenting an image. 

 

4. DISCRETE PARTICLE SWARM OPTIMIZATION (DPSO) 

Kennedy et al. [29] have developed discrete particle swarm optimization (DPSO) technique for 

solving discrete optimization problems. In DPSO primarily, the number of particles and 

corresponding speed vectors are created arbitrarily. After fixed iterations, the objective of an 

algorithm is to get an optimal or close to optimal results with the help of predefined fitness function. 

Position of velocity vector is updated at each iteration by using best positions: personal best (𝑝𝑏𝑒𝑠𝑡) 

and global best (𝑔𝑏𝑒𝑠𝑡) after that velocity vector is used to determine particle positions. For a 

swarm of size K, location of kth particle is denoted using vector  𝐴⃗⃗  ⃗𝑘 = (𝑎𝑘1, 𝑎𝑘2, … , 𝑎𝑘𝑙)
𝑡;  𝑘 ∈

{1, 2, … , 𝐾} and, 𝑎𝑘𝑛 corresponds to lth dimension of position vector 𝐴 𝑘 that possess the values 

zero and one. Velocity of these particles is represented by the vector, 𝐵⃗ 𝑘 = (𝑏𝑘1, 𝑏𝑘2, … , 𝑏𝑘𝑙)
𝑡; 

where every element 𝑏𝑘𝑛 represents the chances that an element  𝑎𝑘𝑛 will possess the value ‘one’. 

The best previously obtained location of kth particle is  𝐶⃗⃗  ⃗𝑘 = (𝑐𝑘1, 𝑐𝑘2, … , 𝑐𝑘𝑙)
𝑡  and the best 

previously obtained location of the whole is   𝐶⃗⃗⃗⃗  ⃗
𝑖 = (𝑐𝑚1, 𝑐𝑚2, … , 𝑐𝑚𝑙)

𝑡 where m is the best particle 

in the swarm. 

Velocity and positions after ‘t ‘iterations are updated by using Eq. (2) and Eq. (3), 

 𝐵⃗⃗  ⃗𝑘
𝑡+1 = 𝑐. 𝐵⃗ 𝑘

𝑡 + 𝑈⃗⃗ [0, 𝜂1] ∗ (𝐶 𝑘
𝑡 − 𝐴 𝑘

𝑡 ) + 𝑈⃗⃗ [0, 𝜂2]

∗  (𝐶 𝑘
𝑡 − 𝐴 𝑘

𝑡 )                                                                                                                   (2)  

 𝑎𝑘
𝑡

= {
1,        𝑖𝑓 𝑆𝑖𝑔 𝑏𝑘

𝑡+1 > 𝑟𝑘

0, 𝑖𝑓 𝑆𝑖𝑔 𝑏𝑘
𝑡+1 ≤ 𝑟𝑘

                                                                                                                   (3) 

Sigmoid function is defined in Eq. (3),    

𝑆𝑖𝑔( 𝑏𝑘
𝑡+1) =

1

1 + 𝑒−( 𝑏𝑘
𝑡)

                                                                                                                         (4) 
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Function 𝑈  ⃗⃗ ⃗⃗  is uniformly distributed and yields vectors whose locations are arbitrarily chosen, ∗ 

indicates point wise multiplication of vectors, 𝜂1 and  𝜂2 are perceptive and communal 

constraints.   𝑟𝑘 ∈ [0, 1].  DPSO algorithm ends after the maximum number of iterations are 

attained. 

 

5. MULTILEVEL DISCRETE PARTICLE SWARM OPTIMIZATION FOR GRAPH 

PARTITIONING (MLPSO) 

For minimal cut graph partitioning discrete particle swam optimization is not feasible for the 

applications in which graphs posse’s larger vertex sets.  Consequently, we have proposed to 

incorporate multilevel partitioning with DPSO and developed MLPSO algorithm for graph 

partitioning. MLPSO aims to find the optimal solution for the minimum cut partitioning problem 

of graph G = (P, Q). Every particle of the swarm is selected as partition vector 𝐴̅, and the fitness 

function is to minimize Cut (𝐴̅). 

MLPSO Operates in three phases; primary partitioning in which population is initialized on smaller 

graphs, then the refinement projects back the particles to the succeeding level finer graph and lastly 

bisected graph is partitioned into k – parts by recursion.  

In the stage of coarsening, a reduced form of the input graph is generated. The procedure of 

coarsening generates a series of reduced and coarser graph, till the dimensions of the coarsest graph 

are appropriately smaller.  Maximal matching approach is used in it to select edges for contraction; 

which includes either random matching or heavy edge matching. In random edge matching vertices 

are visited in arbitrary order and edges between them are also arbitrarily chosen for contraction. 

Whereas in heavy edge matching an edge with maximal weight is chosen for contraction. 

To partition the coarsened graphs; we have used GGGP method to create 𝐺𝑟 = (𝑃𝑟 , 𝐸𝑟). In this 

method, vertices of graph are separated in three groups 𝑋, 𝑌, 𝑍. Group 𝑋 is set by arbitrarily 

choosing any vertex (say ‘a’) from set 𝑃  to initialize set 𝑌 and 𝑍. Select a nearest vertex from 

group 𝑌 to the group 𝑋 with maximal gain and add it to 𝑋. Then every vertex in group 𝑍 that is 

incident on vertex ‘a’ and shifted to group 𝑌 by determining its gain. Similarly, recalculate the 

gain of each vertex in part 𝑌 that are incident on vertex ‘a’ and hence the subsequent iteration 

starts. This procedure is constant still the weight of part 𝑋 grow into half of the overall weight. 

Process stops when 𝑤(𝑋) =
1

2
𝑤(𝑃).  
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The Position vector, velocity vector, and personal best vector on the graph 𝐺𝑟 = (𝑉𝑟 , 𝐸𝑟) for each 

kth particle are 𝐴⃗⃗  ⃗𝑟𝑘,  𝐵⃗⃗  ⃗𝑟𝑘, and 𝐶 𝑟𝑘 respectively. MLPSO sets the swarm particles on 𝐺𝑟 during the 

phase of partitioning and projects back sequentially entire swarm,  𝐴⃗⃗  ⃗𝑟𝑘,  𝐵⃗⃗  ⃗𝑟𝑘 , 𝐶 𝑟𝑘 to the 

succeeding level finer graph.  

After this stage, internal and external weight of every particle is calculated. Internal weight of the 

kth particle of the vertex u is represented by 𝐼𝑊𝑢
𝑘 and it is the summation of weight of the arcs 

between vertex u and other vertices inside the block and external weight is represented by 𝐸𝑊𝑢
𝑘 

and it is the summation of weights of the between vertex u and other vertices outside the block. 

𝐼𝑊𝑢
𝑘 = ∑ 𝑤(𝑢, 𝑣)

(𝑢,𝑣)∈𝑄
𝑎𝑘𝑢=𝑎𝑘𝑣

                                                                                                                              (5) 

𝐸𝑊𝑢
𝑘 = ∑ 𝑤(𝑢, 𝑣)

(𝑢,𝑣)∈𝑄
𝑎𝑘𝑢=𝑎𝑘𝑣

                                                                                                                            (6) 

Borderline vertices of every particle with nonnegative external weights are deposited in a border 

hash table. The framework of MLPSO entails a nested loop. Ending conditions are outlined by the 

outside loop, whether to run MLPSO for maximal number of cycles 𝑀𝑚𝑎𝑥  or not. Internal and 

external weight of the particles are crucial in calculating gain and borderline vertex for the simple 

execution of MLPSO. At every iteration, the weights of all the adjacent vertices of the shifted 

vertex are restructured to maintain the uniformity in internal and external weights. The border hash 

table fluctuates corresponding to the variations in partitioning. Lastly, the recursive algorithm is 

applied to get ‘k’ parts of the bisected graph produced in earlier phase of MLPSO.  

 

6. PERFORMANCE ANALYSIS 

For the performance evaluation of MLPSO, Walshaw’s GPT Benchmark [30] is used and the 

results are compared with multilevel mesh partitioning and domain decomposition technique 

(MMPDT) [31] and multilevel iterative tabu search (MLTS) [32].  Parameter setting for MLTS is 

𝛼 = 0.99, 𝛾 = 0.099|𝑃|, 𝑝𝑠𝑡𝑟=0.0199|𝑃| and for MLPSO is 𝑐 = 0.99, 𝜂1 = 𝜂2 = 0.499, 𝐵𝑚𝑎𝑥 =

5, 𝐾 = 40,𝑀𝑚𝑎𝑥 = 25.  The termination time changes according to number of vertices and edges 

in a graph, which ranges from half second for the smaller graphs up to 2500 node to four minutes 

for the huge graphs. Comparison of cut values for partition of each graph for different values of k 

is shown in Fig. 3, Fig. 4, and Fig. 5.  
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Fig. 3: Graph cut for k = 2 

 

 

 

Fig. 4: Graph cut for k = 4 
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Fig. 5: Graph cut for k = 8 

 

Heavy edge matching incorporated in MLPSO massively condenses the dimensions of the graph 

and assists greedy graph growing partitioning in producing improved stable partition. In addition 

to this discrete particle swarm optimization is implemented at the complicated and tedious 

refinement process it plays crucial role in reducing the algorithm run time while producing 

minimal cut and optimal partitioning. MLPSO is superior in comparison with other two algorithms. 

To evaluate the potential of MLPSO we have analyzed it in contrast to the best-balanced partitions 

that are deposited in the Graph Partitioning archive [33]. Maximum number of results in this 

archive are produced by the technique proposed by Schulz et al [34], by incorporating evolutionary 

technique with JOSTEL multilevel approach. Cut values produced by MLSO are highly improved 

than best partition cut values.  
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Table1: Comparison of MLPSO Cut with Best Cut 
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7. CONCLUSION 

Multilevel Particle Swarm Optimization algorithm for the stable k partitions of graph is developed 

in this paper. It uses the idea of edge matching, greedy graph partitioning and incorporates it with 

discrete particle swam optimization for the refinement process. We widely assessed performance 

on a group of graphs in benchmark dataset and partitioning archive. The outcomes demonstrates 

that the developed method performs improved than the other methods. Optimal cut values in lesser 

computation time span are the advantages of the proposed method. New hybrid approaches by 

combination of swarm intelligence-based optimization methods can be developed to enhance the 

performance. 
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