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Abstract. In this paper, we will discuss some results on the existence and uniqueness of mild and strong solution of
initial value problem of fractional order subjected to non-local conditions, by using the Banach fixed point theorem
and the theory of strongly continuous cosine family under Caputo sense. Furthermore, we also prove that solution
of Nonlinear Fractional Volterra Integrodifferential Equations and Nonlinear Fractional Mixed Integrodifferential
Equations With Nonlocal Conditions is unique. Moreover, examples demonstrate the validity of the obtained main
result and we obtain the solution for an equation, and proved that this solution is unique.
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1. INTRODUCTION

Some results on the problem of existence and uniqueness of solution of differential equations
of fractional order have been discussed by some authors which can be found in [1, 2, 3, 4].
The purpose of this paper is to discuss the existence and uniqueness of solution of differential
equation of fractional order, by using the Banach fixed point theorem and the theory of strongly
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continuous cosine family.

Now consider the fractional order non-linear differential equations with non-local conditions as
follows:

(L1 % )+ () = x(n, 5(n). n:<p<n,v,19<v>>dv>, 1€ oy 0 +E]

(1.2) B(no) + p(8) = dy,

For the shake of simplicity let

w(n) = /n " o(n,v. 0(v))dv

0

where f3 is the infinitesimal generator of a %, semigroup .7 (1n),n > 0, on a Banach space .2
and the nonlinear operators X : [0, Mo+ &) X XX X = 2, 0:Q— Z7,¢ : [No,No + &] x
Mo,Mo+&| x & — £ are continuous and 9, € 2.

Moreover, we consider the nonlinear fractional mixed Volterra - Fredholm integrodifferential

equation:

at _ n Mo+&
(13) 9% (n)+BB(n) = x(n.v(n), ¢<n,v,ﬁ<v>>dv,/n w(n,v,8(v))dv),

Mo 0
n € Mo, Mo +&]
(1.4) B (MNo) + 1 (N, N2y eeee Np, ¥(.)) = Yo,

For shake of shortness let

n N0+

win) = [ “ptn.v.0)av and yn) = [ 7 yin.v, 0(v))av
0 0

where 0 < o< <M <....... N, < Mo+&, B is the infinitesimal generator of a %) semigroup

7 (n),n >0, in a Banach space 2" and the nonlinear functions y : [1o,Mo+ &] X 2" x 2" x

2= XMoo+ 8IP x 2= 20,y [No,no+E] x [N, Mo+ 8] x 27— 2" and By €

Z.

Riemann-Liouville definition [5, 6]: For o € [n— 1,n) the « - derivative of f is

s [,

L(n— o) di" x)@—n+l
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Caputo definition[5, 6]:For o € (n— 1,n) the o - derivative of f is

o 1 t fm
aCDz f(l) = F((X—n) /a (t— T)rgz?nﬂdf

2. MILD AND STRONG SOLUTIONS OF NONLINEAR FRACTIONAL VOLTERRA INTE-

GRODIFFERENTIAL EQUATIONS

2.1. Preliminaries. Definition 2.1.1 A continuous solution ¥(1) of the integral equation

)™ W
@1.1) B(m) = T n =)D~ RO + gy -

[(—a—n) Jn, (n—v)-ortn ’
1 € [Mo, Mo+ €]

is said to be a mild solution of problem (1.1) -(1.2) on [19, N + &]

Definition 2.1.2 A function ¥(1n) is said to be a strong solution of problem (1.1) -(1.2) on

(Mo, Mo + &], if ¥(n) is differentiate almost everywhere on [1g, 1o + E],9% € 2 ([no, Ny +
&1, 27).0(no) + u(d) = d,

@12) 99 () + o) = 2(n.9(n). /n :<p<n,v,ﬁ<v>>dv>, 7 € [Mos Mo+ &]

Let us denote

A = max || .7 (n) |,

nefo,g]
Z= max [ x"(n,0,0) |,
Mo<n<no+&
Y= max [ ¢o(n,v,0)],

no<v,n<no+§
A= .
1 = max | w(m) |l

For shake of our convenience or for further use we list the following hypothesis.

(H) If ¥, X, thenpu: Y CQ— 2 and 3 aconstant A > 0 such that

I (D) = p(B2) [I<]] B1(n) = B2(n) [l

(H») B is the infinitesimal generator of a 6, semigroup .7 (n),n > 0 on X.
(H3) The constants || & ||, 7, 6,31,02”)?,‘1’, M N, L, W, A and A satisfy the following con-

ditions:
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M [H Do || +A1+ Ly ré +$§‘Pr§2+$)§%§2+ﬁ§] <r,and
AN+ MLYE+ M LFVE] < 1.

2.2. Main Results. Theorem 2.2.1 If the following assumptions hold
(i) hypotheses (H;) — (H3) hold,
(i) x :[Mo, Mo+ &] x 2" x Z — 4 is continuous and there exist constants Z;,Zf > 0 such

that
| 2", 01,00) =" (0,0, 0) |< 25 || 91 =0 | +25 | vi—va |

(iii) ¥ : Mo, Mo+ &] x [No, Mo+ &] x Z — 2 is continuous and there exists constant ¥ > 0

such that

|| (p(nav71915)_(p(nav7l92a) ||§‘P(” 191_192 ||)

Then problem, (1.1) -(1.2) has a unique mild solution on [1g, M9 + &].
Proof Let @ : Y — Y be an operator defined by
(2.1.3)

(®o)(n) =7 (1 —mn0)[Do —u(o)] +

1 /77 TM=v)x"(v,c(v),w(v))dv
F(—a—n) Jn (=)t

n € [No,Mo+§J.

By our assumptions, we have

2" (v,0(v),w(v))

(o=l +Al]+/n:/// | [(—o—n)(n—v)-ori-mn | dv
<A || Do || +Ad]
+. 4 n [H X(H)(V,G(V),W(V)) _%(n)(vjo’o) I+ || x(n)<v7070) H} “a’TvH
Mo

n
S A o || +A]+ A4
Mo

[g)g o) Il +%; /n: | ¢(v.n.6(m) = @(v,1,0)+9(v,n,0) | +.$1} ‘é_t
dv

n
< M| B || +A1] +//z/ [g,gr+$,§wr(v —10) +-Z2%1 (v —10) +,st] E
Mo
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Q.14) <A % || +A)]+.4 [.iﬂxlrﬁ + LIVrE + LW 2+ LE| - <

C* C*’
where I'(—a —n)(n —v)"*T!1=" = and || { ||= ¢*
for 6 € Y. The equation (2.1.4) shows that ®(Y) = Y. Now for every 61,0, € Y and 1 €

[M0, Mo + &], we obtain
| (Po1)(n) — (Paa)(n) <[ 7 (n—mno) [[[| u(o1) — (o) |

- | {2, 01(v),w(v)) = 2 (v, 02(v), w(v))] [ v
iy 17 T(—a—mm—v) ]

n dv
< MN|61-0 o +//z/n Lo lat22¥ o0 (v-m)] 7
0

1
S MN|| 0y —0; |lg+ 2Ly (1 —10)+ LyPEN | o1 — 02 v g

1
(2.1.5) <[ MA+ MLV + M L2VE || 01— 0s |y &

If g = MN+MLYE+ M L7YE?, then

q
| Po| — Do, [[y< Ig | o1 =02 [y

where 0 < g < 1. From this it is clear that ® is a contraction on Y. By the Banach fixed point
theorem, the function ® has a unique fixed point in the space Y and this point is the mild solution
of problem (1.1) -(1.2) on [1g, o + &].

Next we prove that the problem (1.1) -(1.2) has a strong solution.

Theorem 2.2.2 As following assumptions hold

(i) hypotheses (H;) — (H;) hold,

(ii) 2 is a reflexive Banach space with norm || . || and ¥, € D(f3), the domain of f3,

(iii) u(.) € D(B),

(iv) x :[Mo,Mo+E&] x Z x 2 — £ is continuous and there exist constants .,2”)’( >0,i=1,2
and % > 0 such that

12" (n,01,01) = x (0,92, 0) | +%y | m—m |< Ly | 91— | +Z5 | vi— 2 |,
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(v) @ : Mo, Mo+ &) x [No,Mo+&E] x & — 2 is continuous and there exists constant ¥y, ¥ > 0

such that
| oM, v,01,) =M, v,0,) Sy [m—m <P -0 |.

Then ¥ (n) is a unique strong solution of problem (1.1) -(1.2) on [1y, No + &].

Proof If all the assumptions of Theorem 2.2 are satisfied then the problem (1.1) -(1.2) has a
unique mild solution belonging to Y which is denoted by p.

Claim: p(n) is unique strong solution of problem (1.1) -(1.2) on [1g, o + &]. If

L= max | x"(n,p(v),0) |,
No<n<no+&

Yo= max |lo(n,v,p(v))]|
Nno<v,n<no+¢

then for any 1) € [0, Mo+ &] and p € R with N+ p € [n9, N0 + &] , we obtain
p(m+p)—pn)=7m-n0)7(p) 1]

—7TM-no) [T (p)—1u(p)— T (M+p—n0)up(n+p))—ulpn))]
No+p

[ T =) ¢ [ v p )w (v = £ v p ()0
2 (v,p(v).0)] G

+ n:9(1;—v)x<">(v+p,p(V+p),w(V+p))cé—Z

- [ 7= vp ) wv)

— (1 -10)[7 (p)—1] %

—~TM-n0) [T (p)—1u(p)—T(M+p—mno0)ulp(n+p))—ulp(n))]

No+p
+] T M-y X (v.p(v),w(v) = 2" (v,p(v),0)

F2(,p(),0)] 5

<

@16+ [ T =) (4 p.plv-+p)wlv+p)) = £ v p(v)w(v)| B
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where / is the identity operator.

Using our assumptions and equation (2.1.6), found that

le(m+p)—p(n) < AZp || B || +4p || Bulp) | +#A| p(n+p)—p(n) |

No+p 1 )
[T [ 2y vy o) = p ) |+ 2 | wv) 42
0

C*

n dv
[ ALy V=V L (v +p) =) [ 2 v +p) —w(v) ]
0

_p | By |+ | B(p) |

= (- N
m no+P///[$fW(V)+$zw(v —|—p)} Cé—t:
T | [#ap 2 1 pv+p) - pv) | +Lup.v+p)

<P || Bl +#p || Brlp) |l !
- (1— AN (1— AN

1

1 dv
_ 1 _ 2111 zlP
+(1—///A>C*/no[$”p+gx Ip(v+p)=pW) | +2¥pe + 23 ¥l 7

+

d_v
C*

MNL]YEO + Lap]

_|_

<[ Boll+4p || Brp) |
- (1—ZN)C

///fz‘yzpé + ML + ML pE + MLYYNPE? + M LTV pE
(1—#N)C*

ML, n 4
e, 1R =P lav

n 1
2.1.7) <Pp+A : lp(v+p)—p(V) HdvE,
0

where
P =

M| BOo ||+ || Bu(p) | +4 [ L7 Y28 + Lo+ L& + Ly ¥nab® + L7 PE]
(1—AN)E*

1
and A = @ //j// INISE Using Gronwall’s inequality (with ¢ = Pp), we get

lp(n+p)— ()||<Ppe¢* form € [no,no+&J.
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Therefore, p is Lipschitz continuous on [1g, o + &]. The Lipschitz continuity of p on [1g, 1o +

&] combined with (iv) and (v) of Theorem 2.2, gives that

n
n = x2(n.5(n). /n v 5(v)dv)

is Lipschitz continuous on [1y, o + &]. Consequently, p(n) is the strong solution of problem

(1.1) -(1.2) on [n9, M0 + €]

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR FRACTIONAL

MIXED INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS

3.1. Preliminaries. Definition A continuous solution ©¥(7) of the integral equation
3(n) =7 (M —="m0)% =7 (N =n0)k(MN, M2, 00 Mp, B(.))

! 1T (M=) (v, B(v), w(v), ¥(v))dv
(3.1.1) S vEr— /no (7 vy :

with 1 € [19,No + &], is said to be a mild solution of problem (1.1) -(1.2) on [1g, Mo + &]
For shake of our convenience or for further use we list the following hypothesis.
(Hy) IfV 9,9 € Y, then 3 a constant A > 0 such that
| (M, m2y e Np, (1)) — (M, M2y e Np;¥(2) [SA[ O =2 [y
(H,) If for some .# > 1, then A is the infinitesimal generator of a %, semigroup 7 (1), >0

on 2 such that

| 7m) <2
(H3) There are constants %}, ¥, .77 and A such that

4= max H Xn<n707070) Hv
No<n<no+§

Y= max [ ¢(n,v,0,0)],
No<v,N<no+¢

A= max | o(n,v,0,0) |,
No<v,n<no+§

Av=max | (M2, Mp, B ()) -
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(Hy) The constants .# Ay, L, W, ¥, , 74, and r satisfy the following two inequalities :

M| O || +A1+ LrE+ LYrE* + LY E*+ LAIE + LAE + AE] <,
MNA MLE+ MLYE + ML AE] < 1.

3.2. Main Results. Theorem 3.2.1 Assume that
(i) hypotheses (H;) — (Hy) hold,
(i) x : Mo, Mo+ &) x X x X x Z — Z is continuous in 1 on [Ny, No + £] and there exists a

constant .Z > 0 such that

12" (n, 01, 01,00) — 2" (1, 92,02, 02) |

<Z([ -t +[v-vl+]o—0cl),

for ¥;,v;,0;, € Q,,i=1,2.
(iii) @,y : [N0,Mo +&] x [10,M0+ &] x 2~ — 2 are continuous in v,n on [no, Mo + &] and

there exist positive constants W, .7 such that

[ o(M,v,01,) —@n,v,0,) [S¥(]| 1 — B2 ]),
w(n,v,01,) —w(n,v,0,) <] 0 -5 |),
for ¥, v, € Q,,i=1,2.
Then problem (1.1) -(1.2) has a unique mild solution on [1o, o + &].
Proof Let @ : Y — Y be an operator defined by

(@o)(n) =T (M—"0)% — T (N —n0)L(N1,M2, - envee. Np,0(.))

1 /’7 TM=v)x"(v,0(v),w(v), 7 (v))dv
[(—a—n) Jn, (n—v)-eti ’
for n € [no, M0+ &].

Claim: ® maps Y into itself.

_|_

By using hypotheses (H) — (Hy) and assumptions (ii), (iii), we have

[ (@o)() =117 (m =n0)So [| + | T (n = 10)t (M1, M2, -0 Mp, () ||
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n7 (M —v)x"(v,0(v),w(v),¥(v))dv
o [(—o—n)(n—v)-o+i=n

< M| o || +A MM

+1 |

/nn [” x (v, 0(v),w(v),7(v)) — 2™ (v,0,0,0) || + || "™ (v.,0,0,0) I@ HdTvH

0

n d
< M| S || + AN M [$r+$§(‘l’r+‘{’1)+$‘g’(%r+ﬁfi)+fl]c—i
Mo

1
S M| O || +A1 + LrE + LYrE>+ LV EX+ LATE + LAE + LE] &
<r—
<1

where T'(—a —n)(n —v)" %"= Cand || { |={*
Thus, @ maps Y into itself.
Now, for every 61,0, € Y, n € [0, No + &] and using hypotheses (H), (H>), (Hs) and assump-

tions (i), (iii), we obtain
| (®o1)(n) — (Po2)(n) [[<[| 7 (M —m0) |

+ H ‘u“(nlanZ; """" np761(')) _:u“<n1;n25 """" np762(‘)) H

L (n) (n) dv
+ /n 17 =) [ (v.01(0),w(0), 7)) = 2 (v, 02(0) w(¥). 1) | 1555
0
n v no+¢& dv
S///AHc]—Gz||r+%$|yol—62|]r+/ [1+‘P/ dT + A dﬂ}—*
Mo Mo Mo C
dv
S HMAN|or— |y + AL || 01— 0 ||y E[1 +PE +%§]F

1
<q|| Gl—GzllYE

where g = AN+ M LE + M LYE> + H# L 7 E? and hence, we obtain

1
| (®o1) — (P0o2) [x< g 61—02 [y =

-
where 0 < g < 1. Hence the operator @ is a contraction on Y. By using the Banach fixed point

theorem,we observe that the function ® has a unique fixed point in the space Y and this point is

the mild solution of problem (1.1) -(1.2) on [, No + &].
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4. APPLICATIONS

We consider the fractional Volterra -fredholm partial integrodifferential equation as follows,

%p(p,m) +82¢<p,n)
an“ ap?

n Mo+&
(41) :9(77,(7’(13777)7 . (P1(777V719(V))d"a/n Wl(ﬂ?vaﬁ(v))dv)

0<p<l1, neMmono+E]

with initial and boundary conditions

(4.2) ¢(0,n)=0¢(1,m)=0, n<[no,no+E]

6
(4.3) ¢(p,0)+ Y ¢(p,mi) =do(p),0< Mo <M <M < ccooe.Mp < Mo+
i=1
where d : (0,1) X [n9,M0 + E] X R — R,0 : [No,Mo + E] X R X R X R — R, @,y :

[Mo, Mo+ &] X [0, N0+ &] X R — R are continuous functions.

Let 2" = 2?0, 1] be the space of square integrable functions. Let 8 : 2° — 2" be an oper-
ator defined as B(p) = ¢" with dense domain
D(B) = {o € Z : 0,0 are absolutely continuous, 6" € 2 and 6(0) = c(1) =0}, gener-
ates an evolution system and Ry(7n,V) can be extracted from evolution system, such that ||
Ry(n,V) [|[<Mo,My>0forv<nand® €A C 2. Define the functions y : [19, N0+ &] x 2~ x

XXX =X ,0:[Mo,Mo+E]x[No,Mo+E]x X — X, w:[No,No+E] x [N, Mo+E] x 2" —
2 and W : [No, Mo+ &P x ' — X as follows

x(n,%,v,0)(p) =0(n,8(p),v(p),o(p)),
o(n,v,%)(p) = o1(n,v,8(p)),
v(n,v,8)(p) = wi(n,v,8(p)),

H(Tl1>n2> """" npaﬁ()) = Z(p(vani)
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forn € [No, Mo+ &J],%,0,0 € 2 and 0 < p < 1. We assume that the functions 6, ¢, and vy in
(4.1) satisfy all the hypotheses of the Theorem 3.2. Also we suppose that

0
1Y o(p.m) Z¢ v1i) [SAY sup | p(n)—v(n) |
i=1 neMmo,no+&]

for p,v € Y1 = €([No, Mo + &];R) and some constant A* > 0. Then the above problem (4.1) -

(4.3) can be formulated abstractly as quasilinear mixed integrodifferential equation in Banach

space Z:
atl n no+&
85 (n)+ B3 (n) =x(n,v(n), . w(n,vyﬁ(V))dv,/no y(n,v,8(v))dv),
n € [No,no+&]

B(No) + K (N1, M2 enen. Np, (.)) = Do,

Since all the hypotheses of the Theorem 3.2 are satisfied, the Theorem 3.2 can be applied to
guarantee the mild solution of the fractional mixed Volterra—Fredholm partial integrodifferential

equations (4.1) -(4.3).

5. CONCLUSIONS

The purpose of this paper is to discuss the existence and uniqueness of solution of differential
equation of fractional order, by using the Banach fixed point theorem and the theory of strongly
continuous cosine family. Moreover we also discuss the existence and uniqueness of mild and
strong solution of initial value problem of fractional order subjected to non-local conditions, by

using the Banach fixed point theorem and the theory of strongly continuous cosine family.
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