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Abstract. The aim of this present paper is to obtain some fixed point theorems such as Kannan and Chatterjee type
and their extension for a self mappings in a complete C*- algebra valued b-metric space by using positive functions
on C*-algebras.
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1. INTRODUCTION

The Banach contraction principle [7] is a fundamental result in fixed point theory and has a
great many application, and they are scattered throughout almost all branches of mathematics.
It has been extensively used in proving existence and uniqueness of solutions to various func-
tional equations, particularly differential and integral equations.

Many generalizations of Banach fixed point theorem were obtained by many authors have ex-

tended, generalized and improved Banach fixed point theorem in different ways. One of the

most important of these generalizations is Kennan’s fixed point theorem. In 1968, Kannan [4]
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showed that a contractive mapping with a fixed point need not be necessarily continuous in
proving the following result:

theorem [4] Let (X,d) be a complete metric space and 7 : X — X be a mapping such that:
d(Tx,Ty) = kld(Tx,x) +d(Ty,y)]

for all x,y € X and k € [0, %) Then T has a unique fixed point. The importance of the above
result lies in the fact that Kannan’s theorem characterizes the completeness of the metric space.
Theorem 1.1 is one of the several generalizations of the Banach contraction principle which
were derived either by changing the contraction condition or by changing the space to a more
generalized space.

In [9], the concept of C*-algebra-valued b-metric spaces was introduced. The main idea consists
in using the set of all positive elements of a unital C*-algebra instead of the set of real numbers.
They presented some fixed point results for mapping under contractive or expansive conditions
in these spaces.

In this paper, we give some fixed point theorems for self-map with a new contractive condition
depend on y-positive contractive mapping.

To begin with, we collect some definitions and basic facts on the theory of C*-algebras, which
will be needed in the sequel. Suppose that A is an unital algebra with the unit I. An involution
on A is a conjugate-linear map a — a* on A such that (¢*)* = a and (ab)* = b*a* for all
a,b € A. The pair(A, x) is called a *-algebra [1]. A Banach x-algebra is a x-algebra A together
with a complete submultiplicative norm such that ||a*|| = ||a|| Va € A. A C*-algebra is a Banach
x-algebra such that ||a*a|| = ||a||* Va € A.

An element x € A is a positive element, denote it by x = 04 , if x € Aj, and o (x) C [0, 0], where
o (x) is the spectrum of x and A, = {x € A : x* = x}. Using positive elements, one can define
a partial ordering < on A as follows: x <y if and only if y —x > 04. From now, by A, we

denote the set {x € A: x> 0a} and |x| = (x*x)%, AN={achA,:ab=baVbechA,}.

2. PRELIMINARIES

Defination [9] Let X be a nonempty set, and b € A such that b = I. Suppose the mapping

d: X x X — A satisfies:
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(1) 0o =da(x,y) forall x,y € X and dp (x,y) =0s < x=.
(2) dp(x,y) =dp(y,x) forallx,y e X .
(3) da(x,y) 2 blda(x,2) +da(z,y)] forallx,y,z € X.

Then d is called a C*-algebra-valued b-metric on X and (X,A,d) is a C*-algebra-valued b-
metric space.

Defination [9] Let (X, A, d) be a C*-algebra-valued b-metric space. Suppose that {x,} C X and
x € X. If for any ¢ > 04 there is a natural number N such that for all n > N, dy (x,,x) < ¢, then
{x,} is said to be converge with respect to A, and {x,} converges to x and x is the limit of {x;,}.
We denote it by nl;ni oo{xn} =x.

If for any ¢ > 0, there is N such that for all n,m > N, dy (x,,x,) < ¢, then {x,} is said to be a
Cauchy with respect to A.

We say (X,A,d) is a complete C*-algebra-valued b- metric space if every Cauchy sequence
with respect to A is convergent.

Example 1.1 Let X = C and A = M,,(C) the set of all n x n-matrices with entries in C.

Defin

laj —bi|P - 0
d(a,b) =
0 oo Jan —by|?

where a = (a;)7_,, b = (b;)}_, are two m X n-matrices, a;,b; € Cforalli=1,--- ,n.

One can define a partial ordering on (= M, (C)) as following a; < b; if and only if Re(a;) <
Re(b;) and Im(a;) < Im(b;) Vi=1,--- ,n. And an element a > 0 is positive in M,,(C) if and
only if Re(a;) > 0 and Im(a;) > O foralli=1,--- ,n. (X,C,d) is C*-algebra-valued b-metric

space.

One can prove that
d(a,c) % 27(d(a,b) +d(b,c)),

for all a,b,c € M,(R).

We need only to use the following inequality

lx—z|P <2P(|x—y|P + [y —z[?).
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Where b =21y, (r) = Iy, r) Vp > 1, where Iy, (g) is the unite element in M, (R).
Lemma 1.1 [6, 1] Suppose that A is a unital C*-algebra with a unit /.

1) Foranya € Ay wehavea <1< ||al| < 1.

(1)
(2) Foralla,b € A, 0y < a < b implies that ||a|| < ||b]||.
(3) Ifa € Ay with [|a|| < 4, then I —a is invertable and ||a(I —a)~!|| < 1.
(4) Suppose that a,b € A with a,b = 0, and ab = ba, then ab = 0, , where Oy is the zero
element in A.
(5) by A we denote the set {a € A:ab=ba Ybe A} LetacA,ifb,cc Awithb>=c >0y
(I-a)'b=(I—a)lc.
Defination [1] If v, : A — B is a linear mapping in C*-algebras. It is said to be positive
function if wy (A ;) C B, where A, the positive cone in A, and B the positive cone in BB .
Proposition 1.1 [1] Let A be a C*-algebra with I, then the positive function is bounded, contin-
uous, contractive and wu (1) = ||y,
Defination [2] Suppose that A and B are C*-algebra. Amapping y, : A — B is said to be

C*-homomorphism if :

1) ya(ax+Dby) = ays(x) +bya(y).
v,

a(xy) = wa(x)waly).
A () = ya(x)".

4) yy the unit in A to the unit in B

)
2)
3) v

(
(
(
(

Corollary [2] Every C*-homomorphism is contractive and hence bounded.

Corollary [2] Suppose that Y is C*-isomorphism from A to B, then o ((y,(x))) = o(x) and
[wa () = [|x]]-

Defination [5] Let y, : A — A be a positive function and having the following constraints:
1
2
3

W is continuous and nondecreasing.
a(c) =0y if and only if ¢ = 0.

(1)
(2) v
(3) walc) <c Ve=0y (ceAy).

(4) Yi_obFyk — 0, at n — +oo where b € A, with b = I.
Theorem [1]

(1) The set A, is equal to {a*a:a € A}.
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(2) Ifa,b € Agg and ¢ € A, then a < b = c*ac < c¢*bc.

(3) If A is unital and a, b are positive invertible elements, then a < b = 0y = a ' =<pl

3. MAIN RESULTS

In this section, we give some basic fixed point theorems for self-map with contractive condi-
tions in complete C*-algebra-valued b-metric spaces.
Theorem 3.1 Let (X, A, dy ) be a complete C*-algebra valued b-metric space. Let T : X — X

be a self mapping satisfy the following contraction condition

dp(Tx,Ty) <X wu(dy(Tx,x) +du(Ty,y)),

where W, : Ay — A satisfy the condition ||y || < . Then T has a unique fixed point.

Proof. Let xq € X be arbitrary point and construct a sequence {x,};,_, C X by the way: x| = Txg,X» =

TxyyeoooisXny1 = Txy

dp (Xnt1,%n) = da(Txn, Tx,—1)
= Wa(da(Txn,x,) +da(Txp—1,Xn-1))

= Wa(da(Txp,xn) + Wa(da(Txp—1,%-1)).

Implies (I— l[/A)dA(an,xn) = WA(dA(Txn,l,xn,l)).
Implies da (Xpt1,%:) =< (I — wa) " wa) (da(Txn—1,Xn-1))-

da (X1, %) = (T —wa) " "wa) (da (Xn, %0 1))
(T = wa) " wa) (da(Tx1,Txn2))
(T —wa) 'wa)*(da(xn-1,%0-2))

A

= (1= wa) " wa) (da(x1,%0)).

Let ¢ = (I —wy) 'y, since |y < % implies ||(1 —wy) 'yl < 1.
Implies dA(x,,H,x,,) j ¢g(dA(x1,x0)).

For any m > 1,p > 1, it follows that

dp (X, Xt p) = bda (X, Xims1) + b2 da (X1, Xmr2) + -+
6P dp (X p—2, Xt p—1) + P (X p—1, X p)
= by (da(x1,%0)) +b> ¢ (da(x1,%0)) +- -
+bP NP (dp (o1, x0)) + 0P 9L (d (1 x0)
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p—1 _
= X O darx0)) +5 19 (d 1, 0)

— 0p(at m,p — +0).

Therefore {x,} is a Cauchy sequence with respect to A. By the completeness of (X, A, dy ), there exists

an x € X such that lim x, =x.
n—y—+oo

0a = dp(Tx,x) X b[dp(Tx,Tx,)+dp(Tx,,x)]
=bdp(Tx,Tx,) + bdp(Xy+1,x)
= by (da(Tx,x) +dp(Txp,x,)) + bda(Txy,x)
= bW (da(Tx,x)) + bWa(da(Txn,xn)) + bda (Txn, x)

Implies dp (Tx,x) < (I —bwa) " bwy) (da(Txn, %)) + (I —bwa) ) (da(Tx,,x)) — 0p(n — +o0),
Implies da (Tx,x) = 04 implies Tx = x.
Hence, Tx = x, i.e., x is a fixed point of T.

To prove the uniquness suppose that y(# x) is another fixed point of T. Since

0 2 da(x,y) =dp(Tx,Ty) 2 Ya(da(Tx,x) +da(Ty,y))

= Wa(da(Tx,x)) + wa(da(Ty,y))
=<04.

This is contradiction = dj (x,y) = 0p = x =y. O

Theorem 3.2 Let (X, A, dy ) be a complete C*-algebra valued b-metric space. Let T : X — X

be a self mapping satisfy the following contraction condition

dp(Tx,Ty) < y/A(dA(;vy) + dA(TX»X)JZrdA(Tw))’

where W, : Ay — A satisfy the condition ||y || < . Then T has a unique fixed point.

Proof. Let xo € X be arbitrary point and construct a sequence {x,};_, C X by the way: x| =

Txg,xp =Txy,..... s X1 = Txy.

dp(Xps1,%0) = dp(Txy, Txp—1)

j WA(dA(xnéxnfl) + dA(Txmxn)"‘dé&(Txnflaxnfl))
— WA(dA(xnéxnfl) + dA(xn2+17xn) + dA(xnéxnfl))

= W (dp (s ) + 2alinp1stndy
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Implies (I — Fya)(da(Xns1,%)) = Wa(da(n,Xn-1))-

Implies

dp(Xp41,%) = (1 — ‘WA) 1V’A)(dA(xn>xn—l))
= (- -WA) "y )2 (da (Xn-1,%0-2))

< (1= Swn) ' wa)"(da(x1,x0)).

Let ¢ = ((I— ya)~"wa), since || ya| < 3 implies || (7 — fya)'wa)| < 1.
Implies dA(x,H_] ,xn) < (])g(dA()q ,X())).

Forany m > 1,p > 1, it follows that

dp (Xm, Xm+yp) = bdp (Xm, Xm41) +b2dA(xm+1,xm+2) 4
+b6P 7y (Ximy p—2,Xmp—1) P dp (K p— 1, Xm s p)
= by (dp(x1,%0)) + 2O (da(x1,%0)) + -
+b”_1¢m+p 2(da(x1,%0)) + b1 o5 P (d (x1,x0))
z bk¢m+’< Ndy (x1,%0)) + 6P~ o0 P~ (dy (x1,x0))

— 0p(at m,p — +o0).

Therefore {x,} is a Cauchy sequence with respect to A. By the completeness of (X,A,dy),

there exists an x € X such that lim x, = x.
n—y+o

04 = dp(Tx,x) 2 bldp(Tx,Tx,) +dp(Tx,,x)]
= bdp(Tx,Txy,)+bdy(Txy,x)
< by, (dA(xxn) + dA(Tx:x)+2dA(Txn7xn))+bdA(Txn,x)
= by (B by (BT + by (BEFE) + by (341,).

Implies (I — bél//A) (da(Tx,x)

) = by () + by (L)) 1 by (x,41,).
Implies da(Tx,x) < ((I — % A)”

D) (bya (52 4 by (L) 4 by (x,11,3)) —
Op(at  n— Hoo).

Implies dp (Tx,x) =0y = Tx = x.

hence, Tx = x, i.e., x is a fixed point of T.

To prove the uniquness suppose that y(# x) is another fixed point of T. Since
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0 X di(x.y) = dp (T, Ty) Xy (P50 4 LA

= yu(45).

Implies [ld (x.y)| < [|ya (%52 = [[£52].

Implies dp (x,y) =04 = x=y. O

Theorem 3.3 Let (X, A, dy ) be a complete C*-algebra valued b-metric space. Let 7 : X — X

be a self mapping satisfy the following contraction condition

dp(Tx,Ty) 2 wa(da(Tx,y) +dy(Ty,x)),

where y : A, — A satisfy the conditions y (b) € A, forall b € A, and ||ya (b)wal <

B[ —

Then T has a unique fixed point.

Proof. Let xq € X be arbitrary point and construct a sequence {x, }_, C X by the way: x; = T'xg,x; =
Txy,..... yXne1 = Txy
dp(Xns1,Xn) = dp(Txn, Txp—1)
2 Wa(da(Txn,%n—1) +da(Txn—1,%))
= Wa(da(Xn+1,X0-1))
= W (b (Xn41,%0) + b (X0, Xn—1))
= Ya (D) Wa(da(Xns1,%0)) + Wa (D) Wa(da (Xn, Xn-1)) -

Implies [(7 — wa (b)) Wal(da (xni1,%)) = Wa (D) Wa (da(Xn,Xn0-1))-
dp (X1, %) = [(I—wa () Wal ™ (Wa (D) Wa(da(Xn, X0 1))

Let ¢ = [(I— wa (b)) wa] ' (wa(b)wa). since ||ya(b)yal < 5.

Implies [|((7 — wa(b)wa) ' wa(b)ya)| < 1.
Then

dA(xn+17xn) = (PA(dA(xnaxnfl))

= ¢1§<dA (xn—l 7xn—2))

= 9 (da(x1,%0))-
For any m > 1, p > 1, it follows that

d<xmaxm+p) = bdA(xmyxm+l) —|—b2dA(xm+l 7xm+2) +ee

+bp_1dA(xm+p72axm+pfl) + bp_]dA(xm+pfl amerp)
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= b (dp(x1,%0)) + 290 (da(x1,x0)) + -
+bp71¢g1+p72(dA(X17XO)> —i—bp*l(]ngrp*l(dA(xl,xo))

p—1 T~
= k);l PRI (dy (x1,x0)) +bP 1R P (d (x1,%0) )

— 0p(at m,p —> +oo).

Therefore {x,} is a Cauchy sequence with respect to A. By the completeness of (X, A, dy ), there exists

an x € X such that lim x, =x.
n——+to0

0a = dp(Tx,x) X b[dp(Tx,Tx,)+da(Tx,,x)]
=bdp(Tx,Tx,) + bdp(xXy+1,x)
= by (da(Tx,x4) +dp(Txn, X)) + bdp (Txy,x)
= by (da(Tx,xn)) + bWa(da(Txp,x)) + bdp (Txn, x)
< byy (bda(Tx,x)+bdp(x,x,)) +bWa(da(Txn,x)) +bda(Txp,x).

Implies
du(Tx,x) < ((I=bya (b)ya) ") (bW (b)ya (da(Txn,x0))) + (I = bW (b)ya) ") (bW (da(Txn,x))) +
(I = bya (D) wa) ") (B(da(Txn,x))) — Op(n — +o0).
Implies da (Tx,x) = 04 implies Tx = x.
Hence, Tx = x, i.e., x is a fixed point of T.

To prove the uniquness suppose that y(# x) is another fixed point of T. Since

04 X da(x,y) = da(Tx, Ty) X Ya(da(Tx,y) +dp(Ty,x))
= Ya(da(x,y)) + Wa(da(x,y)).

= [lda (e, < [[wa(da (o) ||+ [[wa(da (oY) < [lda(xy) ]|+ llda(x9) | = 2[lda (x, 9)-

This is contradiction = dj (x,y) = 0p = x =y. O

Theorem 4.4 Let (X, A, dy ) be a complete C*-algebra valued b-metric space. Let T : X — X

be a self mapping satisfy the following contraction condition

dp(Tx,Ty) 2 ya(da(x,y) +da(Tx,y) +da(Ty,x)),
where y : A — A satisfy the conditions yy (b) € A forall b€ A, and ||byy (b)ya | < 3

Then T has a unique fixed point.

Proof. Let x € X be arbitrary point and construct a sequence {x,}_, C X by the way: x| = Txg,x; =

Txy,..... s X1 = Txy,
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dp (Xnt1,%) = da(Txn, TXp—1)
= Wa(da (X, Xn—1) +da(Txn, Xn—1) +dp(TXn—1,%n))
= Wa(da (Xn, Xn—1) +da (Xnt1,%0-1))
= Wa(da (X0, %n—1)) + Wa (bda (Xn+1,%n) + bda (Xn, Xn—1))
= Wa(da (%n,%n—1)) + Wa (b)) Wa(da (Xnt1,Xn))
TWa(b) Wa(da(Xn, Xn-1)) -

Implies [(1 — wa (b)) Wal(da (Xn+1,%n)) = [Wa + Wa(b)Wal(da (xXn, Xn-1)).
Then

dp(ns1,%0) 2 [(T—wa (b)) wal ' ((Wa + wa (b)wa) (da(xn,x0-1)).

Let oo = [(1 — wa (b)) wal " (wa + ya(b)ya).
Then

dA(xn-H 7xn) = ¢A(dA(xn7xn—l ))

= 02 (da(Xn—1,%n—2))

=9 (da(x1,x0)).

For any m > 1, p > 1, it follows that

dp (Xms Ximtp) = bdp (Xmy Ximt1) + b2y Xy 1, Xmy2) + -
+bP "y (Xt p—2,Xmsp—1) + P dp (X p—1, X p)
= b9} (da (x1,x0)) + 6> ¢3! (da (x1,x0)) + -+
PO (dy (31, x0)) + BP0 (d (x4 x0)
= Z};ll bk¢g1+k71(dA(X1,X0)) —I—bpfl(j)gﬁp*l(dA(xl,xo))

— 0p(at m,p —> +oo).

Therefore {x,} is a Cauchy sequence with respect to A. By the completeness of (X, A,dy ), there exists

an x € X such that lim x, = x.
n—r+oo

0a = da(Tx,x) 2 bldy(Tx,Tx,) +da(Tx,,x)]
— by (Tx, Tx) + b (¥s1,%)
< by (dp(x,x,) +dp(Tx,x,) +da(Txy,x)) + bdy (Txy, x)
= bya(da(x,xn)) + bWa(da(Tx,xn)) + bYa(da(TXp,x)) + bda (Txn, x)
= by (da(x,xn)) + bWa (bda (Tox,x) + bdy (x,x4))
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+byp (dp(Txy,x)) 4+ bda (Txp,x).

Implies

da(Tx,x) = (I — bya(b)ya) ") (bya(da(x,x.))) + (I — bya(b)ya) ") (bya(b)ya((da(x,xn))) +
(1= by (b)Y) ™) (DW (da (T0,2))) + (1 = b (6) W)~ ) (b(da(Tx0,%))) —> On (n — +20).
Implies da (Tx,x) = 04 implies Tx = x.

Hence, Tx = x, i.e., x is a fixed point of T.

To prove the uniquness suppose that y(# x) is another fixed point of T. Since

0a =da(x,y) =da(Tx,Ty) X wa(da(x,y) +da(Tx,y) +da(Ty,x))

= Yp(da(x,y)) + Walda(x,y)) + wal(da(x,y)).

Implies
s )1 < I e (6, 30) -+ 1 s ) |+ (e 3)) |
< lda (e )+ [lda Ce, ) T+ 1 da e ) T = 3l da(x,9)]]-
This is contradiction == dj (x,y) =04 = x=y. O

4. CONCLUSION

C*-algebras is an interesting subject in the functional analysis and operator theory which
plays an important role in fixed point theory.
In this paper, we introduced a new insight of C*-algebra-valued b-metric space by using y
positive function. Also, We define some contraction mapping and prove the existence and the

uniqueness of some fixed point theorems such as Kannan and Chatterjee and their extension.
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