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1. Introduction

A Boolean matrix is a matrix over the binary Boolean algebra {0, 1}, where the

(Boolean)addition and (Boolean) multiplication in {0, 1} are defined as a+b = max{a, b}, ab =

min{a, b}(we assume 0 < 1). Let Bn denote the set of all n×n matrices over the Boolean

algebra {0, 1}.

For A,B ∈ Bn, if there is a permutation matrix P such that PBP T = A, then we say

B is permutation similar to A (written B ∼ A).

A matrix B ∈ Bn is reducible if B ∼

 B1 0

C B2

, where B1 and B2 are square(non-

vacuous), and B is irreducible if it is not reducible.
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A matrix B ∈ Bn is primitive if there is a nonnegative integer k such that Bk = J ,the

all-ones matrix.The least such k is called the exponent of B, denoted by γ(B).

A matrix B ∈ Bn is called transitive if B2 ≤ B. Denote by t(B) the least integer s = 1

such that Bs is transitive, i.e.B2s ≤ Bs.

In 1970,S̆.Schwarz[1] introduced a concept of the transitive index and gave some results.

A matrix A = [aij] ∈ Bn is called tournament matrix if aii = 0(i = 1, 2, . . . , n) and

aij + aji = 1(1 ≤ i < j ≤ n). Let Tn denote the set of all n × n tournament matrices.

Notice that a matrix Tn ∈ Tn satisfies the equation

An + AT
n = Jn − In

where Jn is the matrix of all 1′s and In is the identity matrix.

Certain properties of tournament matrix have been investigated in [2,3,5,6].

2. Preliminaries

The notation and terminology used in this paper will basically follow those in [4]. For

convenience of the reader, we will include here the necessary definitions and basic results

in [5,6].

Let T̄n =



0 1 0 0 · · · 0

0 0 1 0 · · · 0

1 0 0 1 · · · 0
...

. . . . . . . . . . . .
...

1 · · · 1 0 0 1

1 · · · · · · 1 0 0


n×n

(n ≥ 3), Tl =


0 0 · · · 0

1 0 · · · 0
...

. . . . . .
...

1 · · · 1 0


l×l

,

T3m =


T̄3 0 · · · 0

J T̄3 · · · 0
...

. . . . . .
...

J · · · J T̄3

,I3m =


I3 0 · · · 0

J I3 · · · 0
...

. . . . . .
...

J · · · J I3

,

where J is the matrix of all 1′s, I3 is the identity matrix of order 3.
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Lemma 2.1 ([3]) Let Tn ∈ Tn.Then

Tn ∼



A1 0 0 · · · 0

J A2 0 · · · 0

J J A3 · · · 0
...

...
...

. . .
...

J J J · · · Ak


,

where all the blocks J below the diagonal are matrices of 1’s,and the diagonal blocks

A1, · · · , Ak are irreducible components of Tn. Let Ai be ni × ni matrix,1 ≤ i ≤ k, 1 ≤

ni ≤ n. Then k and ni are uniquely determined by Tn.

Lemma2.2([6]) If Tn ∈ Tn and n ≥ 4. Then Tn is primitive if and only if Tn is

irreducible.

It is obvious that 3× 3 tournament matrix is not primitive, the primitive exponent of

4× 4 irreducible tournament matrix is 9. For n > 4, we have

Lemma 2.3([6]) If Tn ∈ Tn and n ≥ 5, then γ(Tn) ≤ n+ 2.

Lemma2.4([5]) Let n ≥ 5, then γ(T̄n) = n+ 2.

Lemma2.5([5]) If n ≥ 5, Tn ∈ Tn is irreducible. Then γ(Tn) = n + 2 if and only if

Tn is isomorphic to T̄n.

Lemma2.6([6]) If 3 ≤ e ≤ n + 2 and n ≥ 6, then there exists an irreducible Tn ∈ Tn

such that γ(Tn) = e.

3. Main results

It is evident that if A ∈ Bn is primitive digraph, then t(A) = γ(A). For primitive

tournament matrix Tn, its primitive exponent is determined by Moon and Pullman in [6].
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In this paper we obtain results on transitive index of reducible tournament matrices.

Theorem 3.1 Let Tn ∈ Tn be reducible matrix and n ≥ 8. Then there exists a

positive integer s ≤ n+ 1 such that

T s
n ∼ A? =



B1 0 0 · · · 0

J B2 0 · · · 0

J J B3 · · · 0
...

...
...

. . .
...

J J J · · · Bg



where all the blocks J below the diagonal are matrices of 1’s, and the diagonal blocks Bi

is zero matrix of orderli, or I3qi , or matrix of 1’s of order mi(4 ≤ mi < n), 1 ≤ i ≤ g.

0 ≤ 3qi, li ≤ n, and qi, li,mi, g are uniquely determined by Tn.

Proof. It is obvious that the irreducible tournament matrix of order 1 is zero matrix of

order 1, the irreducible tournament matrix of order 2 is not exists,and the irreducible tour-

nament matrix of order 3 is isomorphic to T̄3. Hence , in Lemma2.1, the diagonal blocks Ai

is zero matrix of order 1, or T̄3,or irreducible tournament matrix of order mi(4 ≤ mi < n).

Let Ai 6= (0)1×1 (if there exists) ,Ai+1 = Ai+2 = . . . = Ai+li = (0)1×1, Ai+li+1 6= (0)1×1(if

there exists). Then


Ai+1 0 · · · 0

J Ai+2 · · · 0
...

...
. . .

...

J J · · · Ai+li

 = Tli =


0 0 · · · 0

1 0 · · · 0
...

. . . . . .
...

1 · · · 1 0


li×li
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Let Aj 6= T̄3 (if there exists), Aj+1 = Aj+2 = . . . = Aj+qi = T̄3, Aj+qi+1 6= T̄3(if there

exists). Then
Aj+1 0 · · · 0

J Aj+2 · · · 0
...

...
. . .

...

J J · · · Aj+qi

 = T3qi =


T̄3 0 · · · 0

J T̄3 · · · 0
...

. . . . . .
...

J · · · J T̄3


3qi×3qi

.

There exists that one among n− 1, n, n+ 1 is multiple of 3, and set such number be s.

Since Tn is Boolean matrix of reducible tournament with order n(≥ 8), T3qis = I3qi ,Tli
s =

(0)li×li . If Ai is irreducible tournament matrix of order mi(4 ≤ mi < n) in Lemma2.1.

Then Ai
s = J . By Lemma2.3, the conclusion established and we complete the proof.

Note that t(Tn) = 1, t(T3n) = 3, n > 1.

Let Tn ∈ Tn be reducible matrix.Then Hence T2 ∼ T2,T3 ∼ T3. We have t(T2) =

t(T3) = 1.

For T4. By Lemma 2.1, T4 ∼ T4 or T4 ∼ Ā4 =

 0 0

J T̄3

, or T4 ∼ Ã4 =

 T̄3 0

J 0

.

Since t(T4) = 1, t(Ā4) = t(Ã4) = 3, hence t(T4) ≤ 3.

For T5. By Lemma 2.2, T5 ∼ T5, or T5 ∼ Ã5 =

 T2 0

J T̄3

, or T5 ∼ Â5 =

 T̄3 0

J T2

, or T5 ∼ ˆ̂
5A =


T1 0

J T̄3 0

J J T1

, or T5 ∼ Ā5 =

 0 0

J B4

, or T5 ∼ Ǎ5 =

 B4 0

J 0

, where B4 is primitive tournament matrix of order 4. Clearly, t(T5) = 1,

t(Ã5) = t(Â5) = t(
ˆ̂
5A) = 3, t(Ā5) = t(Ǎ5) = 9. Hence t(T5) ≤ 9.

Similarly, t(Ti) ≤ 9, i = 6, 7. Let Ā6 =

 T2 0

J B4

, Ā7 =

 T3 0

J B4

, where B4 is

primitive tournament matrix of order 4. It is easy to see that t(T̄6) = t(T̄7) = 9.

For n ≥ 8, we have
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Theorem 3.2 Let Tn ∈ Tn be reducible matrix and n ≥ 8. Then t(Tn) ≤ n+ 1.

Proof. By Theorem 3.1, there exists a positive integer s ≤ n+ 1 such that

T s
n ∼ A? =



B1 0 0 · · · 0

J B2 0 · · · 0

J J B3 · · · 0
...

...
...

. . .
...

J J J · · · Bg


where all the blocks J below the diagonal are matrices of 1’s,and the diagonal blocks Bi

is zero matrix of orderli,or I3qi , or matrices of 1’s of order mi(4 ≤ mi < n),1 ≤ i ≤ g.

0 ≤ 3qi, li ≤ n, and qi, li,mi, g are uniquely determined by Tn. Obviously, (A?)2 ≤ A?. A?

is transitive matrix. Hence t(Tn) = t(A?) ≤ s ≤ n+ 1. This completes the proof.

Let T
(1)
n =

 0 0

J T̄n−1

, T̃
(1)
n =

 T̄n−1 0

J 0

, T
(2)
n =

 T̄3 0

J T̄n−3

 and T̃
(2)
n = T̄n−3 0

J T̄3

. Then T
(1)
n , T̃

(1)
n , T

(2)
n , T̃

(2)
n ∈ Tn. By Lemma2.5, t(T̄n−1) = n − 1 + 2 =

n+ 1(n ≥ 8). Hence

t(T
(1)
n ) = t(T̃

(1)
n ) = t(T̄n−1) = n+ 1(n ≥ 8).

Theorem 3.3 Let Tn ∈ Tn be reducible matrix and n ≥ 8. Then

(1) If n ≡ 0 or 1(mod 3). Then t(Tn) = n+ 1 if and only if Tn is isomorphic to T
(1)
n or

T̃
(1)
n .

(2) If n ≡ 2(mod 3). Then t(Tn) = n + 1 if and only if Tn is isomorphic to T
(1)
n , or

T̃
(1)
n , or T

(2)
n , or T̃

(2)
n .

Proof. (1) Suppose n ≡ 0 or 1(mod 3). If Tn is isomorphic to T
(1)
n or T̃

(1)
n , by Theorem

3.3, t(Tn) = t(T
(1)
n ) = t(T̃

(1)
n ) = n+ 1.

Conversely, suppose t(Tn) = n + 1. If there exists Bi that is I3qi , 1 ≤ i ≤ g, 1 ≤ 3qi,

then set s = n if n ≡ 0(mod 3) and s = n−1, if n ≡ 1(mod 3),in Theorem 3.1. Hence s is
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multiple of 3. By Theorem 3.2, s < n+ 1, and t(Tn) ≤ s < n+ 1. This is impossible. By

Lemma 2.5 and Theorem 3.1, Tn ∼

 0 0

J A0

, or Tn ∼

 A0 0

J 0

, where J is matrices

of 1’s, A0 is irreducible tournament matrix of order n− 1. By Lemma 2.5, we have that

Tn is isomorphic to T
(1)
n or T̃

(1)
n .

(2) Suppose n ≡ 2 (mod 3). If Tn is isomorphic to T
(1)
n , or T̃

(1)
n , or T

(2)
n , or T̃

(2)
n , then

t(Tn) = t(T
(1)
n ) = t(T̃

(1)
n ) = n+1. It is easy to verify that t(Tn) = t(T

(2)
n ) = t(T̃

(2)
n ) = n+1.

Conversely, suppose t(Tn) = n+ 1.

If there does not exist Bi that is I3qi , 1 ≤ i ≤ g, 1 ≤ 3qi, in Theorem 3.1. By Lemma

2.5 and Theorem 3.1, Tn ∼

 0 0

J A0

, or Tn ∼

 A0 0

J 0

, where J is matrices of 1’s,

A0 is irreducible tournament matrix of order n − 1. By Lemma 2.5, we have that Tn is

isomorphic to T
(1)
n or T̃

(1)
n .

If there exists Bi that is I3qi , 1 ≤ i ≤ g, 1 ≤ 3qi, in Theorem 3.1. By Lemma 2.5

and Theorem 3.1, Tn ∼

 T̄3 0

J A0

, or Tn ∼

 A0 0

J T̄3

, where J is matrices of 1’s,

A0 is irreducible tournament matrix of order n − 3. By Lemma 2.5, we have that Tn is

isomorphic to T
(2)
n or T̃

(2)
n . This completes the proof.

Let STRn denote the set of transitive indices of all reducible tournament matrices of

order n. It is easy to verify that

STR2 = STR3 = {1},

STR4 = {1, 3},

STR5 = {1, 3, 9},

STR6 = {1, 3, 4, 6, 7, 9},

STR7 = {1, 3, 4, 5, 7, 8, 9}.

For n ≥ 8, we have

Theorem 3.4 STRn = {1, 3, 4, . . . , n, n+ 1}, where n ≥ 8.

Proof. Obviously, t(Tn) = 1. Let Tn =

 T̄3 0

J Tn−3

. t(Tn) = 3, hence, 1, 3 ∈ STRn.
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By Lemma2.6, there exists an irreducible tournament matrix T̂n−1 of order n− 1 such

that γ(T̂n−1) = e, where 4 ≤ e ≤ n + 1, n ≥ 8. Let Tn =

 0 0

J T̂n−1

. Then Tn ∈ Tn

and t(Tn) = γ(T̂n−1) = e. This completes the proof.
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