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Abstract. We study the Existence and uniqueness of solutions of the Riemann-Liouville fractional integro-

differential degenerate equations

d
dt (B

1
Γ(1−α)

∫ t
−∞

(t− s)−α x(s)ds) = Ax(t)+
∫ t
−∞

a(t− s)x(s)ds+L(xt)+
1

Γ(β )

∫ t
−∞

(t− s)β−1x(s)ds+ f (t).

where A and B are a linear closed operators in a Banach space.
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1. INTRODUCTION

Differential equations play an important role in describing many real-world processes. For

many years the models are successfully used to study a number of physical, biological. A

particular interest is in differential equations with many variables such as partial differential

equations and/or integral differential equations in the case when one of the variables is times.

In this work, we study the existence of periodic solutions for the following Riemann-Liouville

fractional integro-differential degenerate equations.
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(1.1)

d
dt
(B

1
Γ(1−α)

∫ t

−∞

(t− s)−αx(s)ds) = Ax(t)+
∫ t

−∞

a(t− s)x(s)ds

+L(xt)+
1

Γ(β )

∫ t

−∞

(t− s)β−1x(s)ds+ f (t); 0≤ t ≤ 2π

where Γ(.) is the Euler gamma function, α,β ∈R+,0≤ β ≤α and A : D(A)⊆ X→ X and B are

a linear closed operators on Banach space (X ,‖.‖) such that D(A)⊂D(B), f ∈ Lp([−r2π ,0],X)

for all p ≥ 1 and r2π := 2πN ( some N ∈ N), a ∈ L1(R+), L is a linear operator and xt is an

element of Lp([−r2π ,0], X) which is defined as follows

xt(θ) = x(t +θ) for θ ∈ [−r2π , 0].

The operator-valued Fourier multiplier Theorems 2.8 have been used by Keyantuo and Lizama

in [19] to establish maximal regularity results for an integro-differential equation in Banach

space. The authors consider the following problem

x′(t) = Ax(t)+
∫ t

−∞

a(t− s)Ax(s)ds+ f (t); x(0) = x(2π)

Maximal regularity for the evolution problem in Lp was treated earlier by Weis [30, 31] (see

also [12] for a different proof of the operator-valued Mikhlin multiplier theorem using a trans-

ference principle). The study in the Lp framework (when 1 < p < ∞) was made possible thanks

to the introduction of the concept of randomized boundedness (hereafter R-boundedness, also

known as Riesz-boundedness or Rademacher-boundedness). With this, necessary conditions for

operator-valued Fourier multipliers were found in this context. In addition, the space X must

have the UMD property. This was done initially by L. Weis [30, 31] for the evolutionary prob-

lem and then by Arendt-Bu [2] for periodic boundary conditions. For non-degenerate integro-

differential equations both in the periodic and non periodic cases, operator-valued Fourier mul-

tipliers have been used by various authors to obtain well-posedness in various scales of function

spaces: [7, 9, 10, 19, 25, 20, 21, 27] and the corresponding references. The well-posedness

or maximal regularity results are important in that they allow for the treatment of nonlinear

problems. Earlier results on the application of operator-valued Fourier multiplier theorems to

evolutionary integral equations can be found in [12]. More recent examples of second order
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integro-differential equations with frictional damping and memory terms have been studied in

the paper [11]

In [8] Bu et al studied the well-posedness of thethird-order integro-differential equations

αu′′′(t)+u′′(t) = βAu(t)+β

∫ t

−∞

a(t− s)Ax(s)ds+ γBu′(t)+ f (t),

with periodic boundaryconditions u(0) = u(2π),u′(0) = u′(2π),u′′(0) = u′′(2π).

In [22], S.Koumla, Kh.Ezzinbi, R.Bahloul established mild solutions for some partial func-

tional integrodifferential equations with finite delay

d
dt

x(t) = Ax(t)+
∫ t

0
B(t− s)x(s)ds+ f (t,xt)+h(t,xt)

where A : D(A)X → X is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on a Banach

space X , for t ≥ 0,B(t) is a closed linear operator with domain D(B)⊃ D(A).

This work is organized as follows : In Section 2 we collect some preliminary results and

definitions. In section 3, we study the existence and uniqueness of strong Lp-solution of

the Eq. (1.1) solely in terms of a property of R-boundedness for the sequence of operators

(ik)α((ik)α I−A−Lk− ã(ik)− (ik)−β I)−1. We optain that the following assertion are equiva-

lent in UMD space :

(1): ((ik)αB−A−Lk− ã(ik)− (ik)−β I) is invertible and

{((ik)α((ik)αB−A−Lk− ã(ik)− (ik)−β I)−1,k ∈ Z} is R-bounded.

(2): For every f ∈ Lp(T;X) there exist a unique function u ∈ Hα,p(T;X) such that u ∈

D(A) and equation (1.1) holds for a.e t ∈ [0,2π].

2. PRELIMINARIES

In this section, we collect some results and definitions that will be used in the sequel. Let X

be a complex Banach space. We denote as usual by L1(0,2π,X) the space of Bochner integrable

functions with values in X . For a function f ∈ L1(0,2π;X), we denote by f̂ (k),k ∈ Z the kth

Fourier coefficient of f :

f̂ (k) =
1

2π

∫ 2π

0
e−k(t) f (t)dt,
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where ek(t) = eikt , t ∈ R.

Lemma 2.1. [24]

Let L : Lp(T,X)→ X be a bounded linear operateur. Then

L̂(u.)(k) = L(ekû(k)) := Lkû(k) for all k ∈ Z.

Let a ∈ L1(R+). We consider the the function

F(t) =
∫ t

−∞

a(t− s)u(s)ds, t ∈ R.

Since

(2.1) F(t) =
∫ t

−∞

a(t− s)u(s)ds =
∫

∞

0
a(s)u(t− s)ds,

we have ‖F‖L1 ≤ ‖a‖1‖u‖L1 = ‖a‖L1(R+)
‖u‖L1(0,2π;X) and F is periodic of period T = 2π as u.

Now using Fubini’s theorem and (2.1) we obtain, for k ∈ Z, that

(2.2) F̂(k) = ã(ik)û(k),k ∈ Z

where ã(λ ) =
∫

∞

0 e−λ ta(t)dt denotes the Laplace transform of a. This identity plays a crucial

role in the paper.

Let X ,Y be Banach spaces. We denote by L (X ,Y ) the set of all bounded linear operators

from X to Y . When X = Y , we write simply L (X).

Proposition 2.2 ([2, Fejer’s Theorem]). Let f ∈ Lp(0,2π;X)), then one has

f = lim
n→∞

1
n+1

n

∑
m=0

m

∑
k=−m

ek f̂ (k)

with convergence in Lp(0,2π;Y ).

R-boundedness-UMD space,Lp-multiplier and Riemann-Liouville fractional integral. For

j ∈ N, denote by r j the j-th Rademacher function on [0,1], i.e. r j(t) = sgn(sin(2 jπt)). For

x ∈ X we denote by r j⊗ x the vector valued function t→ r j(t)x.

The important concept of R-bounded for a given family of bounded linear operators is defined

as follows.
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Definition 2.3. A family T⊂L (X ,Y ) is called R-bounded if there exists cq ≥ 0 such that

(2.3) ‖
n

∑
j=1

r j⊗Tjx j‖Lq(0,1;X) ≤ cq‖
n

∑
j=1

r j⊗ x j‖Lq(0,1;X)

for all T1, . . . ,Tn ∈ T,x1, . . . ,xn ∈ X and n ∈ N, where 1 ≤ q < ∞. We denote by Rq(T) the

smallest constant cq such that (2.3) holds.

Definition 2.4. Let ε ∈]0,1[ and 1 < p < ∞. Define the operator Hε by: for all f ∈ Lp(R;X)

(Hε f )(t) :=
1
π

∫
ε<|s|< 1

ε

f (t− s)
s

ds

if lim
ε→0

Hε f :=H f exists in Lp(R;X) Then H f is called the Hilbert transform of f on Lp(R,X).

Definition 2.5. A Banach space X is said to be UMD space if the Hilbert transform is bounded

on Lp(R; X) for all 1 < p < ∞.

Definition 2.6. For 1≤ p < ∞ , a sequence {Mk}k∈Z ⊂ B(X ,Y ) is said to be an Lp-multiplier if

for each f ∈ Lp(T,X), there exists u ∈ Lp(T,Y ) such that û(k) = Mk f̂ (k) for all k ∈ Z.

Proposition 2.7. Let X be a Banach space and {Mk}k∈Z be an Lp-multiplier, where 1≤ p < ∞.

Then the set {Mk}k∈Z is R-bounded.

Theorem 2.8. (Marcinkiewicz operator-valued multiplier Theorem).

Let X , Y be UMD spaces and {Mk}k∈Z ⊂ B(X ,Y ). If the sets {Mk}k∈Z and {k(Mk+1−Mk)}k∈Z

are R-bounded, then {Mk}k∈Z is an Lp-multiplier for 1 < p < ∞.

Definition 2.9. The Riemann-Liouville fractional integral operator of order α > 0 is defined by

I α
−∞ f (t) =

1
Γ(α)

∫ t

−∞

(t− s)α−1 f (s)ds

where Γ(α) =
∫+∞

0 e−ttα−1dt, is the Euler gamma function.

Definition 2.10. The Riemann-Liouville fractional integral derivative operator of order α > 0

is defined by

Dα
−∞ f (t) =

1
Γ(1−α)

d
dt
(
∫ t

−∞

(t− s)−α f (s)ds)
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Those familiar with the Fourier transform know that the Fourier transform of a derivative can

be expressed by the following:
d̂x
dt

(k) = ikx̂(k),∀k ∈ Z

and more generally,
d̂nx
dtn (k) = (ik)nx̂(k),∀k ∈ Z

A similar identity holds for anti-derivatives

Î s
−∞ f (k) = (ik)−sx̂(k),∀k ∈ Z

D̂ s
−∞ f (k) = (ik)sx̂(k),∀k ∈ Z

Remark 2.11. If we set u(x) = eikx for k ∈ Z we have

1)Dα
−∞u(t) = (ik)αeikx

2)I α
−∞u(t) = (ik)−αeikx.

3. PERIODIC SOLUTIONS IN UMD SPACE

For a ∈ L1(R+), we denote by a∗ x the function

(a∗ x)(t) :=
∫ t

−∞

a(t− s)x(s)ds

with this notation we may rewrite Eq. (1.1) in the following was:

(3.1) Dα
−∞Bx(t) = Ax(t)+L(xt)+(a∗ x)(t)+I β

−∞x(t)+ f (t) f or t ∈ R.

we have â∗ x(k) = ã(ik)x̂(k). We define

∆k = ((ik)αB−A−Lk− ã(ik)I− (ik)−β I)

and

σZ(∆) = {k ∈ Z : ∆k is not bi jective}

the periodic vector-valued space is defined by
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Hα,p(T;X) = {u ∈ Lp(T,X) : ∃v ∈ Lp(T,X), v̂(k) = (ik)α û(k) for all k ∈ Z}

Definition 3.1. For 1 ≤ p < ∞, we say that a sequence {Mk}k∈Z ⊂ B(X ,Y ) is an (Lp,H1,p)-

multiplier, if for each f ∈ Lp(T,X) there exists u ∈ H1,p(T,Y ) such that

û(k) = Mk f̂ (k) for all k ∈ Z.

Lemma 3.2. Let 1≤ p < ∞ and (Mk)k∈Z ⊂ B(X) (B(X) is the set of all bounded linear oper-

ators from X to X). Then the following assertions are equivalent:

(i) (Mk)k∈Z is an (Lp,Hα,p)-multiplier.

(ii) ((ik)αMk)k∈Z is an (Lp,Lp)-multiplier.

We begin by establishing our concept of strong solution for Eq. (3.1)

Definition 3.3. Let f ∈ Lp(T;X). A function x ∈ Hα,p(T;X) is said to be a 2π-periodic strong

Lp-solution of Eq.(3.1) if x(t) ∈ D(A) for all t ≥ 0 and Eq. (3.1) holds almost every where.

Proposition 3.4. Let A be a closed linear operator defined on an UMD space X. Suppose that

σZ(∆) = φ .Then the following assertions are equivalent :

(i):
(
(ik)α((ik)αB−A−Lk− ã(ik)I− (ik)−β I)−1

)
k∈Z

is an Lp-multiplier for 1 < p < ∞

(ii):
(
(ik)α((ik)αB−A−Lk− ã(ik)I− (ik)−β I)−1

)
k∈Z

is R-bounded.

Proof. (i)⇒ (ii) As a consequence of Proposition (2.7)

(ii)⇒ (i) Let as,k = (ik)−s,s ∈ R,k 6= 0

Define Mk = (ik)α(Ck−A)−1, where Ck := (ik)αB−Lk− ã(ik)I− (ik)−β I. By Theorem (2.8)

it is sufficient to prove that the set {k(Mk+1−Mk)}k∈Z is R-bounded. Since

k [Mk+1−Mk]

= k
[
(i(k+1))α(Ck+1−A)−1− (ik)α(Ck−A)−1]

= k(Ck+1−A)−1 [(i(k+1))α(Ck−A)− (ik)α(Ck+1−A)] (Ck−A)−1

= kMk+1
[
aα,k(Ck−A)−aα,k+1(Ck+1−A)

]
Mk

= kMk+1
[
aα,kCk−aα,k+1Ck+1 +(aα,k+1−aα,k)A

]
Mk
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= kaα,kMk+1CkMk− kaα,k+1Mk+1Ck+1Mk + k(aα,k+1−aα,k)Mk+1AMk

= kaα,kMk+1CkMk− kaα,k+1Mk+1Ck+1Mk

+ k(
aα,k+1−aα,k

aα,k
)Mk+1(aα,kMkCk− I).

Observe that for α > 0 we have that |(i(k + 1))α − (ik)α | can be estimated by (ik)α−1 uni-

formly in k according to the definition of |(ik)α | and the mean value theorem. This implies that
k(aα,k+1−aα,k)

aα,k
is bounded sequence. Since kaα,k also is bounded for α > 0. Since products and

sums of R-bounded sequences is R-bounded [24, Remark 2.2]. Then the proof is complete. �

Lemma 3.5. Let 1 ≤ p < ∞. Suppose that σZ(∆) = φ and that for every f ∈ Lp(T;X) there

exists a 2π-periodic strong Lp-solution x of Eq. (3.1). Then x is the unique 2π-periodic strong

Lp-solution.

Proof. Suppose that x1 and x2 two strong Lp-solution of Eq. (3.1) then x = x1− x2 is a strong

Lp-solution of Eq. (3.1) corresponding to f = 0. Taking Fourier transform in (3.1), we obtain

that

(ik)αBx̂(k) = Ax̂(k)+Lkx̂(k)+ ã(ik)x̂(k)+(ik)−β x̂(k),k ∈ Z.

Then

((ik)αB−A−Lk− ã(ik)I− (ik)−β I)x̂(k) = 0

It follows that x̂(k) = 0 for every k ∈ Z and therefore x = 0. Then x1 = x2 . �

Theorem 3.6. Let X be a Banach space. Suppose that for every f ∈ Lp(T;X) there exists a

unique strong solution of Eq. (3.1) for 1≤ p < ∞. Then

(1) for every k ∈ Z the operator ∆k = ((ik)αB−A− Lk− ã(ik)I− (ik)−β I) has bounded

inverse

(2)
{
(ik)α∆

−1
k

}
k∈Z is R-bounded.

Before to give the proof of Theorem 3.6, we need the following Lemma.

Lemma 3.7. if ((ik)αB−A−Lk− ã(ik)I− (ik)−β I)(x) = 0 for all k ∈ Z, then u(t) = eiktx is a

2π-periodic strong Lp-solution of the following equation

Dα
−∞(Bu)(t) = Au(t)+(a∗u)(t)+I β

−∞(u)(t).
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Proof. We have ((ik)αB−A−Lk− ã(ik)I− (ik)−β I)x = 0.

Then

(ik)αBx = Ax+Lkx+ ã(ik)x+(ik)−β x

We have u(t) = eiktx. In fact, since ut(θ) = eikθ u(t) we obtain ut = eku(t). By Remark 2.11 (2),

Dα
−∞(Bu)(t) = (ik)αBeiktx = eikt((ik)αBx)

= eikt [Ax+Lkx+ ã(ik)x+(ik)−β x]

= Aeiktx+Lk(eiktx)+ ã(ik)eiktx+(ik)−β eiktx]

= Au(t)+L(eku(t))+ ã(ik)u(t)+(ik)−β u(t)]

= Au(t)+L(ut)+(a∗u)(t)+I α
−∞u(t)

Proof of Theorem 3.6: 1) Let k ∈ Z and y ∈ X . Then for f (t) = eikty , there exists

x ∈ Hα,p(T;X) such that:

Dα
−∞(Bx)(t) = Ax(t)+L(xt)+(a∗ x)(t)+I β

−∞(x)(t)+ f (t)

Taking Fourier transform. We have D̂α
−∞Bx(k) = (ik)αBx̂(k) and Î β

−∞x(k) = (ik)−β x̂(k)

Consequently, we have

(ik)αBx̂(k) = Ax̂(k)+Lkx̂(k)+ ã(ik)x̂(k)+(ik)−β x̂(k)+ f̂ (k)

[(ik)αB−A−Lk− ã(ik)− (ik)−β ]x̂(k) = f̂ (k) = y⇒ ((ik)αB−A−Lk− ã(ik)− (ik)−β ) is sur-

jective.

if ((ik)αB−A−Lk− ã(ik)− (ik)−β )(u) = 0, then by Lemma 3.7, x(t) = eiktu is a 2π-periodic

strong Lp-solution of Eq.(3.1) corresponing to the function f (t) = 0 Hence x(t) = 0 and u = 0

then ((ik)αB−A−Lk− ã(ik)− (ik)−β ) is injective.

2) Let f ∈ Lp(T;X). By hypothesis, there exists a unique x ∈Hα,p(T,X) such that the Eq. (3.1)

is valid. Taking Fourier transforms, we deduce that

x̂(k) = ((ik)αB−A−Lk− ã(ik)− (ik)−β )−1 f̂ (k) for all k ∈ Z.

Hence

(ik)α x̂(k) = (ik)α((ik)αB−A−Lk− ã(ik)− (ik)−β )−1 f̂ (k) for all k ∈ Z
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Since x ∈ Hα,p(T;X), then there exists v ∈ Lp(T;X) such that

v̂(k) = (ik)α x̂(k) = (ik)α((ik)αB−A−Lk− ã(ik)− (ik)−β )−1 f̂ (k).

Then
{
(ik)α∆

−1
k

}
k∈Z is an Lp-multiplier and

{
(ik)α∆

−1
k

}
k∈Z is R-bounded. �

4. MAIN RESULT

Our main result in this work is to establish that the converse of Theorem 3.6, are true, pro-

vided X is an UMD space.

Theorem 4.1. Let X be an UMD space and A : D(A) ⊂ X → X be an closed linear operator.

Then the following assertions are equivalent for 1 < p < ∞.

(1): for every f ∈ Lp(T;X) there exists a unique 2π-periodic strong Lp-solution of Eq.

(3.1).

(2): σZ(∆) = φ and
{
(ik)α∆

−1
k

}
k∈Z is R-bounded.

Lemma 4.2. [2]. Let f ,g ∈ Lp(T;X). If f̂ (k) ∈ D(A) and A f̂ (k) = ĝ(k) for all k ∈ Z Then

f (t) ∈ D(A) and A f (t) = g(t) for all t ∈ [0,2π].

Proof. 1)⇒ 2) see Theorem 3.6

1)⇐ 2) Let f ∈ Lp(T;X) . Define

∆k = ((ik)αB−A−Lk− ã(ik)I− (ik)−β I)

By Lemma 3.2, the family
{
(ik)α∆

−1
k

}
k∈Z is an Lp-multiplier it is equivalent to

the family
{

∆
−1
k

}
k∈Z is an Lp-multiplier that maps Lp(T;X) into Hα,p(T;X),

namely there exists x ∈ H1,p(T,X) such that

(4.1) x̂(k) = ∆
−1
k f̂ (k) = ((ik)αB−A−Lk− ã(ik)I− (ik)−β I)−1 f̂ (k)

In particular, x ∈ Lp(T;X) and there exists v ∈ Lp(T;X) such that v̂(k) = (ik)α x̂(k)

(4.2) D̂α
−∞Bx(k) := v̂(k) = (ik)αBx̂(k)

Using now (4.1) and (4.2) we have:

D̂α
−∞Bx(k) = (ik)αBx̂(k) = Ax̂(k)+ L̂(x.)(k)+ â∗ x(k)+ Î β

−∞x(k)+ f̂ (k)
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for all k ∈ Z. Since A is closed, then x(t) ∈ D(A) [Lemma 4.2 ]

and from the uniqueness theorem of Fourier coefficients, that Eq. (3.1) is valid . �
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