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Abstract. In this work, at first we prove an existence result of best proximity pair for noncyclic relatively ρ-

nonexpansive mapping in the setting of modular spaces endowed with a convex directed graph. Furthermore, we

study the convergence of a pair of sequences ((xn,x′n))n generated by a new iterative scheme for noncyclic relatively

(ρG)-nonexpansive mapping in uniformly convex modular spaces equipped with a convex directed graph.
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1. INTRODUCTION

The notion of modular spaces was firstly initiated in 1950 by Nakano [11] in connection

with the theory of ordered spaces. These spaces was developed and generalized by Orlicz and

Musielak [10].
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Let A and B be two nonempty subsets of a modular space Xρ . A self-mapping T : A∪B−→

A∪B is said to be noncyclic provided that T (A) ⊆ A and T (B) ⊆ B. For such mapping, a

minimization problem can be considered such that it solution is called a best proximity pair

of the mapping T , that is, a pair (p,q) ∈ A×B such that T p = p, T q = q and ρ (p−q) =

distρ (A,B).

The existence of best proximity pair was firstly considered and studied in 2005 by Eldred

et al. [4]. They proved that if (A,B) is a nonempty weakly compact pair of a strictly convex

Banach space X such that (A,B) has a geometric property called proximal normal structure,

then every noncyclic relatively nonexpansive mapping defined on A∪B has a best proximty pair.

Afterwords, many authors have studied and developed many results on the existence problem

of best proximity pair for noncyclic mapping under various contractive condition in different

type of spaces. In the last fifteen years, the question of the existence and convergence to a best

proximity pair was investigated by many authors and found extensions and generalizations for

different class of mappings and spaces; for more related works and results, we refer readers to

[1, 3, 5, 6, 7, 8].

In the current paper, we prove an existence result for noncyclic relatively nonexpansive map-

ping in the sitting of modular spaces endowed with a directed graph. Moreover, we established

a convergence result for a new iterative process to a best proximity pair for such mapping in

modular spaces equipped with a directed graph.

2. PRELIMINARIES

Throughout this work, X stands for a linear vector space on the field R. Let us start with

some preliminaries and notations.

Definition 1. [2] A function ρ : X −→ [0,+∞] is called a modular if the following holds:

(1) ρ (x) = 0 if and only if x = 0;

(2) ρ (−x) = ρ (x);

(3) ρ (αx+(1−α)y)≤ ρ (x)+ρ (y), for any α ∈ [0,1] and for any x, y in X.

If (3) is replaced by (3’) ρ (αx+(1−α)y)≤ αρ (x)+(1−α)ρ (y) for any α ∈ [0,1] and x,

y in X, then ρ is called a convex modular.
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The modular space is defined as Xρ =

{
x ∈ X : lim

λ→0
ρ (λx) = 0

}
. Throughout this paper, we

will assume that the modular ρ is convex.

The Luxemburg norm in Xρ is defined as

‖x‖ρ = inf
{

λ > 0 : ρ

( x
λ

)
≤ 1
}
.

Associated to a modular, we introduce some basic notions needed throughout this work.

Definition 2. [1] Let ρ be a modular defined on a vector space X.

(1) We say that a sequence (xn)n∈N ⊂ Xρ is ρ-convergent to x ∈ Xρ if and only if

lim
n→∞

ρ (xn− x) = 0. Note that the limit is unique.

(2) A sequence (xn)n ⊂ Xρ is called ρ-Cauchy if ρ (xn− xm)−→ 0 as n,m−→+∞.

(3) We say that Xρ is ρ-complete if and only if any ρ-Cauchy sequence is ρ-convergent.

(4) A subset C of Xρ is said ρ-closed if the ρ-limit of a ρ-convergent sequence of C always

belong to C.

(5) A subset C of Xρ is said ρ-bounded if we have

diamρ (C) = sup{ρ (x− y) : x,y ∈C}< ∞.

(6) A subset K of Xρ is said ρ-sequentially compact if any sequence (xn)n of C has a subse-

quence ρ-convergent to a point x ∈C.

(7) We say that ρ satisfy the Fatou property if ρ (x− y)≤ liminf
n

ρ (xn− yn) whenever (xn)n

ρ-converges to x and (yn)n ρ-converges to y, for any xn, x, y, yn in Xρ .

Let us note that ρ-convergence does not imply ρ-Cauchy condition. Also, xn
ρ−→ x does not

imply in general λxn
ρ−→ λx, for every λ > 1.

Let A, B be nonempty subsets of a modular space Xρ . We adopt the notations:

distρ (A,B) = inf{ρ (x− y) : x ∈ A , y ∈ B} ,

δρ (A,B) = sup{ρ (x− y) : x ∈ A , y ∈ B} ,

δx (B) = δρ ({x},B) = {ρ (x− y) : y ∈ A} .
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A pair (A,B) is said to satisfy a property if both A and B satisfy that property. For instance,

(A,B) is ρ-closed (resp. convex, ρ-bounded) if and only if A and B are ρ-closed (resp. convex,

ρ-bounded). A pair (A,B) is not reduced to one point means that A and B are not singletons.

Recall the definition of the modular uniform convexity.

Definition 3. [2] Let ρ be a modular and r > 0, ε > 0. Define, for i ∈ {1,2},

Di (r,ε) =
{
(x,y) ∈ Xρ ×Xρ : ρ (x)≤ r , ρ (y)≤ r , ρ

(
x− y

i

)
≥ rε

}
.

If Di (r,ε) 6= /0, let

δi (r,ε) = inf
{

1− 1
r

ρ

(
x+ y

2

)
: (x,y) ∈ Di

}
.

If Di (r,ε) = /0, we set δi (r,ε) = 1. For i ∈ {1,2}, we say that

(i) ρ is uniformly convex (UCi) if for every r > 0 and ε > 0, we have δi (r,ε)> 0.

(ii) ρ is unique uniformly convex (UUCi) if for all s≥ 0 and ε > 0, there exists η (s,ε)> 0

such that δi (r,ε)> η (s,ε), for r > s.

(iii) ρ is strictly convex (SC), if for every x, y ∈ Xρ such that ρ (x) = ρ (y) and ρ

(
x+ y

2

)
=

ρ (x)+ρ (y)
2

, we have x = y.

The following proposition characterize the relationship between the above notions:

Proposition 1. [2]

(a) (UUCi) implies (UCi) for i = 1,2;

(b) δ1 (r,ε)≤ δ2 (r,ε) for r > 0 and ε > 0;

(c) (UC1) implies (UC2) implies (SC);

(d) (UUC1) implies (UUC2).

Definition 4. [9] Let ρ be a modular. We say that the modular space Xρ satisfies the property

(R) if and only if for every decreasing sequence (Cn)n∈N of nonempty ρ-closed convex and

ρ-bounded subsets of Xρ has a nonempty intersection.

Lemma 1. [2] Let ρ be a convex modular satisfying the Fatou property. Assume that Xρ is

ρ-complete and ρ is (UUC2). Then Xρ satisfies the property (R).
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Proposition 2. [2] Let ρ be a convex modular. Assume that Xρ is ρ-complete and ρ is (UUC2).

Let C be a ρ-closed convex and ρ-bounded nonempty subset of Xρ . Let (Ci)i∈I be a family of

ρ-closed convex nonempty subsets of C such that
⋂
i∈F

Ci is nonempty, for any finite subset F of I.

Then, (Ci)i∈I has a nonempty intersection.

Let us finish this section with a few terminology and basic definitions of graph theory. Let C

be a nonempty subset of a modular space Xρ and ∆ = {(x,x) : x ∈C} the loops set. Consider

a directed graph G such that the set of vertices V (G) coincides with C and the set of its edges

E(G) contains all loops, i.e. ∆ ⊂ E(G). Assume that G has no parallel edges, so it can be

identified to the pair (V (G),E(G)).

Let x and y be vertices of a graph G. A path from x to y of length N ∈N is a finite sequence (xn)

of N +1 elements for which x0 = x, xN = y and (xi,xi+1) ∈ E(G), for i = 0, . . . ,N−1.

A graph G is said to be connected if there is a path between any two vertices of the graph G. A

directed graph G = (V (G),E(G)) is said to be transitive if, for any x, y and z in V (G) such that

(x,y) and (y,z) are in E(G), then (x,z)∈ E(G). Moreover, the conversion of a graph G, denoted

G−1, is the graph obtained by reversing the direction of the edges of the graph G. Thus, we

have E(G−1) = {(y,x) ∈ X×X : (x,y) ∈ E(G)}.

Definition 5. Let Xρ be a modular space. A graph G is said to be convex if and only if for any

x, y, z, w in Xρ and λ ∈ [0,1], we have

(x,y) ∈ E(G) and (z,w) ∈ E(G) leads to ((1−λ )x+λ z,(1−λ )y+λw) ∈ E(G).

Definition 6. Let C be a nonempty subset of a modular space Xρ , and let G = (V (G),E(G)) be

a directed graph such that V (G) =C. We say that C have the property (OSC):

if each sequence (xn)n ⊂C ρ-converges to x and (xn,xn+1) ∈ E(G), then (xn,x) ∈ E(G), for all

n≥ 0.

3. MAIN RESULTS

Definition 7. Let (A,B) be a nonempty pair of a modular space Xρ . A mapping T : A∪B −→

A∪B is said to be noncyclic relatively (ρG)-nonexpansive mapping if the following conditions

hold:
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i) T is noncyclic, i.e. T (A)⊂ A and T (B)⊂ B;

ii) T preserves edges, i.e. for all x ∈ A and b ∈ B, if (x,y) ∈ E(G) then (T x,Ty) ∈ E(G);

iii) ρ (T x−Ty)≤ ρ (x− y), for all (x,y) ∈ A×B such that (x,y) ∈ E(G).

In the sequel, we assume that the modular space Xρ is equipped with a convex transitive

graph G identified by the pair (V (G),E(G)).

Definition 8. We will say that a pair of sequences ((xn,yn))n ρ-converges to a pair (x,y), if the

sequences (xn)n and (yn)n ρ-converge to x and y, respectively.

Definition 9. Let C be a nonempty subset of a modular space Xρ , and let G = (V (G),E(G)) be

a directed graph such that V (G) = C. We say that G have the property (F), if (xn,yn) ∈ E(G)

and xn
ρ−→ x and yn

ρ−→ y, then (x,y) ∈ E(G).

Definition 10. Let C be a nonempty subset of a modular space Xρ , and let G = (V (G),E(G))

be a directed graph such that V (G) = C. We say that G have the property (L ) if the graph G

does not have parallel edges, that is, if (a,b) ∈ E(G) and (b,a) ∈ E(G), then a = b.

Definition 11. We say that a nonempty pair (A,B) of a modular space is proximal ρ-

compactness provided that every generalized sequence ((xα ,yα))α∈I of A× B satisfying the

following condition ρ (xα − yα) = distρ (A,B) has a ρ-convergent subsequence in (A,B).

Property 1. Let (A,B) be a nonempty pair of a modular space Xρ such that A0 is nonempty. If

(A0,B0) is proximal ρ-compactness then (A0,B0) is ρ-closed.

Proof. Let (xn)n be a sequence in A0 which ρ-converges to x ∈ Xρ . For all n ∈ N, there exists

yn ∈ B0 such that ρ(xn− yn) = distρ (A,B).

Since (A0,B0) is proximal ρ-compactness, then there exists a subsequence
(
(xϕ(n),yϕ(n))

)
n of

the sequence ((xn,yn))n which ρ-converges to a pair (x′,y′) ∈ A0×B0. Thus, x = x′. Since ρ

satisfies the Fatou property, then

ρ(x− y′)≤ liminf
n

ρ
(
xϕ(n)− yϕ(n)

)
= distρ (A,B) .

Therefore, x ∈ A0. In the same way we show that B0 is ρ-closed. �
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Theorem 1. Let ρ be a convex modular satisfying Fatou property and (UUC1). Let (A,B) be

a nonempty convex and ρ-bounded pair of a ρ-complete modular space Xρ . Assume that A0 is

nonempty and (A0,B0) is proximal ρ-compactness, and (x,y) ∈ E(G) for all (x,y) ∈ A0×B0.

Suppose that T : A∪B−→ A∪B is noncyclic relatively (ρG)-nonexpansive. Then, T has a best

proximity pair (x,y) in A∪B such that (x,y) ∈ E(G).

Proof. The theorem is trivial if we assume that A∩B 6= /0, so we assume that A∩B = /0. Suppose

that F denotes the collection of all nonempty ρ-closed convex and ρ-bounded pairs (E,F) of

(A0,B0) such that T is noncyclic on (E,F) and ρ (x− y) = dρ (A,B), for some (x,y) ∈ E×F .

Since A0 is nonempty, ρ-closed, convex and ρ-bounded, and T is noncyclic on A0 ∪B0, then

(A0,B0) ∈F . Hence, F is nonempty. Moreover, F is partially ordered by a reverse inclusion,

that is, (E1,F1) ≤ (E2,F2) if and only if (E2,F2) ⊆ (E1,F1). Let (Eα ,Fα)α∈I be a decreasing

chain in F . Let E =
⋂

α Eα and F =
⋂

α Fα . By the fact that Xρ satisfies the property (R), the

pair (E,F) is nonempty ρ-closed and convex. Since (E,F) ⊆ (A0,B0), then (x,y) ∈ E(G) for

all (x,y) ∈ E ×F . Moreover, T is noncyclic on E ∪F . Indeed, let x ∈ E, so x ∈ Eα , for all

α ∈ I. Since T is noncyclic on Eα ∪Fα for all α ∈ I, then T x ∈ Eα for all α ∈ I. Therefore,

T x ∈ E =
⋂

α Eα . Using the same arguments, one has T (Fα)⊆ Fα .

Let (xα ,yα) ∈ Eα ×Fα such that ρ (xα − yα) = distρ (A,B). We have (xα ,yα) ∈ E(G), for all

α ∈ I. Since (A0,B0) is proximal ρ-compactness, then there exists a subsequence (xαi,yαi) of

the sequence (xα ,yα) such that xαi

ρ−→ x ∈ E and yαi

ρ−→ y ∈ F . Using the Fatou property, one

has

ρ (x− y)≤ liminf
i

ρ (xαi− yαi) = distρ(A,B).

Therefore, there exists a pair (x,y) ∈ E ×F such that ρ (x− y) = distρ (A,B). So every in-

creasing chain in F is bounded above with respect to the reverse inclusion. Hence, Zorn’s

lemma implies that F has a minimal element denoted by (K1,K2). Thus, (x,y) ∈ E(G) for all

(x,y) ∈ K1×K2, and distρ (K1,K2) = distρ (A,B). Since T is noncyclic, then

T (conv(K1))⊆ T (K1)⊆ conv(T (K1)) and T (conv(K2))⊆ T (K2)⊆ conv(T (K2)) ,

where the notation conv(Ki) describes the ρ-closed convex hull of Ki, for i ∈ {1,2}. In

fact, using the definition of the ρ-closed convex hull of a set, it is quite easy to see that
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T (K1)⊆ conv(T (K1)).

Now, let us prove that T (conv(T (K1)))⊆ T (K1). We have T (K1)⊆ K1, then conv(T (K1))⊆

K1. Hence, T (conv(T (K1))) ⊆ T (K1). Therefore, T (conv(K1)) ⊆ T (K1) ⊆ conv(T (K1)).

As the same way, we show that T (conv(K2)) ⊆ T (K2) ⊆ conv(T (K2)). Thus, T is non-

cyclic on conv(T (K1))∪ conv(T (K2)). The minimality of the pair (K1,K2) in F leads to

K1 = conv(T (K1)) and K2 = conv(T (K2)). If distρ (K1,K2) = 0, then T has a fixed point on

A∩B. Consequently, we assume that distρ (K1,K2)> 0.

Case one: min
{

diamρ (K1) ,diamρ (K2)
}
= 0. We assume that K1 = {x∗}. By the fact that

(K1,K2) is proximal, there exists y∗ ∈ K2 such that ρ (x∗− y∗) = distρ (A,B).

Moreover, (x∗,y∗) ∈ E (G). Since T is noncyclic relatively (ρG)-nonexpansive on K1∪K2, one

has

ρ (T (x∗)−T (y∗)) = ρ (x∗−T (y∗))≤ ρ (x∗− y∗) = distρ (A,B) .

Thus, ρ (x∗−T (y∗)) = distρ (A,B). Otherwise,

distρ (A,B)≤ ρ

(
x∗− y∗+Ty∗

2

)
≤ 1

2
ρ (x∗− y∗)+

1
2

ρ (x∗−Ty∗) = distρ (A,B) .

Since ρ is (UUC1), then ρ is strict convexity (SC). Hence, x∗− y∗ = x∗−Ty∗. Thus, y∗ = Ty∗.

Therefore, T has a best proximity pair (x∗,y∗) ∈ A×B such that (x∗,y∗) ∈ E(G).

Case two: If min
{

diamρ (K1) ,diamρ (K2)
}
> 0.

Assume that T does not have a best proximity pair. Let (p,q) ∈ K1×K2 such that ρ (p−q) =

distρ (A,B). Moreover, we have (p,q) ∈ E(G). Since T is noncyclic relatively (ρG)-

nonexpansive, one has

distρ (A,B)≤ ρ (T p−T q)≤ ρ (p−q) = distρ (A,B) .

Hence, ρ (T p−T q) = distρ (A,B). Thus, we must have p 6= T p and q 6= T q. Therefore,

ρ

(
p+T p

2
− q+T q

2

)
= distρ (A,B) .

Set ε0 = min{ρ (p−T p) ,ρ (q−T q)}. We have ε0 > 0 and R = δρ (K1,K2)> 0, since p 6= T p

and q 6= T q. For all y ∈ K2, one has (p,y) ∈ E(G) since (K1,K2)⊆ (A0,B0) and (x,y) ∈ E(G),
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for all (x,y) ∈ A0×B0. Thus, for all y ∈ K2 one has

ρ (p− y)≤ R and ρ (T p− y)≤ R.

Moreover, ρ (T p− p)≥ ε0 ≥ R
ε0

2R
. Therefore, using the fact that ρ is (UUC1) we get

ρ

(
y− p+T p

2

)
≤ R

(
1−η1

(
R
2
,

ε0

2R

))
< R.

Hence, δ p+T p
2

(K2)< R. As the same way, one can prove that δ q+T q
2

(K1)< R.

Set x∗ =
p+T p

2
and y∗ =

q+T q
2

. Therefore, (x∗,y∗) ∈ K1×K2 such that (x∗,y∗) ∈ E(G),

ρ (x∗− y∗) = distρ (A,B) and max
{

δx∗ (K2) ,δy∗ (K1)
}
< δρ (K1,K2). Suppose that there exists

λ ∈ (0,1) such that max
{

δx∗ (K2) ,δy∗ (K1)
}
≤ λδρ (K1,K2). Set

G1 =
{

x ∈ K1 : δx (K2)≤ λδρ (K1,K2)
}

and G2 =
{

x ∈ K2 : δx (K1)≤ λδρ (K1,K2)
}
.

Thus, (x∗,y∗) ∈ G1×G2. Moreover, (G1,G2) is a ρ-closed convex pair.

In fact, let γ ∈ (0,1) and x, x′ ∈ G1, and prove that z = γx+(1− γ)x′ ∈ G1. For all y ∈ K2, one

has

ρ (z− y) = ρ
(
γx+(1− γ)x′− y

)
≤ γρ (x− y)+(1− γ)ρ

(
x′− y

)
≤ γλδρ (K1,K2)+(1− γ)λδρ (K1,K2)

≤ λδρ (K1,K2) .

Therefore, δz (K2)≤ λδρ (K1,K2), that is, z ∈ G1. Therefore, G1 is ρ-closed.

Let (xn)n be a sequence in G1 such that (xn)n ρ-converges to x ∈ K1. Using the Fatou prop-

erty for all y ∈ K2, one has ρ (x− y) ≤ liminfn ρ (xn− y). Since xn ∈ G1, for all n ≥ 0, then

ρ (xn− y)≤ λδρ (K1,K2) for all n≥ 0.

Hence, liminfn ρ (xn− y)≤ λδρ (K1,K2). Thus, ρ (x− y)≤ λδρ (K1,K2) for all y ∈ K2. There-

fore, δx (K2) ≤ λδρ (K1,K2). This implies that x ∈ G1, that is, G1 is ρ-closed. Following the

same arguments one can prove that G2 is ρ-closed convex.

Now, let us prove that T is noncyclic on G1∪G2. Let x∈G2, for all y∈K2 we have (x,y)∈E(G)
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and

ρ (T x−Ty)≤ ρ (x− y)≤ λδρ (K1,K2) .

Then, Ty ∈ Bρ

(
T x,λδρ (K1,K2)

)
, for all y ∈ K2. Thus, T (K2) ⊆ Bρ

(
T x,λδρ (K1,K2)

)
∩K2.

Since K2 = conv(T (K2)), we have K2 ⊆ Bρ

(
T x,λδρ (K1,K2)

)
.

Therefore, δT x (K2) ≤ λδρ (K1,K2). Hence, T x ∈ G1, that is, T (G1) ⊆ G1. As the same way,

one can prove that T (G2)⊆G2. The minimality of the pair (K1,K2) in the collection F , implies

that G1 = K1 and G2 = K2. Therefore, x ∈ K1 and δx (K1)≤ λδρ (K1,K2). Thus,

δρ (K1,K2) = sup
x∈K1

δx (K2)≤ λδρ (K1,K2) .

Hence, δρ (K1,K2) = 0, contradiction. Therefore, T has a best proximity pair (x∗,y∗) ∈ A×B

such that (x∗,y∗) ∈ E(G). �

Proposition 3. Let ρ be a convex modular (UUC1) such that for all r > 0 and ε > 0 we have

ρ (x)≤ r, ρ (y)≤ r and ρ (x− y)≥ rε . Then,

ρ (tx+(1− t)y)≤ r (1−2t(1− t)η1 (s,ε)) ,

for all s < r and t ∈ [0,1].

Proof. Let r > 0, ε > 0 and x, y ∈ Xρ such that

ρ (x)≤ r, ρ (y)≤ r and ρ (x− y)≥ rε.

Since ρ is (UUC1), there exists η1(s,ε)> 0 such that δ1(r,ε)≥ η1(s,ε)> 0, for s < r.

• If t =
1
2

, there is nothing to prove.
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• If t ∈
[

0,
1
2

)
, then

ρ (tx+(1− t)y) = ρ (t(x+ y)+(1−2t)y)

= ρ

(
2t

x+ y
2

+(1−2t)y
)

≤ 2tρ
(

x+ y
2

)
+(1−2t)ρ (y)

≤ 2tr (1−η1(s,ε))+ r(1−2t)

≤ 2rt−2rtη1 (s,ε)+ r−2rt

≤ r (1−2tη1 (s,ε)) .

Thus,

ρ (tx+(1− t)y)≤ r (1−2tη1 (s,ε)) .(1)

• If t ∈
(

1
2
,1
]

, then

ρ (tx+(1− t)y) = ρ (tx− (1− t)x+(1− t)x+(1− t)y)

= ρ

(
(2t−1)x+2(1− t)

x+ y
2

)
≤ (2t−1)ρ (x)+2(1− t)ρ

(
x+ y

2

)
≤ (2t−1)r+2r(1− t)(1−η1(s,ε))

≤ 2rt− r+2r−2rt−2r(1− t)η1(s,ε)

≤ r (1−2(1− t)η1 (s,ε)) .

Thus,

ρ (tx+(1− t)y)≤ r (1−2(1− t)η1 (s,ε)) .(2)

Otherwise, for all t ∈ [0,1], we have 2t ≥ 2t(1− t) and 2(1− t)≥ 2t(1− t). Therefore,

ρ (tx+(1− t)y)≤ r (1−2t(1− t)η1 (s,ε)) ,

for all s < r. �
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Consider the following two sequences given by: for all n ∈ N,
xn+1 = (1−αn)zn +αnyn

yn = (1−βn)zn +βnT zn

zn = (1−δn)xn +δnT xn

and


x′n+1 = (1−αn)z′n +αny′n

y′n = (1−βn)z′n +βnT z′n

z′n = (1−δn)x′n +δnT x′n

(3)

where (x0,x′0) ∈ A0×B0 such that ρ (x0− y0) = distρ (A,B), and (αn)n, (βn)n and (δn)n are

sequences in (0,1) such that

C1) lim
n

αn = 0;

C2) 0 < a≤ δn ≤ b < 1 and lim
n

δn = θ .

We will say that ((xn)n ;(x′n)n) ρ-converges to a best proximity pair (x,x′), if (xn) ρ-converges

to x and (x′n) ρ-converges to x′ such that T x = x, T x′ = x′ and ρ (x− x′) = dρ (A,B).

Lemma 2. Let ρ be a convex modular and Xρ be a modular space endowed with a directed

transitive and convex graph G = (V (G),E(G)), where V (G) = A∪B is non empty ρ-closed

convex and ρ-bounded, and E(G) is convex and ∆⊆ E(G). Let T : A∪B−→ A∪B be mapping

which preserve edges. Assume that there exists (x0,y0) ∈ A×B such that (x0,T x0) ∈ E(G) and

(x′0,T x′0) ∈ E(G). Then, the pair of sequences ((xn,x′n))n is G-monotone, that is, (xn,xn+1) and

(x′n,x
′
n+1) are in E(G), for all n ≥ 0. Moreover, (xn,T xn) and (x′n,T x′n) are in E(G), for all

n≥ 0.

Proof. By the convexity of the G-interval [x0,T x0], one has (x0,z0) and (z0,T x0) are in E(G).

Since T preserves edges, then (T x0,T z0) in E(G). Transitivity of the graph G leads to (z0,T z0)

in E(G). The convexity of the G-interval [z0,T z0] implies that (z0,y0) and (y0,T z0) are in E(G).

The convexity of the G-interval [z0,y0] leads to (z0,x1) and (x1,y0) are in E(G). Therefore,

(x0,x1) ∈ E(G). Moreover, since T preserves edges one has (T z0,T x1) ∈ E(G). Transitivity of

the graph G for (x1,y0), (y0,T z0) and (T z0,T x1) leads to (x1,T x1) ∈ E(G). Thus, (x0,x1) and

(x1,T x1) are in E(G).

By induction, let us prove that (xn,xn+1) ∈ E(G). By the convexity of the G-interval [xn,T xn],

one has (xn,zn) and (zn,T xn) are in E(G). Since T preserves edges, one has (T xn,T zn) in E(G).

Transitivity of the graph G for (zn,T xn) and (T xn,T zn) implies that (zn,T zn) ∈ E(G). The
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convexity of the G-interval [zn,T zn] implies that (zn,yn) and (yn,T zn) are in E(G). Convexity

of the G-interval [zn,yn] leads to (zn,xn+1) and (xn+1,yn) are in E(G). Transitivity of the graph

G for (xn,zn) and (zn,xn+1) implies that (xn,xn+1) ∈ E(G). Moreover, (xn+1,yn), (yn,T zn) and

(T zn,T xn+1) leads to (xn+1,T xn+1) ∈ E(G). Thus, (xn,xn+1) and (xn+1,T xn+1) are in E(G).

Therefore, the sequence (xn)n ⊂ A is G-monotone. Following the same argument, we prove

that the sequence (x′n)n ⊂ B is also G-monotone. Hence, the pair of sequences ((xn,x′n))n is

G-monotone. �

Theorem 2. Let ρ be a convex modular satisfying Fatou property and (UUC1). Let (A,B) be a

nonempty convex and ρ-bounded pair of a ρ-complete modular space Xρ . Assume that (A0,B0)

is proximal ρ-compactness, and (x,x′) ∈ E(G) for all (x,x′) ∈ A0×B0 and G satisfies the prop-

erty (OSC). Let T : A∪ B −→ A∪ B be a noncyclic relatively (ρG)-nonexpansive mapping.

Assume that there exists x0 ∈ A0 such that (x0,T x0) ∈ E(G). Then,

i) the pair of sequences ((xn,x′n))n of (3) has a subsequence
((

xϕ(n),x′ϕ(n)
))

n
which ρ-

converges to a best proximity pair (x,x′) of T ;

ii) Moreover, if G satisfies the property (L ) then sequences ((xn,x′n))n of (3) ρ-converge

to a best proximity pair of T .

Proof. The theorem is trivial if A∩B 6= /0, so we assume that A∩B= /0. It follows from the proof

of Theorem 1 that T has a best proximity pair (p,q) ∈ A×B, then T has fixed point q ∈ B0.

Therefore, (x0,q) ∈ E(G), so (T x0,q) ∈ E(G) and for all n ∈ N, (xn+1,q) ∈ E(G), and

ρ (xn+1−q)≤ αnρ (yn−q)+(1−αn)ρ (zn−q)

≤ αn (βnρ (T zn−q)+(1−βn)ρ (zn−q))+(1−αn)ρ (zn−q)

≤ αnρ (zn−q)+(1−αn)ρ (zn−q)

≤ ρ (zn−q)

≤ δnρ (T xn−q)+(1−δn)ρ (xn−q)

≤ ρ (xn−q) .
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Hence, (ρ (xn−q))n is a decreasing sequence. Therefore, lim
n

ρ (xn−q) = r ≥ 0 exists. Now,

let us prove that lim
n

ρ (xn−T xn) = 0. Assume that there exist ε0 > 0 and a subsequence (xnk)k

of the sequence (xn)n such that ρ (xnk−T xnk)≥ ε0.

For ε ∈ (0,1), there exists k0 ∈ N such that ρ

(
xnk0
−q
)
≤ r+ 2ε , so ρ

(
T xnk0

−q
)
≤ r+ 2ε .

Since (ρ (xn−q))n is a decreasing sequence, then for all k ≥ k0 we have ρ (xnk−q) ≤ r+ 2ε

and ρ (T xnk−q)≤ r+2ε .

Since ρ is (UUC1) and ρ (xnk−T xnk)≥ ε0 >
ε0

r+2
(r+2ε) and by the condition (C1) and

Proposition 3, one has

ρ
(
xnk+1−q

)
≤ αnkρ (ynk−q)+(1−αnk)ρ (znk−q)

≤ ρ (znk−q)

= ρ (δnk (T xnk−q)+(1−δnk)(xnk−q))

(4)

≤ (r+2ε)

(
1−2δnk (1−δnk)η1

(
r,

ε0

r+2

))
≤ (r+2ε)

(
1−2a(1−b)η1

(
r,

ε0

r+2

))
.

By the condition (C2) and limit as k goes to infinity, one has

r = lim
k

ρ
(
xnk+1−q

)
≤ (r+2ε)

(
1−2a(1−b)η1

(
r,

ε0

r+2

))
.

Since ε is arbitrary chosen, we let ε goes to 0 and then

r ≤ r
(

1−2a(1−b)η1

(
r,

ε0

r+2

))
< r,

which leads to a contradiction. Therefore, lim
n→∞

ρ (xn−T xn) = 0. In the same way we show that

lim
n

ρ
(
x′n−T x′n

)
= 0.

Otherwise, we have ρ
(
x0− x′0

)
= distρ (A,B) then by the definition of the sequences (xn)n

and (x′n)n, and the convexity of ρ one has ρ (xn− x′n) = distρ (A,B) and (xn,x′n) ∈ E(G) for

all n ≥ 0. Since (A0,B0) is proximal ρ-compactness, then the sequence (xn,x′n)n has a subse-

quence
(

xϕ(n),x′ϕ(n)
)

n
which ρ-converges to (x,x′) ∈ A0×B0. Let us prove that (x,x′) is a best

proximity pair of T . We have
(
xϕ(n)

)
n and

(
x′

ϕ(n)

)
n

ρ-converge to x and x′ respectively, and

ρ

(
xϕ(n)− x′

ϕ(n)

)
= distρ (A,B), then using Fatou property we get

ρ
(
x− x′

)
≤ liminf

n
ρ

(
xϕ(n)− x′

ϕ(n)

)
= distρ (A,B) .
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Therefore, ρ (x− x′) = distρ (A,B).

Let us prove that the sequence (xn)n ρ-converges to x. By contradiction, we assume that (xn)n

does not ρ-converges to x. Thus, there exists V ∈ V (x) a neighbourhood of x and a subsequence(
xψ(x)

)
n such that xψ(x) 6∈V for all n∈N. Since A0 is ρ-sequentially compact, then the sequence(

xψ(n)
)

n has a subsequence
(
xψ◦σ(n)

)
n ρ-converges to y∈ A0. We have the sequence

(
xψ◦σ(n)

)
n

is G-monotone and satisfies the property (OSC). Thus,
(
xψ◦σ(n),y

)
∈ E(G). Also we have(

xϕ(x),x
)
∈ E(G). For xψ◦σ(n), we construct a sequence (kn)n such that for all xψ◦σ(n) one has(

xψ◦σ(kn),xϕ(kn)

)
∈ E(G). Property (F) implies that (y,x) ∈ E(G). Otherwise, for xψ◦σ(n), we

construct a sequence (hn)n such that for all xψ◦σ(n) one has
(
xϕ(hn),xψ◦σ(hn)

)
∈ E(G). The

property (F) leads to (x,y) ∈ E(G). We have (x,y) and (y,x) are in E(G). By the property (L ),

one has x = y. Therefore, the sequence
(
xψ◦σ(n)

)
n ρ-converges to x. Hence, there exists N ∈ N

such that for all n ∈ N, xψ◦σ(n) ∈V which a contradiction. Thus, (xn)n ρ-converges to x.

Now, let us prove that x = T x and x′ = T x′. Consider the subsets

Cn =
{

y ∈ B0 : (xn,y) ∈ E(G) and ρ (xn− y) = distρ (A,B)
}
,

for all n ∈ N. It is quite easy to see that Cn is nonempty convex and ρ-bounded, for all n ≥ 0.

Moreover, let (zp)p be a sequence of Cn which ρ-converges to a point z ∈ B0. Let us prove that

z ∈Cn. Since xn ∈ A0 and z ∈ B0, then (xn,z) ∈ E(G). Otherwise, using the Fatou property one

has

distρ (A,B)≤ ρ (xn− z)≤ liminf
p

ρ (xn− zp) = distρ (A,B) ,

for all n≥ 0. Thus, ρ (xn− z)= distρ (A,B), for all n≥ 0. Therefore, Cn is ρ-closed for all n≥ 0.

Using the property (R), we obtain
⋂
n

Cn is nonempty ρ-closed and convex. Hence, there exists

w ∈ B0 such that (xn,w) ∈ E(G) and ρ (xn−w) = distρ (A,B) for all n≥ 0. By Fatou property,

we have ρ (x−w) ≤ liminf
n

ρ (xn−w). Thus, ρ (x−w) = distρ (A,B). Otherwise, since T is

noncyclic relatively (ρG)-nonexpansive one has

ρ (xn+1−Tw)≤ αnρ (yn−Tw)+(1−αn)ρ (zn−Tw)

≤ αnβnρ (zn−w)+αn (1−βn)ρ (zn−Tw)+(1−αn)ρ (zn−Tw)
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≤ αnβnδnρ (T xn−w)+αnβn (1−δn)ρ (xn−w)+δn (1−αnβn)ρ (xn−w)

+(1−δn)(1−αnβn)ρ (xn−Tw)

≤ αnβnδnρ (T xn−w)+(δn +αnβn−2αnβn)ρ (xn−w)

+(1−δn)(1−αnβn)ρ (xn−Tw)

for all n≥ 0. Using the liminf as n goes to infinity and conditions (C1) and (C2), we obtain

liminf
n

ρ (xn−Tw)≤ θ liminf
n

ρ (xn−w)+(1−θ) liminf
n

ρ (xn−Tw) .

Hence,

liminf
n

ρ (xn−Tw)≤ liminf
n

ρ (xn−w) = distρ (A,B) .

Therefore, by Fatou property we get ρ (x−Tw) ≤ liminfn ρ (xn−Tw). Thus, ρ (x−Tw) =

distρ (A,B). Moreover,

distρ (A,B)≤ ρ

(
(x−Tw)+(x−w)

2

)
≤ ρ(x−Tw)+ρ(x−w)

2
= distρ (A,B) .

Hence, ρ

(
(x−Tw)+(x−w)

2

)
= distρ (A,B). Since ρ is (UUC1), then ρ is strictly convex.

Therefore, x−Tw = x−w. Thus, w = Tw. Since T is noncyclic relatively (ρG)-nonexpansive

mapping then

ρ (T x−w) = ρ (T x−Tw)≤ ρ (x−w) = distρ (A,B) .

The strict convexity of ρ implies that x = T x, that is, x is a fixed point of T on A0. Otherwise,

since T is noncyclic relatively (ρG)-nonexpansive, then

ρ
(
x−T x′

)
= ρ

(
T x−T x′

)
≤ ρ

(
x− x′

)
.

Hence, ρ (x−T x′) = distρ (A,B). By the strict convexity of ρ , one has x−T x′ = x− x′. Thus,

x′ = T x′, that is, x′ is a fixed point of T in B0. In order to complete the proof, we show

that (x′n)n ρ-converges to x′. By contradiction, we assume that there exists a subsequence(
x′

ψ(n)

)
n

which converge to x′′ 6= x′. Since (A0,B0) is proximal ρ-compactness, then there
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exists a subsequence
(
xψ(n)

)
n ⊂ A0 which ρ-converges to x. We have ρ (x− x′) = distρ (A,B)

and ρ (x− x′′) = distρ (A,B). Moreover,

distρ (A,B)≤ ρ

(
x− x′+ x′′

2

)
= ρ

(
(x− x′)+(x− x′′)

2

)
≤ 1

2
ρ
(
x− x′

)
+

1
2

ρ
(
x− x′′

)
= distρ (A,B) .

Hence, the strict convexity (SC) leads to x′ = x′′, contradiction. Therefore, the sequence (x′n)n

ρ-converges to x′. Thus, (xn,x′n) ρ-converges to a best proximity pair (x,x′) of T . �

If we assume that αn = βn = 0, then the sequence (3) will be Mann iteration defined by

xn+1 = δnT xn +(1−δn)xn and x′n+1 = δnT x′n +(1−δn)x′n,(5)

where (δn)n is a sequence in (0,1) such that 0 < a≤ δn ≤ b < 1 and lim
n

δn = θ .

Corollary 3. Under the same assumptions of Theorem 2, the sequence (5) ρ-converges to a

best proximity pair of T .

Example 1. Let X = R2, we define the modular ρ : X −→ [0,+∞[ by ρ (x) = |x1|2 + |x2|2, for

all x = (x1,x2) ∈ R2. The modular ρ is convex satisfying the Fatou property and (UUC1), and

Xρ is a ρ-complete modular space.

Let

A =

{
(x,y) ∈ R2 : −2≤ x≤−1 and − 1

2
≤ y≤ 1

2

}
and

B =

{
(x,y) ∈ R2 : 1≤ x≤ 2 and − 1

2
≤ y≤ 1

2

}
.

The pair (A,B) is convex and ρ-bounded in Xρ with dρ (A,B) = 4. Moreover,

A0 =

{
(−1,y) : −1

2
≤ y≤ 1

2

}
and B0 =

{
(1,y) : −1

2
≤ y≤ 1

2

}
are nonempty and proximal ρ-compactness. Consider the convex graph G= (V (G),E(G)) such

that V (G) = A∪B and for x = (x1,y1) and y = (x2,y2), we have (x,y) ∈ E(G) if and only if
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x1 ≤ x2. Moreover, for all x ∈ A0 and y ∈ B0, one has (x,y) ∈ E(G). Consider the mapping

T : A∪B−→ A∪B defined by

T (x,y) =



(
x−1

2
,−y

2

)
if (x,y) ∈ A,

(
x+1

2
,−y

2

)
if (x,y) ∈ B.

It easy to see that T is noncyclic relatively (ρG)-nonexpansive.

Consider the following parameter sequences (αn)n, (βn)n and (δn)n given by

αn =
2(n+1)
3(n2 +2)

, βn =
n+2

2n+3
and δn =

n2 +1
3n2 +6

,

for all n≥ 0. We have

lim
n

αn = 0 , lim
n

δn =
1
6

and 0 <
1
9
≤ δn ≤

1
6
< 1.

Now, let us compute the pair of the sequences ((xn)n ;(x′n)n) generated by the iterative process

(3). Let x0 = (u0,v0) =

(
−1,−1

2

)
and x′0 = (u′0,v

′
0) =

(
1,

1
2

)
. We have

z0 = δ0

(
−1,
−v0

2

)
+(1−δ0)(−1,v0)

=

(
−1,
−δ0

2
v0 +(1−δ0)v0

)
=

(
−1,

(
1− 3

2
δ0

)
v0

)
.

We have T z0 =

(
−1,−1

2

(
1− 3

2
δ0

)
v0

)
. Thus,

y0 = β0

(
−1,−1

2

(
1− 3

2
δ0

)
v0

)
+(1−β0)

(
−1,

(
1− 3

2
δ0

)
v0

)
=

(
−1,

(
1− 3

2
β0

)(
1− 3

2
δ0

)
v0

)
.

Therefore, one has

x1 = α0

(
−1,

(
1− 3

2
β0

)(
1− 3

2
δ0

)
v0

)
+(1−α0)

(
−1,

(
1− 3

2
δ0

)
v0

)
=

(
−1,

(
1− 3

2
α0β0

)(
1− 3

2
δ0

)
v0

)
.
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Moreover, T x1 =

(
−1,−1

2

(
1− 3

2
α0β0

)(
1− 3

2
δ0

)
v0

)
. As the same way , we compute x2 as

follows:

z1 = δ1

(
−1,−1

2

(
1− 3

2
α0β0

)(
1− 3

2
δ0

)
v0

)
+(1−δ1)

(
−1,

(
1− 3

2
α0β0

)(
1− 3

2
δ0

)
v0

)
=

(
−1,

(
1− 3

2
δ1

)(
1− 3

2
δ0

)(
1− 3

2
α0β0

)
v0

)
.

and T z1 =

(
−1,−1

2

(
1− 3

2
α0β0

)(
1− 3

2
δ1

)(
1− 3

2
δ0

)
v0

)
. Hence,

y1 = β1

(
−1,−3

2

(
1− 3

2
α0β0

)(
1− 3

2
δ1

)(
1− 3

2
δ0

)
v0

)
+(1−β1)

(
−1,

(
1− 3

2
α0β0

)(
1− 3

2
δ1

)(
1− 3

2
δ0

)
v0

)
=

(
−1,

(
1− 3

2
β1

)(
1− 3

2
α0β0

)(
1− 3

2
δ1

)(
1− 3

2
δ0

)
v0

)
.

Therefore,

x1 = α1

(
−1,

(
1− 3

2
β1

)(
1− 3

2
α0β0

)(
1− 3

2
δ1

)(
1− 3

2
δ0

)
v0

)
+(1−α1)

(
−1,

(
1− 3

2
α0β0

)(
1− 3

2
δ1

)(
1− 3

2
δ0

)
v0

)
Thus,

xn =

(
−1,

n−1

∏
k=0

(
1− 3

2
δk

)n−1

∏
j=0

(
1− 3

2
α jβ j

)
v0

)
.

By induction, we prove that

xn+1 =

(
−1,

n

∏
k=0

(
1− 3

2
δk

) n

∏
j=0

(
1− 3

2
α jβ j

)
v0

)
.

One has,

zn = δn

(
−1,
−1
2

n−1

∏
k=0

(
1− 3

2
δk

)n−1

∏
j=0

(
1− 3

2
α jβ j

)
v0

)

+(1−δn)

(
−1,

n−1

∏
k=0

(
1− 3

2
δk

)n−1

∏
j=0

(
1− 3

2
α jβ j

)
v0

)

=

(
−1,

n

∏
k=0

(
1− 3

2
δk

)n−1

∏
j=0

(
1− 3

2
α jβ j

)
v0

)
.
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We have

yn = βn

(
−1,

n

∏
k=0

(
1− 3

2
δk

)n−1

∏
j=0

(
1− 3

2
α jβ j

)
v0

)

+(1−βn)

(
−1,

n−1

∏
k=0

(
1− 3

2
δk

)n−1

∏
j=0

(
1− 3

2
α jβ j

)
v0

)

=

(
−1,

(
1− 3

2
βn

) n

∏
k=0

(
1− 3

2
δk

)n−1

∏
j=0

(
1− 3

2
α jβ j

)
v0

)

Therefore, one has

xn+1 = αn

(
−1,

n

∏
k=0

(
1− 3

2
δk

)n−1

∏
j=0

(
1− 3

2
α jβ j

)
v0

)
+

(
−1,

n

∏
k=0

(
1− 3

2
δk

)n−1

∏
j=0

(
1− 3

2
α jβ j

)
v0

)

=

(
−1,

n

∏
k=0

(
1− 3

2
δk

) n

∏
j=0

(
1− 3

2
α jβ j

)
v0

)
.

Thus, for all n≥ 0

xn =

(
−1,

n−1

∏
k=0

(
1− 3

2
δk

)n−1

∏
j=0

(
1− 3

2
α jβ j

)
v0

)
.

As the same way, we compute the sequence (x′n)n as follows

x′n =

(
−1,

n−1

∏
k=0

(
1− 3

2
δk

)n−1

∏
j=0

(
1− 3

2
α jβ j

)
v′0

)
,

for all n ≥ 0. Moreover,
∞

∏
k=0

(
1− 3

2
δk

)
= 0 and

∞

∏
j=0

(
1− 3

2
α jβ j

)
= 0. Therefore, the pair of

the sequences ((xn)n ;(x′n)n) ρ-converges to ((−1,0) ;(1,0)) ∈ A0×B0 best proximity pair of

the mapping T .

Next, we will show via the Table 1 and figures 1, 2, 3 and 3 that the new iterative process

(3) converges faster than Mann’s iteration by using MatLab R2020a software. By taking the

initial couple
(
x0,x′0

)
=

((
−1,

1
2

)
,

(
1,

1
2

))
and the parameters sequences αn =

2(n+1)
3(n2 +2)

,

βn =
n+2
2n+3

and δn =
n2 +1

3n2 +6
, for all n ≥ 0, we get Table 1 and figures 1, 2, 3 and 4 which

illustrate clearly the fastness of the proposed algorithm to converges to a best proximity pair of

T . The numerical results of Table 1 confirm that the new iteration is more advantageous than
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Mann’s iteration and its requires less numbers of iteration than Mann’s iteration. In fact, it can

be easily seen from the 1 that the proposed scheme requires 361 iterations to achieve the best

proximity pair of T against 1076 iterations for Mann’s scheme. The figures 3 and 4 illustrate

the behaviour of the sequences (xn)n and (x′n)n defined by (4) and Mann’s iteration (3) on the

subsets A and B, respectively.

FIGURE 1. Graphic simulation of the convergence for (x0,x′0) =
((
−1,

1
2

)
,

(
1,

1
2

))
.

FIGURE 2. Side view of the graphic simulation of the convergence for (x0,x′0) =((
−1,

1
2

)
,

(
1,

1
2

))
.
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FIGURE 3. Comparisons of the sequence (xn)n of the new iteration and Mann’s iteration on

A.

FIGURE 4. Comparisons of the sequence (x′n)n of the new iteration and Mann’s iteration on

B.
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CONCLUSION

A best proximity pair existence theorem for noncyclic relatively ρ-nonexpansive mappings

has been proven in the context of modular spaces endowed with a graph. Furthermore, a new

iterative method has been introduced in order to approximate a best proximity pair of such

mapping in the case of modular spaces endowed with a graph. The result has been validated

with a numerical example.
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