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Abstract. In this paper we consider a one-dimensional swelling porous-elastic system with second sound and

distributed delay term. We prove that the combination of the frictional damping with the heat flux effect is strong

enough to provoke an exponential decay of the energy even if the delay is a source of destabilization.
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1. INTRODUCTION

Using the second law of thermodynamics, Eringen [9] developed general and linear constitu-

tive equations of mixtures of viscous liquids, elastic solids and gas. Then established a relation

between the continuum theory of swelling porous elastic soils and the classical diffusion theo-

ries. For more discussion on continuum theories that have been developed to model mixtures we
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refer the reader to [3]. As discussed deeply in [14], expansive soils cause minor to major struc-

tural damages to buildings, that includes floor slab on grade cracking, buckling of pavements

and cracking of buried pipes. Thus to deal with this problematic soil, it is essential to evaluate

its swelling potential, and then propose several techniques to prevent structural damages, such

as reducing the swelling, using sufficiently strong structures and isolating the structure from the

swelling soil (see [22]). For more practical applications of the theory in architecture and civil

engineering, we mention for example Handy [11], Hung [12], see also ([10], [13]).

The linear theory of swelling porous elastic soils as considered in [23] and [24] is given by

the system

ρ1ϕtt = P1x−G1+H1(1.1)

ρ2ψtt = P2x +G2+H2

where ϕ represent the displacement of the fluid with density ρ1 and ψ is the elastic solid material

with density ρ2. The functions (P1,P2) represent the partial tension, (G1,G2) the internal body

forces, and (H1,H2) the external forces, acting on the displacement and on the elastic solid,

respectively. Moreover, the partial tensions (P1,P2) are given by P1

P2

= A

 ϕx

ψx

 ,

where A is the positive definite matrix

 a1 a2

a2 a3

 , with a1, a3 are positive constants and a2

6= 0 is a real number.

Wang and Guo [26] considered (1.1) by taking

G1 = G2 = 0,

H1 = −ρ1γ(x)ϕt ,

H2 = 0,

where γ(x) is an internal viscous damping function with positive mean. By using the spectral

method they established an exponential stability result. More recently, in [7], the authors studied
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(1.1) with different conditions

G1 = G2 = H1 = 0,

H2 = −
∫ t

0
g(t− s)φxx(x,s)ds−β1φt

−
∫

τ2

τ1

|β2(σ)|φt(x, t−σ)dσ ,

they used the multiplier method to establish a general decay result.

In the literature, many interesting results on the swelling porous system with different condi-

tions on G1,G2,H1 and H2 are considered (see [1], [2], [4], [16], [17], [18]), where the stability

results obtained by using either multiplier or spectral methods.

A system which is asymptotically stable may be destabilized under the effects of time delay,

that make it a property of practical and theoretical importance for many physical systems. As

mentioned in [21], by a change of variable, distributed delay can be regarded as a memory

acting only on the time interval (t− τ2, t− τ1) ,∫
τ2

τ1

µ(s)ut (x, t− s)ds =
∫ t−τ1

t−τ2

µ(t− s)ut (x,s)ds,

for more discussions (see [8], [27]).

Models governed by the Fourier’s law of heat conduction leads to an infinite speed of heat

propagation, which means that any thermal disturbance at one point has an instantaneous ef-

fect somewhere else. By replacing Fourier’s law βq+θx = 0 with a wave propagation process

described by Cattaneo’s law τqt +βq+θx = 0, the problem of the infinite speed of heat propa-

gation is eliminated (see [6], [25]).

In the present work, we consider (1.1) with distributed delay term on the elastic solid is in

the form of distributed delay term, that is:

G1 = G2 = 0,

H1 = µ1ϕt +
∫

τ2

τ1

µ2(σ)ϕt (x, t−σ)dσ ,

H2 = 0.

Thus, we are concerned with the following thermoelastic system of swelling porous elastic

soils with a linear frictional damping and an internal distributed delay acting on the transverse
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displacement, where the heat flux is given by Cattaneo’s law:

(1.2)



ρ1ϕtt−a1ϕxx−a2ψxx +µ1ϕt +
∫

τ2
τ1

µ2(s)ϕt (x, t− s)ds = 0 in (0,1)× (0,∞),

ρ2ψtt−a3ψxx +a2ϕxx +δθx = 0, in (0,1)× (0,∞),

ρ3θt−qx +δψtx = 0, in (0,1)× (0,∞),

τqt +βq+θx = 0, in (0,1)× (0,∞),

ϕ (x,0) = ϕ0 (x) ,ϕt (x,0) = ϕ1 (x) ,θ(x,0) = θ0(x) in (0,1),

ψ (x,0) = ψ0 (x) , ψt (x,0) = ψ1 (x) , q(x,0) = q0 (x) in (0,1),

ϕ(0, t) = ϕ(1, t) = ψx(0, t) = ψx(1, t) = θ(0, t) = θ(1, t) = 0 in (0,∞),

where the functions (ϕ,ψ,θ ,q) are the transverse displacement of the beam, the ro-

tation angle, the difference temperature, the heat flux, respectively. The coefficients,

ρ1,ρ2,ρ3,a1,a2,a3,β ,δ ,µ1,τ are positive constants. τ1 and τ2 are two real numbers with

0 ≤ τ1 < τ2, µ1 > 0 is a positive constant, µ2 : [τ1,τ2] −→ R is L∞ function, µ2 ≥ 0 almost

everywhere, such that

(1.3) µ1 ≥
∫

τ2

τ1

µ2 (s)ds.

Finally, ϕ0,ϕ1,ψ0,ψ1,θ0,q0, f0 are the initial data and f 0 is history function, belong to an

appropriate functional spaces.

The purpose of this paper is to study the well-posedness and the asymptotic behavior of the

solution of (1.2) regardless of the speeds of wave propagation.

2. PRELIMINARIES

As in [19], we introduce the new variable

(2.1) z(x,ρ,s, t) = ϕt (x, t−ρs) in (0,1)× (0,1)× (τ1,τ2)× (0,∞).

It is straight forward to check that z satisfies

szt(x,ρ,s, t)+ zρ(x,ρ,s, t) = 0 in (0,1)× (0,1)× (τ1,τ2)× (0,∞).

Consequently, problem (1.2) is equivalent to
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(2.2)



ρ1ϕtt−a1ϕxx−a2ψxx +µ1ϕt +
∫

τ2
τ1

µ2(s)z(x,1,s, t)ds = 0, in (0,1)× (0,∞),

ρ2ψtt−a3ψxx +a2ϕxx +δθx = 0, in (0,1)× (0,∞),

ρ3θt−qx +δψtx = 0, in (0,1)× (0,∞),

τqt +βq+θx = 0, in (0,1)× (0,∞),

szt(x,ρ,s, t)+ zρ(x,ρ,s, t) = 0, in (0,1)× (0,1)× (τ1,τ2)× (0,∞),

ϕ (x,0) = ϕ0 (x) ,ϕt (x,0) = ϕ1 (x) ,θ(x,0) = θ0(x) in (0,1),

ψ (x,0) = ψ0 (x) , ψt (x,0) = ψ1 (x) , q(x,0) = q0 (x) in (0,1),

ϕ(0, t) = ϕ(1, t) = ψx(0, t) = ψx(1, t) = θ(0, t) = θ(1, t) = 0 in (0,∞),

z(x,0, t,s) = ϕt (x, t) in (0,1)× (0,∞)× (τ1,τ2) ,

z(x,ρ,0,s) = f0 (x,ρ,s) in (0,1)× (0,1)× (τ1,τ2) .

For any regular solution of (2.2), we define the energy by

E(t) =
1
2

∫ 1

0

{
ρ1ϕ

2
t +ρ2ψ

2
t +ρ3θ

2
t +θq2 +

(
a1−

a2
2

a3

)
ϕ

2
x

+

(
a2√
a3

ϕx +
√

a3ψx

)2
}

dx

+
1
2

1∫
0

1∫
0

∫
τ2

τ1

s |µ2(s)|z2(x,ρ,s, t)dsdρdx.(2.3)

We assume (1.3) holds and establish the well-posedness as well as the exponential stability

results of the energy.

3. WELL-POSEDNESS OF THE PROBLEM

In this section, we prove the existence and uniqueness of solutions for (2.2) using semigroup

theory. Introducing the vector function

φ = (ϕ,u,ψ,v,θ ,q,z)T ,

and the two new dependent variables

u = ϕt and v = ψt ,
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then the system (2.2) can be written as

(3.1)

 φ ′(t)+A φ (t) = 0, t > 0,

φ(0) = φ0 = (ϕ0,u0,ψ0,v0,θ0,q0,z0)
T .

Where the operator A is defined by

A φ =



−u
1
ρ1

(
−a1ϕxx−a2ψxx +µ1u+

∫
τ2
τ1

µ2(s)z(x,1,s, t)ds
)

−v
1
ρ2
(−a3ψxx +a2ϕxx +δθx)

1
ρ3
(−qx +δvx)
1
τ
(βq+θx)

1
s zρ (x,ρ,s, t)


,

so

A =



0 −I 0 0 0 0 0
−a1

ρ1
∂xx

µ1

ρ1

−a2

ρ1
∂xx 0 0 0

1
ρ1

∫
τ2
τ1

µ2(s) ds

0 0 0 −I 0 0 0
−a2

ρ2
∂xx 0

−a3

ρ2
∂xx 0

δ

ρ2
∂x 0 0

0 0 0
δ

ρ3
∂x 0

1
ρ3

∂x 0

0 0 0 0
1
τ

∂x
β

τ
0

0 0 0 0 0 0
1
s

∂ρ



.

We have reserved the following spaces

L2
∗ (0,1) =

{
ψ ∈ L2 (0,1) :

∫ 1

0
ψ(x)dx = 0

}
,

H1
∗ (0,1) = H1 (0,1)∩L2

∗ (0,1) ,

H2
∗ (0,1) = {ψ ∈ H2(0,1) : ψx(0) = ψx(1) = 0},

and H is the energy space given by

H = H1
0 (0,1)×L2(0,1)×H1

∗ (0,1)×L2
∗(0,1)×L2(0,1)

×L2
∗(0,1)×L2 ((0,1)× (0,1)× (τ1,τ2)) .
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We will show that A generates a C0 Semi-group on H .

Let φ = (ϕ,u,ψ,v,θ ,q,z)T , φ̄ =
(
ϕ,u,ψ,v,θ ,q,z

)T , we equip the Hilbert space H with the

inner product through

〈φ , φ̄〉H = ρ1

1∫
0

uũ dx+ρ2

1∫
0

vṽ dx+ρ3

1∫
0

θθ̃ + τ

1∫
0

qq̃+
(

a1−
a2

q3

)
1∫

0

ϕ̃x dx+
1∫

0

(
a2√
a3

ϕx +
√

a3ψx

)(
a2√
a3

ϕ̃x +
√

a3ψ̃x

)
dx

+

1∫
0

1∫
0

∫
τ2

τ1

s|µ2(s)|z(x,ρ,s, t)z̄(x,ρ,s, t)dsdρdx.(3.2)

H is the Hilbert space. In this box, the inner product above is equivalent to the natural inner

product set to H .

The domain of A is

D(A ) =


φ ∈H : ϕ ∈ H2 (0,1)∩H1

0 (0,1) ,ψ ∈ H2
∗ (0,1)∩H1

∗ (0,1),

v,q ∈ H1
∗ (0,1),u,θ ∈ H1

0 (0,1),

z,zρ ∈ L2
ω ((0,L)× (0,1)× (τ1,τ2)) ,u(x) = (x,0,s) in (0,L) .

 .

Clearly, D(A ) is dense in H . Now we can give the following existence and uniqueness result.

Theorem 1. Suppose that hypothesis (1.3) holds. Then, for any initial data φ0 ∈H there

exists a unique solution φ ∈ C ([0,∞),H ) of problem (3.1). Moreover, if φ0 ∈ D(A ), then

φ ∈C([0,∞),D(A ))∩C1[0,∞),H ).

Proof. To obtain the above result, we will prove that A : D(A )→H is a maximal monotone

operator. For this purpose, we need the following two steps.

Step 1: In this step, we prove that the operator A is monotone. Let φ ∈ D(A ),

〈Aφ ,φ〉H = β

∫ 1

0
q2 +

1
2

∫ 1

0

∫
τ2

τ1

|µ2(s)|z2(x,1,s) ds dx

+

(
µ1−

1
2

∫
τ2

τ1

|µ2(s)| ds
)∫ 1

0
u2 dx+

∫ 1

0
u
∫

τ2

τ1

µ2(s)z(x,1,s)ds dx.(3.3)
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Using Young’s inequality, the last term in (3.3), we have

−
∫ 1

0
u
∫

τ2

τ1

µ2(s)z(x,1,s) ds dx

≤ 1
2

∫
τ2

τ1

|µ2(s)| ds
∫ 1

0
u2 dx+

1
2

∫ 1

0

∫
τ2

τ1

|µ2(s)|z2(x,1,s) ds dx,(3.4)

substitute (3.4) in (3.3) yield,

〈Aφ ,φ〉H ≥ β

∫ 1

0
q2 dx+

(
µ1−

∫
τ2

τ1

|µ2(s)| ds
)∫ 1

0
u2 dx.

By (1.3), 〈Aφ ,φ〉H ≥ 0, then we conclude that A is monotone

Step 2: We prove that operator A + I is surjective. That is to say, for everything G =

(g1,g2,g3,g4,g5,g6,g7) ∈H , we are looking for φ ∈ D(A) satisfying

(A + I)φ = G,

so we get

(3.5)



ϕ−u = g1,

ρ1u−a1ϕxx−a2ψxx +µ1u+
∫

τ2
τ1

µ2(s)z(x,1,s, t)ds = ρ1g2,

ψ− v = g3,

ρ2v−a3ψxx +a2ϕxx +δθx = ρ2g4,

ρ3θ −qx +δvx = ρ3g5,

(τ +β )q+θx = τg6,

z+ 1
s zρ (x,ρ, t) = g7.

Suppose we have found u and v. Therefore, the first and the third equation in (3.5) given

(3.6)

 u = ϕ−g1,

v = ψ−g3.

It is clear that u ∈ H1
0 (0,1),v ∈ H1

0 (0,1). And we can find

(3.7) z(x,0,s) = u(x), if x ∈ (0,1) ,s ∈ (τ1,τ2) .

Following the same approach as in [20], we obtain by using equations for z in (3.6),

(3.8) z(x,ρ,s)+ s−1zρ (x,ρ,s) = g6 (x,ρ,s) , if x ∈ (0,1) ,s ∈ (τ1,τ2) .
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Then by (3.7) and (3.8),

(3.9) z(x,ρ,s) = e−ρsu(x)+ se−ρs
∫

ρ

0
g7 (x,τ,s)eτsdτ.

From (3.5)6 we have

θx = τg6− (β + τ)q,

so

(3.10) θ = τ

∫ x

0
g6 dx− (β + τ)

∫ x

0
q dx,

then θ(0) = θ(1) = 0. Using (3.6) and (3.10) in (3.5), we get

(3.11)


−a1ϕxx−a2ψxx +M ϕ = h1 ∈ L2(0,1),

−a3ψxx−a2ϕxx +ρ2ψ− (β + τ)δq = h2 ∈ L(0,1),

−δg3x−ρ3(g5− τ)
∫ 1

0 g6(y) dy = h3 ∈ L2(0,1),

where

(3.12)

M = µ1 +ρ1 +
∫

τ2
τ1

µ2(s)e−s ds,

h1 = µg1 +ρ1g2−
∫

τ2
τ1

sµ2(s)e−s ∫ 1
0 estg7(x,τ,s) dτ ds,

h2 = ρ2(g3 +g4)− τδg6,

h3 =−δg3x−ρ(g5− τ
∫ x

0 g6(y) dy).

The variational formulation associated with (3.11) takes the form

(3.13) B((ϕ,ψ,q) ,(ϕ̃, ψ̃, q̃)) = F (ϕ̃, ψ̃, q̃) ,

where B:
[
H1

0 (0,1)×H1
0 (0,1)×L2

∗ (0,1)
]2→ R is the bilinear form

B((ϕ,ψ,q) ,(ϕ̃, ψ̃, q̃)) = a2

∫ 1

0
(ψxϕ̃x +ϕxψ̃x)dx+M

∫ 1

0
ϕϕ̃dx+ρ2

∫ 1

0
ψψ̃dx

+a1

∫ 1

0
ϕxϕ̃xdx−δ (γ +β )

∫ 1

0
qψ̃dx

+(τ +β )
∫ 1

0
qq̃dx+δ (τ +β )

∫ 1

0
ψ q̃dx

+ρ3 (τ +β )2
∫ 1

0

(∫ x

0
q(y)dy

∫ x

0
q̃(y)dy

)
dx,

and F :
[
H1
∗ (0,1)×H1

0 (0,1)×L2
∗(0,1)

]
→ R is the linear form

F (ϕ̃, ψ̃, q̃) =
∫ 1

0
h1ϕ̃ dx+

∫ 1

0
h2ψ̃ dx+

∫ 1

0
h3

∫ x

0
q̃(y) dy dx,
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where the space V = H1
∗ (0,1)×H1

0 (0,1)×L2
∗(0,1) quipped with the norm

‖(ϕ,ψ,q‖2
V = a1

∫ 1

0
ϕ

2
x dx+a3

∫ 1

0
ψ

2
x dx+(β + τ)

∫ 1

0
q2 dx,

which is equivalent to

‖(ϕ,ψ,q‖2
V := ‖ϕx‖2

2 +‖ψx‖2
2 +‖ϕ‖2

2 +‖ψ‖2
2 +‖q‖2

2.

To solve the problem (3.11), it suffices to show that B is continuous and coercive, and that F is

continuous, we can therefore easily see that B and F are bounded, and moreover, we have for a

c > 0 :

B((ϕ,ψ,q),(ϕ̃, ψ̃, q̃))V = 2a2

∫ 1

0
ψxϕx dx+(β + τ)

∫ 1

0
q2 dx+a1

∫ 1

0
ϕ

2
x dx

+ρ2

∫ 1

0
ψ

2 dx+M
∫ 1

0
ϕ

2 dx+ρ3(β + τ)2
∫ 1

0

(∫ 1

0
q(y) dy

)2

dx

≥C‖(ϕ,ψ,q)‖2
V ,

therefore, according to the Lax-Milgram theorem, the system (3.11) admits a unique solution

ϕ ∈ H1
∗ (0,1),ψ ∈ H1

0 (0,1) and q ∈ L2
∗(0,1).

By replacing ϕ in (3.6)1, ψ in (3.6)2 and q in (3.10) we get

M ∈ H1
0 (0,1),V ∈ H1

∗ (0,1),θ ∈ H1
0 (0,1),

similarly by inserting u in (3.9) we obtain z,zρ ∈L2 ((0,1)× (0,1)× (τ1,τ2)) if (ϕ̃, q̃)= (0,0)∈

H1
0 (0,1)×L2

∗(0,1) then (3.13) reduces to

a2

∫ 1

0
ϕxψ̃x dx+ρ2

∫ 1

0
ψψ̃ dx−δ (β + τ)

∫ 1

0
qψ̃ dx

=
∫ 1

0
h2ψ̃ dx ∀ψ̃ ∈ H1

∗ (0,1),(3.14)

which implies

(3.15) ρ2ψ = a2ϕxx +(B+ τ)δq+h2 ∈ L2(0,1),

by the theory of regularity for linear equations, it follows that

ψ ∈ H2(0,1)∩H1
∗ (0,1).
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Moreover (3.14) is also true for all φ ∈C1([0,1])⊂ H1
∗ (0,1) so we have

ρ2

∫ 1

0
ψφ dx+

∫ 1

0
(−a2ϕxx−δ (B+ τ)q−h2)φ dx = 0,

for all φ ∈C1 ([0,1]), thus using integration by parts and bearing in the mind (3.15),

ψx(1)φ(1)−ψx(0)φ(0) = 0 ∀φ ∈C1 ([0,1]) .

So, ψx(0) = ψx(1) = 0. Therefore we get

−a1ϕxx = a2ψxx−M ϕ +h1 ∈ L2(0,1),

−qx = δψx− (B+ τ)ρ3

∫ x

0
q(y) dy+h3 ∈ L2(0,1),

thus we have

ϕ ∈ H2(0,1)∩H1
0 (0,1), q ∈ H1

∗ (0,1).

Finally, we ensure the existence of unique φ ∈D(A ) such that (3.5) is satisfied, by the applica-

tion of the regularity theory of linear elliptic equations. Consequently, A is maximal operator.

Hence, from Lumer-Phillips theorem the result of Theorem 1 follows. �

4. EXPONENTIAL STABILITY

In this section, we state and prove our stability result for the energy of the solution of system

(2.2), using the multiplier technique. To achieve our goal, we need the following lemmas.

Lemma 1. Let (ϕ,ψ,θ ,q,z) be a solution (2.2) and assume (1.3) holds. Then the energy

functional defined by (2.3) satisfied

(4.1) d
dt
(E(t))≤−β

∫ 1
0 q2dx−

(
µ1−

∫
τ2
τ1
|µ2(s)|ds

)∫ 1
0 ϕ2

t dx, t ≥ 0.

Proof. Multiplying the equations (2.2)1, (2.2)2, (2.2)3, and (2.2)4 by ϕt ,ψt ,θ and q respectively,

and we integrate along [0.1] using the boundary conditions ,and by addition, we obtain

1
2

d
dt

1∫
0

{
ρ1ϕ

2
t +a1ϕ

2
x +ρ2ψ

2 +a3ψ
2
x +ρ3θ

2 + τq2 +2a2ψxϕx
}

dx

=−β

1∫
0

q2dx−µ1

1∫
0

ϕ
2
t dx−

1∫
0

ϕt

∫
τ2

τ1

µ2(s)z(x,1,s, t)dsdx.(4.2)
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We multiply (2.2)4 by |µ2(s)|z, and integrates over (0,1)× (0,1)× (τ1,τ2), we have

1
2

∫ 1

0

∫ 1

0

∫
τ2

τ1

s|µ2(s)|z2(x,ρ,s, t)dsdρdx =−1
2

∫ 1

0

∫
τ2

τ1

∫ 1

0
|µ2(s)|z2(x,ρ,s, t)dρdsdx

=−1
2

∫ 1

0

∫
τ2

τ1

|µ2(s)|z2(x,1,s, t)dsdx

+
1
2

∫ 1

0

∫
τ2

τ1

|µ2(s)|z2(x,0,s, t)dsdx,

and recall that z(x,0,s, t) = ϕt ,

1
2

∫ 1

0

∫ 1

0

∫
τ2

τ1

s|µ2(s)|z2(x,ρ,s, t)dsdρdx =−1
2

∫ 1

0

∫
τ2

τ1

|µ2(s)|z2(x,1,s, t)dsdx(4.3)

+
1
2

∫ 1

0

∫
τ2

τ1

|µ2(s)|ϕ2
t (x, t)dsdx,

combining (4.2) and (4.3), we get

d
dt
(E(t)) =−β

1∫
0

q2dx−µ1

1∫
0

ϕ
2
t dx−

1∫
0

ϕt

∫
τ2

τ1

µ2(s)z(x,1,s, t)dsdx

− 1
2

∫ 1

0

∫
τ2

τ1

|µ2(s)|z2(x,1,s, t)dsdx+
1
2

∫ 1

0

∫
τ2

τ1

|µ2(s)|ϕ2
t (x, t)dsdx.(4.4)

From Young’s inequality

−
∫ 1

0
ϕt

(∫
τ2

τ1

µ2 (s)z(x,1,s, t)ds
)

dx≤ 1
2

∫ 1

0
ϕ

2
t

(∫
τ2

τ1

|µ2 (s)|ds
)

dx

+
1
2

∫ 1

0

∫
τ2

τ1

|µ2 (s)|z2 (x,1,s, t)dsdx.(4.5)

Inserting (4.5) in (4.4), we get

d
dt
(E(t))≤−

(
µ1−

1
2

∫
τ2

τ1

|µ2 (s)|ds
) 1∫

0

ϕ
2
t dx−β

1∫
0

q2dx(4.6)

+
1
2

∫ 1

0

∫
τ2

τ1

|µ2(s)|ϕ2
t (x, t)dsdx, t ≥ 0.

Therefore, we get (4.1). �

Lemma 2. Let (ϕ,ψ,θ ,q,z) be the solution of (2.2). Then the functional

z1 (t) := ρ1

1∫
0

ϕtϕdx− a2

a3
ρ2

1∫
0

ψtϕdx,
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satisfies the estimate

z
′
1 (t) ≤ −1

2

(
a1−

a2
2

a3

) 1∫
0

ϕ
2
x dx+ρ1

1∫
0

ϕ
2
t dx+ ε0

1∫
0

ψ
2
t dx+Cε0

1∫
0

ϕ
2
t dx

+C0

1∫
0

θ
2dx+C0

τ2∫
τ1

|µ2 (s)|ds
1∫

0

τ2∫
τ1

|µ2 (s)|z2 (x,1,s, t)dsdx.(4.7)

Proof. Differentiating z1 (t) using (2.2)1 and (2.2)2, gives

z
′
1 (t) = ρ1

1∫
0

ϕ
2
t dx+

1∫
0

ϕ

a1ϕxx +a2ψxx−µ1ϕt−
τ2∫

τ1

µ2 (s)z(x,1,s, t)ds

dx

−a2

a3

1∫
0

ϕ [a3ψxx +a2ϕxx−δθx]dx− a2

a3
ρ2

1∫
0

ψtϕtdx

= ρ1

1∫
0

ϕ
2
t dx−a1

1∫
0

ϕ
2
x dx−µ1

1∫
0

ϕϕtdx

−
1∫

0

ϕ

 τ2∫
τ1

µ2 (s)z(x,1,s, t)ds

dx− a2

a3
ρ2

1∫
0

ψtϕtdx

+
a2

2
a3

1∫
0

ϕ
2
x dx− δa2

a3

1∫
0

ϕxθdx.

Then,

z
′
1 (t) = −

(
a1−

a2
2

a3

) 1∫
0

ϕ
2
x dx+ρ1

1∫
0

ϕ
2
t dx−

1∫
0

ϕ

 τ2∫
τ1

µ2 (s)z(x,1,s, t)ds

dx

−a2

a3
ρ2

1∫
0

ψtϕtdx− δa2

a3

1∫
0

ϕxθdx.(4.8)

Now, we estimate the terms in the right hand side of (4.8). Using Young’s inequality, we have

−δa2

a3

1∫
0

ϕxθdx ≤ 1
4

(
a1−

a2
2

a3

) 1∫
0

ϕ
2
x dx+C0

1∫
0

θ
2dx,(4.9)

−a2

a3
ρ2

1∫
0

ψtϕtdx ≤ ε0

1∫
0

ψ
2
t dx+Cε0

1∫
0

ϕ
2
t dx.(4.10)

By using the Cauchy-Schwarz’s, Young’s and Poincaré inequalities, we obtain
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−
1∫

0

ϕ

 τ2∫
τ1

µ2 (s)z(x,1,s, t)ds

dx ≤ C0

τ2∫
τ1

|µ2 (s)|ds
1∫

0

τ2∫
τ1

|µ2 (s)|z2 (x,1,s, t)dsdx

+
1
4

(
a1−

a2
2

a3

) 1∫
0

ϕ
2
x dx.(4.11)

Finally, by substituting (4.9), (4.10) and (4.11) in (4.8), we obtain estimate (4.7). �

Lemma 3. Let be the solution of (2.2). Then the functional

satisfies the estimate

z
′
2 (t) ≤ −

a2
2ρ2

4
√

a3

1∫
0

ψ
2
t dx+Cε1

1∫
0

ϕ
2
x dx+C1

1∫
0

ϕ
2
t dx

+Cε1

τ2∫
τ1

|µ2 (s)|ds
1∫

0

 τ2∫
τ1

|µ2 (s)|z2 (x,1,s, t)ds

dx

+2ε1

1∫
0

(
a2√
a3

ϕx +
√

a3ψx

)2

dx.(4.12)

Proof. Taking the derivative of F2 (t), using (2.2) and integration by parts, we obtain

z
′
2 (t) = a2

1∫
0

[a1ϕxx +a2ψxx−µ1ϕt−
τ2∫

τ1

µ2 (s)z(x,1,s, t)ds](
a2√
a3

ϕ +
√

a3ψ)dx

+ρ1a2

1∫
0

ϕt(
a2√
a3

ϕt +
√

a3ψt)dx

−
a2

2
a3

1∫
0

[a3ψxx +a2ϕxx−δθx] (
a2√
a3

ϕ +
√

a3ψ)dx

−
a2

2
a3

ρ2

1∫
0

ψt(
a2√
a3

ϕt +
√

a3ψt)dx+
µ1a2

2√
a3

1∫
0

ϕϕtdx

+µ1a2
√

a3

 1∫
0

ψtϕdx+
1∫

0

ψϕtdx

 ,
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next, we write

z
′
2 (t) = −a1a2

1∫
0

ϕx

(
a2√
a3

ϕx +
√

a3ψx

)
dx−a2

2

1∫
0

ψx

(
a2√
a3

ϕx +
√

a3ψx

)
dx

−
µ1a2

2√
a3

1∫
0

ϕtϕdx−µ1a2
√

a3

1∫
0

ϕtψdx

−a2

1∫
0

(
a2√
a3

ϕ +
√

a3ψ

) τ2∫
τ1

µ2 (s)z(x,1,s, t)ds

dx

+ρ1
a2

2√
a3

1∫
0

ϕ
2
t dx+ρ1a2

√
a3

1∫
0

ϕtψtdx+a2
2

1∫
0

ψx(
a2√
a3

ϕx +
√

a3ψx)dx

+
a3

2√
a3

1∫
0

ϕx(
a2√
a3

ϕx +
√

a3ψx)dx−
a3

2ρ2

a3
√

a3

1∫
0

ψtϕtdx

−
a2

2ρ2√
a3

1∫
0

ψ
2
t dx+µ1a2

√
a3

1∫
0

ψtϕdx.

Then,

z
′
2 (t) = −a2

(
a1−

a2
2√
a3

) 1∫
0

ϕx

(
a2√
a3

ϕx +
√

a3ψx

)
dx

−a2

1∫
0

(
a2√
a3

ϕ +
√

a3ψ

) τ2∫
τ1

µ2 (s)z(x,1,s, t)ds

dx

+ρ1
a2

2√
a3

1∫
0

ϕ
2
t dx+ρ1a2

√
a3

1∫
0

ϕtψtdx+

−
a3

2ρ2

a3
√

a3

1∫
0

ψtϕtdx−
a2

2ρ2√
a3

1∫
0

ψ
2
t dx+µ1a2

√
a3

1∫
0

ψtϕdx.(4.13)

Using Young’s inequality in (4.13), we get

−a2

(
a1−

a2
2√
a3

) 1∫
0

ϕx

(
a2√
a3

ϕx +
√

a3ψx

)
dx

≤ ε1

1∫
0

(
a2√
a3

ϕx +
√

a3ψx

)2

dx+Cε1

1∫
0

ϕ
2
x dx,(4.14)



16 BAIBECHE, BOUZETTOUTA, GUESMIA, ABDELLI

(4.15) −
a3

2ρ2

a3
√

a3

1∫
0

ψtϕtdx≤
a2

2ρ2

4
√

a3

1∫
0

ψ
2
t dx+C1

1∫
0

ϕ
2
t dx,

(4.16) ρ1a2
√

a3

1∫
0

ϕtψtdx≤
a2

2ρ2

4
√

a3

1∫
0

ψ
2
t dx+C1

1∫
0

ϕ
2
t dx,

and

(4.17) µ1a2
√

a3

1∫
0

ψtϕdx≤
a2

2ρ2

4
√

a3

1∫
0

ψ
2
t dx+C1

1∫
0

ϕ
2
x dx.

By using the Cauchy-Schwarz inequality and those of Young and Poincaré in (4.13), we obtain:

−a2

1∫
0

(
a2√
a3

ϕ +
√

a3ψ

) τ2∫
τ1

µ2 (s)z(x,1,s, t)ds

dx

≤ ε1

1∫
0

(
a2√
a3

ϕx +
√

a3ψx

)2

dx

+Cε1

τ2∫
τ1

|µ2 (s)|ds
1∫

0

 τ2∫
τ1

|µ2 (s)|z2 (x,1,s, t)ds

dx.(4.18)

Finally, substituting (4.14), (4.15), (4.16), (4.17) and (4.18), we obtain the estimate (4.12). �

Lemma 4. Let (ϕ,ψ,θ ,q,z) be the solution of (2.2). Then the functional

z3 (t) = ρ2

1∫
0

ψψtdx+ρ1

1∫
0

ϕϕtdx+
µ1

2

∫ 1

0
ϕ

2dx,

satisfies

z′3 (t) ≤ −1
2

(
a1−

a2
2

a3

) 1∫
0

ϕ
2
x dx− 1

2

1∫
0

(
a2√
a3

ϕx +
√

a3ψx

)2

dx

+C2

1∫
0

θ
2dx+ |µ1|

1∫
0

 τ2∫
τ1

|µ2 (s)|z2 (x,1,s, t)ds

dx

+ρ1

1∫
0

ϕ
2
t dx+ρ2

1∫
0

ψ
2
t dx.(4.19)
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Proof. By differentiating F3 (t), taking in account the second and the third equations in (2.2),

and integrating by parts, we obtain

z′3 (t) = ρ2

1∫
0

ψ
2
t dx+

1∫
0

(α3ψxx +α2ϕxx−δθx)ψdx+ρ1

1∫
0

ϕ
2
t dx

+

1∫
0

ϕ

α1ϕxx +α2ψxx−µ1ϕt−
τ2∫

τ1

µ2 (s)z(x,1,s, t)ds

dx+
µ1

2

∫ 1

0
ϕ

2dx

= ρ2

1∫
0

ψ
2
t dx−α3

1∫
0

ψ
2
x dx−α2

∫ 1

0
ϕxψxdx+δ

∫ 1

0
θψxdx+ρ1

1∫
0

ϕ
2
t dx

+
µ1

2

∫ 1

0
ϕ

2dx−α1

∫ 1

0
ϕxdx−α2

∫ 1

0
ϕxψxdx− µ1

2

∫ 1

0
ϕ

2dx.

−
∫ 1

0
ϕ

 τ2∫
τ1

µ2 (s)z(x,1,s, t)ds

dx.

Finally, the estimate (4.19) is established, using Young’s and Poincaré inequalities. �

Lemma 5. Let (ϕ,ψ,θ ,q,z) be the solution of (2.2). Then the functional z4 (t) =

τρ3
1∫
0

θ (
∫ x

0 q(y)dy)dx,

satisfies the estimate

(4.20) z′4 (t)≤−
ρ3

2

1∫
0

θ
2dx+ ε2

1∫
0

ψ
2
t dx+ c

(
1+

1
ε2

) 1∫
0

q2dx.

Proof. Differentiating F4 (t), and using the equations in (2.2), we obtain

F ′4(t) = τρ3

1∫
0

θt

(∫ x

0
q(y)dy

)
dx+ τρ3

1∫
0

θ
d
dt

(∫ x

0
q(y)dy

)
dx

= τ

1∫
0

(−qx−δψtx)

(∫ x

0
q(y)dy

)
dx+ τρ3

∫ 1

0
θtdydx

= τ

1∫
0

q2dx+δτ

∫ 1

0
ψtqdx+ρ3

1∫
0

θ

∫ x

0
(−βq−θx)dydx

= τ

1∫
0

q2dx+δτ

∫ 1

0
ψtqdx−βρ3

1∫
0

θ

∫ x

0
qdydx−ρ3

1∫
0

θ

∫ x

0
θxdydx.
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Now we use Cauchy-Schwarz and Young’s inequalities

z′4 (t) ≤ τ

∫ 1

0
q2dx+

δτ

4ε

∫ 1

0
ψ

2
t dx+δτε3

∫ 1

0
q2dx−ρ3

1∫
0

θ
2dx

+βρ3ε

1∫
0

θ
2dx+

βρ3

4ε

∫ 1

0

(∫ x

0
qdy
)2

dx,

then

z′4 (t)≤
(

τ +δτε +
βρ3

4ε

)∫ 1

0
q2dx+(βρ3ε−ρ3)

1∫
0

θ
2dx+

τδ

4ε

1∫
0

ψ
2
t dx.

Thus we get the estimate (4.20). �

Lemma 6. Let (ϕ,ψ,θ ,q,z) be the solution of (2.2). Then the functional

z5 (t) :=
1∫

0

1∫
0

∫
τ2

τ1

se−sρ |µ2(s)|z2(x,ρ,s, t)dsdρdx,

satisfies, for some positive constant m1, the following estimate

z′5 (t) ≤ −m1

1∫
0

1∫
0

∫
τ2

τ1

s |µ2(s)|z2(x,ρ,s, t)dsdρdx

−m1

1∫
0

1∫
0

|µ2(s)|z2(x,ρ,s, t)dsdx+µ1

∫ 1

0
ϕ

2
t dx.(4.21)

Proof. Differentiating F5 (t) , and using (2.2)5, we obtain

z′5 (t) = −2
1∫

0

1∫
0

∫
τ2

τ1

e−sρ |µ2(s)|z(x,ρ,s, t)zρ(x,ρ,s, t)dsdρdx

= − d
dρ

1∫
0

∫
τ2

τ1

e−sρ |µ2(s)|z2(x,ρ,s, t)dsdx

−
1∫

0

1∫
0

∫
τ2

τ1

se−sρ |µ2(s)|z2(x,ρ,s, t)dsdρdx

= −
1∫

0

∫
τ2

τ1

[
|µ2(s)|e−sz2(x,ρ,s, t)dsdρdx− z2(x,0,s, t)

]
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−
1∫

0

1∫
0

∫
τ2

τ1

se−sρ |µ2(s)|z2(x,ρ,s, t)dsdρdx.

Since z(x,0,s, t) = ϕt and e−s ≤ e−sρ ≤ 1, for all ρ ∈ [0.1] , we get

z′5 (t) ≤ −
1∫

0

τ2∫
τ1

e−s |µ2 (s)|z2 (x,1,s, t)dsdx+
∫

τ2

τ1

|µ2 (s)|ds
∫

ϕ
2
t dx

−
1∫

0

1∫
0

∫
τ2

τ1

se−s |µ2(s)|z2(x,ρ,s, t)dsdρdx.

Using the fact that −e−s is an increasing function, we have −e−s ≤ −e−τ2, for all s ∈ [τ1,τ2] .

Finally, setting m1 = e−τ2 and by (1.3), we obtain (4.21). �

Next, we define a Lyapunov functional L and show that it is equivalent to the

energy functional E (t).

Lemma 7. For N sufficiently large, the functional defined by

(4.22) L(t) := NE (t)+N1F1 +N2F2 +2F3 +N3F4 +N4F5,

where N1,N2,N3 and N4 are positive real numbers to be chosen appropriately later, satisfies

(4.23) c1E(t)≤ L(t)≤ c2E(t), ∀t ≥ 0,

for two positive constants c1 and c2.

Proof. Let L(t) := NE (t)+N1F1 +N2F2 +2F3 +N3F4 +N4F5,

|L(t)−NE (t)| ≤ N1ρ1

∫ 1

0
ϕtϕdx−N1

a2

a3
ρ2

∫ 1

0
ψtϕdx

+N2ρ1a2

∫ 1

0
ϕt(

a2√
a3

ϕ +
√

a3ψ)dx

−N2
a2

2
a3

ρ2

∫ 1

0
ψt(

a2√
a3

ϕ +
√

a3ψ)dx
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+N2
µ1a2

2
2
√

a3

∫ 1

0
ϕ

2dx+N2µ1a2
√

a3

∫ 1

0
ψϕdx

+2ρ2

∫ 1

0
ψψtdx+2ρ1

∫ 1

0
ϕϕtdx+µ1

∫ 1

0
ϕ

2dx

+N3γρ3

∫ 1

0
θ

(∫ x

0
q(y)dy

)
dx

+N4τ

∫ 1

0

∫ 1

0

∫
τ2

τ1

s |µ2 (s)|e−sρz2(x,ρ,s, t)dsdρdx.

Exploiting Cauchy-Schwarz’s and Young’s and Poincaré inequalities, gives

|L(t)−NE (t)| ≤C
∫ 1

0

(
ϕ

2
t +ψ

2
t +θ

2 +q2 +(
a2√
a3

ϕx +
√

a3ψx)
2 +ϕ

2
x

)
+C

∫ 1

0

∫ 1

0

∫
τ2

τ1

s |µ2 (s)|e−sρz2(x,ρ,s, t)dsdρdx.

≤CE (t) .

Which yields

(N−C)E (t)≤ L(t)≤ (N +C)E (t) .

Consequently, By choosing N large enough. We obtain estimate (4.23). �

Now, we are ready to state and prove the main result of this section.

Theorem 2. Let (ϕ,ψ,θ ,q,z) be the solution (2.2). Then there are two positive constants α

and γ such that

(4.24) E(t)≤ αE(0)e−γt , t ≥ 0.

Proof. by differentiating (4.22) and recalling (4.1), (4.7), (4.12), (4.19), (4.20), (4.21) we obtain

L′ (t) ≤ −

N(µ1−
τ2∫

τ1

|µ2 (s)|ds)−N1 (ρ1 +Cε0)−C1N2−2ρ1−N4µ1

 1∫
0

ϕ
2
t dx

−
[

1
2

(
a1−

a2
2

a3

)
N1−N2Cε1 +

(
a1−

a2
2

a3

)] 1∫
0

ϕ
2
x dx

− [1−2ε1N2]

1∫
0

(
a2√
a3

ϕx +
√

a3ψx)
2dx− [βN−N3c(1+

1
ε2
)]

1∫
0

q2dx
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−[ρ3

2
N3−C0N1−2C2]

1∫
0

θ
2dx− [

a2
2ρ2

4
√

a3
N2− ε0N1−2ρ2− ε2N3]

1∫
0

ψ
2
t dx

− [N1C0µ1−Cε1N2µ1−2µ1 + τN4]

1∫
0

τ2∫
τ1

|µ2 (s)|z2 (x,1,s, t)dsdx

−τN4

1∫
0

1∫
0

τ2∫
τ1

s |µ2 (s)|z2 (x,ρ,s, t)dsdρdx.

By setting

ε0 =
1

N1
, ε2 =

1
N3

, ε1 =
1

4N2
,

we obtain

L′ (t) ≤ −

N(µ1−
τ2∫

τ1

|µ2 (s)|ds)−N1 (ρ1 +Cε0)−C1N2−2ρ1−N4µ1

 1∫
0

ϕ
2
t dx

−
[

1
2

(
a1−

a2
2

a3

)
N1−N2Cε1 +

(
a1−

a2
2

a3

)] 1∫
0

ϕ
2
x dx

−1
2

∫ 1

0
(

a2√
a3

ϕx +
√

a3ψx)
2dx− [βN−N3c(1+N3)]

1∫
0

q2dx

−
[

ρ3

2
N3−C0N1−2C2

] 1∫
0

θ
2dx−

[
a2

2ρ2

4
√

a3
N2−2ρ2−2

]∫ 1

0
ψ

2
t dx

− [N1C0µ1−Cε1N2µ1−2µ1 + τN4]

1∫
0

τ2∫
τ1

|µ2 (s)|z2 (x,1,s, t)dsdx

−τN4

1∫
0

1∫
0

τ2∫
τ1

s |µ2 (s)|z2 (x,ρ,s, t)dsdρdx.

Next, we carefully choose our constants so that the terms inside the brackets are positive.

We choose N2 large enough such that

α1 =
a2

2ρ2

4
√

a3
N2−2ρ2−2 > 0,
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then we choose N1 large enough such that

α2 =
N1

2
(a1−

a2
2

a3
)−N2Cε1 +

(
a1−

a2
2

a3

)
> 0.

OnceN2 is fixed, then we choose N3 large enough such that

α3 =
ρ3

2
N3−C0N1−2C2 > 0.

For any N1, N2 and N3, choosing N4 large enough that

N1C0µ1−Cε1N2µ1−2µ1 + τN4.

Finally, we choose N large enough (even larger so that (4.23) remains valid) so that

N

µ1−
τ2∫

τ1

|µ2 (s)|

−N1 (ρ1 +Cε0)−C1N2−2ρ1−N4µ1 > 0,

and

α5 = βN− c(1+N3)N3 > 0.

Take, α0 = τN4, we obtain

L
′
(t)≤−

∫ 1

0

(
α4ϕ

2
t +α1ψ

2
t +α3θ

2 +α5q2 +
1
2
(

a2√
a3

ϕx +
√

a3ψx)
2 +α2ϕ

2
x

)

−α0

1∫
0

1∫
0

τ2∫
τ1

s |µ2 (s)|z2 (x,ρ,s, t)dsdρdx.

By (2.3), we get

(4.25) L
′
(t)≤−σ0E (t) , ∀t ≥ 0,

for some σ0 > 0. A combination of (4.23) and (4.25) gives

(4.26) L
′
(t)≤−γL(t) , ∀t ≥ 0,

Where γ = α0/C2. A simple integration of (4.26) over (0, t) yields

(4.27) L(t)≤ L(0)e−γt , ∀t ≥ 0.

Finally, by combining (4.23) and (4.27) we obtain (4.24) with α = C2E(0)
C1

, which completes the

proof. �
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