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Abstract. Laplace decomposition method (LDM) is utilized to obtain an approximate solution of two-dimensional

projectile motion with linear air resistance as well as to derive a formalism to obtain the solutions for any order of

nonlinearity in the air resistance. The projectile trajectory was obtained using LDM method in three cases: without

air resistance, with linear air resistance, and with quadratic air resistance. The solutions were used to illustrate

the effect of the order of non-linearity on the basic parameters related to the motion, like Ranges, time of flight,

maximum high and some other parameters. The available literature does not provide an exact solution to this

motion when higher nonlinearities are involved. Nevertheless, the results show that such method is effective and

powerful in getting approximate solutions for problems involving nonlinear behavior.
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1. INTRODUCTION

The problem of the projectile motion is very well known for. Physics students and researchers

are familiar with the solution of this problem when the air resistance is neglected. In practice,

the air resistance is not negligible, and it seems necessary to develop solutions for motion where

air resistance is present. In this paper, the projectile motion was solved using LDM method in

three cases: without air resistance, with linear air resistance, and with quadratic air resistance.

Then the results of some relations were plotted to compare the effects of the nonlinearity order

of resistance on the path of the motion [1, 2, 3, 4, 5, 6, 7]. Yabushita [4] considered the two

dimensional problem in which the air resistance is proportional to the square of the velocity.

It has been considered that the equations of motion in this case are unsolvable for a general

projectile angle. Warburton [5] studied three regimes of approximation: low-angle trajectory

where the horizontal velocity is assumed to be much larger than the vertical velocity; high-

angle trajectory where the vertical velocity is assumed much larger than the horizontal velocity;

and split-angle trajectory. Parker [6] derived a simple approximate solution to these equations

for both short and long times and a numerical example was used to compare these solutions

with accurate results obtained by numerical integration from an exact but implicit approach.

The Adomian decomposition method, introduced by Adomian in 1980’s [8], has been powerful

method to find the approximate solutions for a wide class of ordinary differential equations. The

LDM is a successive technique developed with the help of the Adomian decomposition [9, 10].

It is used to solve nonlinear ordinary and partial differential equations. The method is very

well suited in physical problems since it can solve nonlinear problems without linearization,

perturbation or discretization methods. On the other hand it requires less computation work

than traditional approaches.

Many papers used this method to solve various nonlinear partial differential equations.

Khuri [11] used this method for the approximate solution of a class of nonlinear ordinary differ-

ential equations. Elgazery [12] exploited this method to solve Falkner-Skan equation. Handibag

and Karande [13] applied this method for the solution of the linear and nonlinear heat equation.
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The LDM was employed in to get approximate analytical solutions of the linear and the non-

linear fractional diffusion-wave equations, nonlinear Schrödinger Equation and Klien Gordon

equation [14, 15, 17].

In this paper, the aim is to obtain an approximate solution for the projectile motion equations

and to derive a general formula for the solution of any order of nonlinearity for air resistance

term using an easy but powerful technique. The solution will be as a form of summation, which

yields an exact solution for infinite number of terms.

2. EQUATIONS OF MOTION

A projected object of mass (m) will be considered in this paper. Suppose that the force

of gravity affects the object together with the force of air resistance, see Figure 1, which is

proportional to the speed of the projected mass and is directed opposite the velocity vector. The

resistance force will be in the form (kvγ), where k is the proportionality factor, v is the velocity

and γ is the power factor of nonlinearity.

(1) mv̇ =−mg− kvγ , γ = 0,1,2, . . .

According to many researches, the proportionality factor (k) depends on the medium density,

the dimension of the projected mass, the cross sectional area of the projectile [16]. For γ = 0, the

projectile motion without air resistance is solved by many researches [7]. In this paper, the effect

of nonlinearity on the final trajectory of the object will be handled using LDM formalism. It is

clear from Figure 1 that the path of projectile with air resistance is not parabola and it depends

on the value of γ to determine the behavior of the trajectory. The LDM will be discussed in

next section, we show how it can be used to obtain the solution for Equation 1 with different

nonlinear coefficient (γ).



4 ALOMARI, JARADAT, ALOQALI, HABASHNEH, JARADAT

FIGURE 1. The flight of a projectile with and without air resistance, γ = 1, v0 =

100 m/s,k = 0.1, and m = 10g

3. LAPLACE DECOMPOSITION METHOD

Suppose that we are interested in solving the following differential equation:

(2) F(u(t)) = h(t), u(0) = u0,

where F is linear or nonlinear operator, u is the unknown function and u0 is the initial condi-

tion. The main idea of LDM is to decompose the operator F into linear and nonlinear operators

in the form:

F = L+R+N,

where L+R is linear, N is nonlinear and L is invertible with L−1 as its inverse. Using this

decomposition, Equation 2 becomes

(3) Lu(t)+Ru(t)+Nu(t) = h(t),

where operator L is defined as L = d(.)
dt and L−1 =

∫ t
0(.)ds. Applying Laplace transform to

both sides of Equation 3, we get

(4) L {Lu(t)}+L {Ru(t)}+L {Nu(t)}= L {h(t)},
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this yields,

(5) sL {u(t)}= u0 +L {h(t)}−L {Nu(t)}−L {Ru(t)},

and thus,

(6) L {u(t)}= u0

s
+

1
s
L {h(t)}− 1

s
L {Nu(t)}−L {Ru(t)}.

We seek a solution of Equation 2 in the form:

(7) u(t) =
∞

∑
n=0

un(t).

The key of this technique is to decompose the nonlinear term Nu in Equation 3 into a partic-

ular series of polynomials:

(8) Nu(t) =
∞

∑
n=0

An

where An = An(u0,u1,u2, . . . ,un) are called Adomian polynomials and defined as:

(9) An(u0,u1,u2, . . . ,un) =
1
n!

[
dn

dλ n N

(
∞

∑
i=0

λ
iui

)]
λ=0

, λ = 0,1,2, . . .

The first five Adomian polynomials for the variable Nu = f (u) are given by:

A0 = f (u0), A1 = u1 f ′(u0)

A2 = u2 f ′(u0)+
1
2!

u2
1 f ′′(u0), A3 = u3 f ′(u0)+u1u2 f ′′(u0)+

1
3!

u3
1 f (3)(u0)

A4 = u4 f ′(u0)+

(
u1u3 +

1
2!

u2
2

)
f ′′(u0)+

1
2!

u2
1u2 f (3)(u0)+

1
4!

u4
1 f (4)(u0)

In the next section, we will illustrate how we can use this methodology to solve the projectile

motion Equation 1 and obtain a general formula for the velocity of the projected mass at any

point in the trajectory for any value of γ .
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4. METHOD OF SOLUTION

One of the easiest ways to discuss the projectile motion is to analyze the motion in each

direction separately. In other words, we will use one set of equations to describe the vertical

motion and another set of equations to describe the horizontal one. In projectile motion, the

only acceleration will be in z-direction and therefore, the horizontal velocities components will

be constants. If air resistance is present, which directly depends on the speed, forces on the

projectile motion, then Newton’s equation of motion is:

(10) m
d~v
dt

=−mgẑ− kvγ v̂,

with initial conditions v(0) = u0.

Rewrite Equation 10 for the linear case (γ = 1), we get:

(11)
d~v
dt

=−gẑ− k
m

vv̂

Match Equation 3 with Equation 11, we get

L =
d
dt
, R = 0, h =−g, Nu =− k

m
v(t).

Apply Laplace transform to both sides of Equation 11, we have

(12) L {v̇(t)}= L {−g}− k
m

L {v(t)},

and then,

sv(s)− v(0) =−g
s
− k

m
L {v(t)},

so,

(13) v(s) =
u0

s
− g

s2 −
k

ms
L {v(t)}.
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Define

(14) v(s) =
∞

∑
n=0

vn(s),

where
∞

∑
n=0

vn(s) =
u0

s
− g

s2 −
k

ms
L {v(t)}.

Define

(15) v(t) =
∞

∑
n=0

An(u),

therefore,

(16)
∞

∑
n=0

vn(s) =
u0

s
− g

s2 −
k

ms
L

{
∞

∑
n=0

An(u)

}
.

Now, compute Adomian polynomials An. A0 = v0, A1 = v1, A2 = v2, A3 = v3, . . . .

If we match both sides of Equation 16, we get

(17) v0(s) =
u0

s
− g

s2 ,

hence,

(18) v0(t) = L −1
{u0

s
− g

s2

}
= u0−gt.

(19) v1(s) =−
k

ms
L {A0}=−

k
ms

L {v0(t)} ,

and so,

(20) v1(t) =−
k
m

(
u0t− 1

2
gt2
)
,

(21) v2(t) =
k2

m2

(
u0t2

2!
− gt3

3!

)
.

Similarly, we can find the rest of the terms using:

(22) vn(t) =
(−1)nkn

mn

(
u0tn

n!
− gtn+1

(n+1)!

)
.
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To obtain the exact solution we take the summation for all terms, this yields

(23) v(t) =
∞

∑
n=0

(−1)nkn

mn (a1u0tn−a2gtn+1).

Which is the result of applying Laplace Transform, where a1 and a2 are constants. The

horizontal motion will have same steps except that h = 0 in Equation 3, then the solution for the

horizontal motion will be

(24) v(t) =
∞

∑
n=0

(−1)nkn

mn (a1u0tn)

Now we discuss the projectile forced by an air resistance (γ = 2), which depends on the speed,

then the Newton’s equation is:

(25) v̇ =−g− k
m

v2, v(0) = u0.

After applying Laplace transform to both sides and then taking the inverse Laplace, we get

(26) v(s) =
u0

s
− s

s2 −
k

ms
L {v2}.

Use the definition in Equation 14 and v2 = ∑
∞
n=0 An(u), we get

(27)
∞

∑
n=0

vn(s) =
u0

s
− s

s2 −
k

ms
L

{
∞

∑
n=0

An(u)

}
.

The related Adomian polynomials are :

A0 = v2
0,A1 = 2v0v1,A2 = v2

1 +2v0v2,A3 = 2v1v2 +2v0v3, . . . ,

then,

(28) v0(t) = L −1
{u0

s
− g

s2

}
= u0−gt,

(29) L {v1(t)}=−
k

ms
L {v2

0},
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and hence,

(30) v1(t) =−
k
m

(
u2

0t−gu0t2 +
g2

3
t3
)
,

similarly,

(31) v2(t) =
k2

m2

(
u3

0t2−
8gu2

0t3

3!
+

16u0g2t4

4!
− 16g3t5

5!

)
,

(32) v3(t) =−
k3

m3

(
u4

0t3− 5
3

u3
0gt4 +

17
15

u2
0g2t5− 17

45
u0g3t6 +

17
315

g4t7
)
,

(33) v4(t) =
k4

m4

(
u5

0t4−2gu4
0t5 +

77
45

u3
0g2t6− 248

315
u2

0g3t7 +
62

315
u0g4t8− 62

2835
g5t9

)
,

and

(34) vn(t) =
(−1)nkn

mn

(
un+1

0 g0tn−un
0g1tn+1 +un−1

0 g2tn+2−·· ·+u0
0gn+1t2n+1) .

The solution of Equation 25 for vertical motion is

(35) v(t) =
∞

∑
n=0

(−1)nkn

mn

(
b1un+1

0 g0tn−b2un
0g1tn+1 +b3un−1

0 g2tn+2−·· ·+bαu0
0gn+1t2n+1)

In addition, the solution for the same equation for horizontal motion is

(36) v(t) =
∞

∑
n=0

(−1)nkn

mn

(
b1un+1

0 tn) ,
where b1, . . . ,bα are all constants.

Using successive technique we can obtain solutions for higher order of γ and hence we gen-

eralize the solution in a general formula. As expected from the solutions and Figure 1 we can

see that the higher order of nonlinearity is the shorter vertical height and horizontal range. To

discuss the effect of the order of γ on the time of flight we will obtain more solutions and com-

pare their plots. For cubic air resistance (γ = 3), the nonlinear equations in terms of Adomian

polynomials is
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(37)
∞

∑
n=0

vn(s) =
u0

s
− g

s2 −
k

ms
L

{
∞

∑
n=0

An(u)

}
,

where A0 = v3
0,A1 = 3v1v2

0,A2 = 3v2v2
0 +3v0v2

1,A3 = 3v3v2
0 +6v0v1v2 +

1
2!v

3
1, . . . ,.

In addition, the terms of the solution for vertical motion can be easily computed as follows:

(38) v0(t) = u0−gt,

(39) v1(t) =−
k
m

(
u3

0t− 3
2

gu2
0t2 +g2u0t3− 1

4
g3t4

)
,

(40) v2(t) =
k2

m2

(
3u5

0t2

2
−

gu4
0t3

3
+

15u3
0g2t4

4
−

9u2
0g3t5

4
+

3u0g4t6

4
− 45g5t7

2

)
,

v3(t) =−
k3

m3

(
4u7

0t3

3
−

7gu6
0t4

2
+

71u5
0g2t5

10
−

107u4
0g3t6

12
(41)

+
171u3

0g4t7

28
−

171g5u2
0t8

16
+

247g6u0t9

16
− 1083g7t10

160

)
,

(42) vn(t) =
(−1)nkn

mn

(
u2n+1

0 g0tn−u2n
0 g1tn+1 +u2n−1

0 g2tn+2−·· ·+u0
0g2n+1t3n+1) ,

and,

(43)

v(t) =
∞

∑
n=0

(−1)nkn

mn

(
c1u2n+1

0 g0tn− c2u2n
0 g1tn+1 + c3u2n−1

0 g2tn+2−·· ·+ cαu0
0g2n+1t3n+1) ,

and the horizontal motion

(44) v(t) =
∞

∑
n=0

(−1)nkn

mn

(
c1u2n+1

0 tn) .
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Following the same steps above we can obtain the Adomian polynomials for each value of γ

related to the motion equation. For γ = 4, the Adomian polynomials are:

A0 = v4
0,A1 = 4v1v3

0,A2 = 4v2v3
0 +6v2

0v2
1,A3 = 4v3v3

0 +12v2
0v1v2 +4v0v3

1, . . .

and the he solution can be obtained using the following formula:

(45)

v(t) =
∞

∑
n=0

(−1)nkn

mn

(
d1u3n+1

0 g0tn−d2u3n
0 g1tn+1 +d3u3n−1

0 g2tn+2−·· ·+dαu0
0g3n+1t4n+1) .

Since the gravity force does not effect on the horizontal components, the gravity constant

does not appear in the terms of the horizontal motion solution.

(46) v(t) =
∞

∑
n=0

(−1)nkn

mn

(
d1u3n+1

0 tn)
Now, the ability to get a general solution for any order of nonlinearity for the projectile

motion equation shows how much the Laplace decomposition method is effective.

From Equations 22, 25, 42, and 44 for order γ of velocity, we can generalize the solution as:

vγ(t) =

(47)

∞

∑
n=0

(−1)nkn

mn

(
µ1u(γ−1)n+1

0 g0tn−µ2u(γ−1)n
0 g1tn+1 +µ3u(γ−1)n−1

0 g2tn+2−·· ·+µαu0
0g(γ−1)n+1tγn+1

)
where µ1,µ2,µ3, . . . are related to γ .

Similarly, for the horizontal motion,

(48) vγ(t) =
∞

∑
n=0

(−1)nkn

mn

(
µ1u(γ−1)n+1

0 tn
)
.
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FIGURE 2. z-component of the velocity for mass m = 10g with k = 0.1 and

v0 = 20m/s when air resistance is proportional to v3.

FIGURE 3. z-component of the velocity for previous projected mass when air

resistance is proportional to v4 .

FIGURE 4. z-component of the velocity of m = 10g, k = 0.1 and initial speed

v0 = 40m/s,θ = 30 for the four values of γ .
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The first few terms of the solutions plotted to represent the behavior of the projectile. We

assume that for all cases the object in launched with initial velocity equals to 20 v̂ m/s with

k = 0.1s−1. Starts from t = 0, then the velocity in Equation 22 represented in Figure 4 where

the maximum height occurs when v = 0. The maximum height can be evaluated by integrating

Equation 22 with respect to time. It can be seen in the figures that the time needed to reach the

maximum height is about 2 second. Since the power of force increases with increasing in, the

air resistance impedes the motion of the object leading to decreasing in the maximum height

that the mass object reaches and therefore the time needed to reach the maximum height will

be decreased. Figures 4, 5, 6 show the effect of the power of velocity on the parameters of the

motion. On the other hand, two values for γ were considered to plot the velocity of the projectile

for several values of k. see Figures 5 and 6.

FIGURE 5. z-component of the velocity for 10g with v0 = 20m/s and γ = 1 for

several values of k

FIGURE 6. z-component of the velocity for 10g projected mass with v0 = 20m/s

and γ = 4 for several values of k.
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In fact, the effect of v3,v4 appears when the projectile mass is small such as; the bullet.

Several values for m were substituted in the motion of equations in the two cases ( v3,v4 ).

Then, the first few terms of the solutions were plotted (See Figure 7 and 8 which represent the

vertical velocity as a function of time for ( m= 8,10,12,15g). The Figures show how increasing

the object mass lengthen the time for it to reach maximum height for the two cases (v3,v4).

FIGURE 7. z-component of the velocity for several projected masses with v0 =

20m/s,γ = 3 and k = 0.1.

FIGURE 8. z-component of the velocity for several projected masses with v0 =

20m/s,γ = 4 and k = 0.1

For comparison, we plot the solution of the projectile with quadratic air resistance solved

in two methods. The method used in this paper and common methods used in others papers.

Figure 9 shows how our technique leads to the same solution obtained by common methods

to solve nonlinear differential equations. This comparison shows the effectiveness of Laplace

decomposition method especially if we consider that the exact solution is the summation of

infinite terms. The small errors, which may appear in the higher order, refers to neglecting the

rest of the terms of the summation.
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FIGURE 9. z-component of the velocity for projected m = 10g,k = 0.1,v0 =

20m/swith (9.a) linear air resistance and (9.b) quadratic air resistance . The solid

line represents the solution that obtained by LDM and the dashed one represent

the solution that obtained by common method depending on integration with

respect to time.

5. CONCLUSION

In summary, we have solved and discussed the projectile motion with nonlinear air resistance.

The solution was obtained using LDM method, the method shows the simplicity to obtain the

solutions successfully. The order of nonlinearity affected the general solution of the trajectory.

We plotted the projectile velocity as a function of time and explained the efficiency of the used

technique. We compared the solutions for quadratic air resistance with the solution obtained in

the literature. The scheme described in this paper can be further employed to solve nonlinear

problems in science.
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