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Abstract. For a ring endomorphism α , we introduce weakly α-shifting ring which is an extension of reduced as

well as α-shifting ring. The notion of weakly α-shifting ring is a generalization of weak α-compatible ring. We

investigate various properties of this ring including some kinds of examples in the process of development of this

new concept.
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1. INTRODUCTION

Throughout this article, all rings are associative with identity 1 and α : R −→ R is an ring

endomorphism of a ring R. An element x of a ring R is nilpotent whenever xm = 0 for some

positive integer m. We denote Nil(R), the set of nilpotent elements of R. We recall that a ring

is said to be reduced whenever it has no non zero nilpotent elements. Again a ring is defined as

symmetric in [1] whenever xyz = 0⇒ xzy = 0 for any x,y,z ∈ R. In 1999, Cohn [2] defined that
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a ring is said to be reversible if xy = 0 implies yx = 0 for any x,y ∈ R. Again a ring is called

semicommutative if for any x,y ∈ R, xy = 0 implies xRy = 0, this ring is also called ZI ring in

[14]. If a ring is commutative, then it is always reversible, symmetric and semicommutative. It is

mentioned that reduced rings are symmetric [3, Theorem I.3]. We can see that symmetric rings

are reversible and reversible rings are always semicommutative by using their definitions. D.D.

Anderson and V. Camillo provided the examples of non reduced symmetric ring [3, Example

II.5]and a non symmetric reversible ring [3, Example I.5]. Moreover Example 1.5 of [15] is

given to establish that a semicommutative ring may not be reversible.

In 1996, J. Krempa furnished a new concept rigid endomorphism of a ring in [5]. An en-

domorphism α of R is stated as rigid if xα(x) = 0 implies x = 0 for any x ∈ R. A ring is

said to be α-rigid if there exists a some rigid endomorphism α . Motivated by that new term, L.

Ouyang defined weak α-rigid ring [6] in the context of Nil(R) in 2008. A ring is weak α-rigid if

xα(x) ∈ Nil(R)⇔ x ∈ Nil(R) for any x ∈ R. Another term α-reversible ring [7] was introduced

in 2009. A ring R is right (left) α-reversible whenever xy = 0 implies yα(x) = 0 (α(y)x = 0)

for any x,y ∈ R. A ring is said to be α-reversible if it satisfies the both conditions of right and

left α-reversible. In 2014, A. Bahlekeh introduced weak α-reversible ring [8] by extending

α-reversible ring with the help of the set Nil(R). Whenever xy ∈ Nil(R) for any x,y ∈ R implies

yα(x)∈Nil(R), then R is said to be weak α-reversible. On the other hand, T.K. Kwak extended

the concept of symmetric ring to α-symmetric [9] by using ring endomorphism α in 2007. A

ring R is right(left) α-symmetric if xyz = 0⇒ xzα(y) = 0 (α(y)xz = 0) for any x,y,z ∈ R. Mo-

tivated by this above definition, L.Ouyang and H.Chen introduced weak α-symmetric ring [10]

in 2010. A ring R is weak α-symmetric ring if xyz ∈ Nil(R) implies xzα(y) ∈ Nil(R) for any

x,y,z ∈ R. A ring R is α-compatible [11] if xy = 0⇔ xα(y) = 0 for any x,y ∈ R. Again in 2011,

weak α-compatible ring [12] was introduced by using the weak condition to α-compatible

ring. A ring R is weak α-compatible if xy ∈ Nil(R)⇔ xα(y) ∈ Nil(R) for any x,y ∈ R. In

2010, the concept of reversible ring extend to α-shifting ring [13] by using ring endomorphism

α . They defined R is right(left) α-shifting whenever xα(y) = 0 (α(x)y = 0) implies yα(x) = 0

(α(y)x = 0) for any x,y ∈ R. The ring is α-shifting whenever it satisfies both the conditions of

right and left α-shifting.
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Motivated by all of the above definitions, we have introduced the concept of weakly α-

shifting ring which is an extension of reduced as well as α-shifting ring. The notion of weakly

α-shifting ring is a generalization of weak α-compatible ring.

2. WEAKLY α -SHIFTING RING

In this section we introduce and study a class of rings, called weakly α-shifting ring which

is an extension of α-shifting rings. We prove that weakly α-shifting ring is a generalization

of weak α-compatible ring. We investigate the connections of weakly α-shifting ring to weak

α-reversible ring, weak α-rigid ring and weak α-symmetric rings. Moreover some results of

α-shifting rings can be extended to weakly α-shifting ring. We now start with the following

definition:

Definition 2.1. A ring R is called weakly α-shifting if xα(y) ∈ Nil(R) ⇒ yα(x) ∈ Nil(R) for

any x,y ∈ R.

It is very easy to check that

Lemma 2.1. If xy ∈ Nil(R) for any x,y ∈ R then yx ∈ Nil(R).

We get the following remark from the above Lemma and the definition of weakly α-shifting

ring.

Remark 2.1. All rings are always weakly Id-shifting rings where Id is the identity ring endo-

morphism.

It is shown that the concept of reduced ring and α-shifting ring do not depend on each other

by the Example 1.1(2) and Example 2.3 of [13]. Now the next proposition shows the connection

between α-shifting and weakly α-shifting ring.

Proposition 2.1. If R is reduced and α-shifting ring then R is weakly α-shifting ring.

Proof. Let xα(y) ∈ Nil(R) for any x,y ∈ R. It implies xα(y) = 0 as R is reduced ring. Since

R is α-shifting, so xα(y) = 0 implies yα(x) = 0. As R is reduced, yα(x) ∈ Nil(R). Thus R is

weakly α-shifting ring.
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Let Tn(R) denote n×n upper triangular matrix ring over R. Then the map ᾱ : Tn(R)−→ Tn(R)

defined by ᾱ((ai j)) = (α(ai j)) for all (ai j) ∈ Tn(R) is a ring endomorphism of Tn(R).

Proposition 2.2. R is weakly α-shifting ring if and only if Tn(R) is weakly ᾱ-shifting ring for

any n ∈ N.

Proof. Let R be a weakly α-shifting ring. Let us consider Aᾱ(B) ∈ Nil(Tn(R)) for

A =


a11 a12 . . . a1n

0 a22 . . . a2n
...

... . . . ...

0 0 . . . ann

 and B =


b11 b12 . . . b1n

0 b22 . . . b2n
...

... . . . ...

0 0 . . . bnn

 in Tn(R).

Therefore (Aᾱ(B))k = 0 for some positive integer k. It implies (aiiα(bii))
k = 0 for i= 1,2, . . . ,n.

Then aiiα(bii) ∈ Nil(R). Consequently biiα(aii) ∈ Nil(R) as R is weakly α-shifting ring.

So (biiα(aii))
ki = 0 for some positive integer ki. Now (Bᾱ(A))k̄ ∈ Nil(Tn(R)) where k̄ =

max{k1,k2, ...,kn}. Thus Bᾱ(A) ∈ Nil(Tn(R)) and so Tn(R) is weakly ᾱ-shifting ring.

Conversely let Tn(R) be weakly ᾱ-shifting ring. Now let us consider xα(y)∈Nil(R) for x,y∈R.

It implies (xα(y))m = 0 for some positive integer m. It leads to


x 0 . . . 0

0 0 . . . 0
...

... . . . ...

0 0 . . . a

 ᾱ




y 0 . . . 0

0 0 . . . 0
...

... . . . ...

0 0 . . . 0







m

= 0.

Now by using the definition of weakly ᾱ-shifting of Tn(R),
y 0 . . . 0

0 0 . . . 0
...

... . . . ...

0 0 . . . 0




α(x) 0 . . . 0

0 0 . . . 0
...

... . . . ...

0 0 . . . 0

 ∈ Nil(Tn(R)).

Now it is very easy to check that yα(x) ∈ Nil(R). Thus we have R is weakly α-shifting ring.

The next example shows that there exists a weakly α-shifting ring which is not α-shifting.
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Example 2.1. We prove that the ring R⊕ R is weakly α-shifting ring as shown in Exam-

ple[2.15]. Then T2(R⊕R) is weakly ᾱ-shifting by immediate consequence of above Proposition

2.5. Let us consider A =

(0,0) (0,0)

(0,0) (1,0)

 and B =

(0,0) (0,1)

(0,0) (0,0)

 in T2(R⊕R). Therefore

we have Aᾱ(B) = 0 but Bᾱ(A) =

(0,0) (0,1)

(0,0) (0,0)

 6= 0. Thus T2(R⊕R) is not ᾱ-shifting.

Lemma 2.2. Let α : R −→ S be any ring endomorphism. If x ∈ Nil(R) for any x ∈ R, then

α(x) ∈ Nil(S).

Remark 2.2. The converse of the Lemma ?? holds whenever α is a monomorphism.

Proposition 2.3. Let R be a weak α-compatible ring. Then we have the following:

(i) R is weak α-reversible.

(ii) R is weakly α-shifting ring.

Proof. (i) Let xy∈Nil(R) for any x,y∈R. Then yx∈Nil(R)⇒ yα(x)∈Nil(R) by using Lemma

2.2 and the condition that R is weak α-compatible ring. Thus R is a weak α-reversible ring.

(ii) Let xα(y) ∈ Nil(R) for any x,y ∈ R. It implies xy ∈ Nil(R) as R is weak α-compatible ring.

Again xy ∈ Nil(R) implies yα(x) ∈ Nil(R) by using Proposition 2.9(i). Thus R is weakly α

-shifting ring.

Proposition 2.4. Let R be a weak α-reversible ring for a monomorphism α . Then we have the

following:

(i) R is weak α-compatible.

(ii) R is weakly α-shifting.

Proof. (i) Let us consider xy ∈ Nil(R) for any x,y ∈ R. Now xy ∈ Nil(R)⇒ yx ∈ Nil(R)⇒

xα(y) ∈ Nil(R) by using Lemma 2.2 and R is weak α-reversible ring.

Conversely, let xα(y)∈Nil(R) for any x,y∈ R. Then α(y)α(x)∈Nil(R) by using the definition

of weak α-reversible ring of R. It implies α(yx) ∈ Nil(R)⇒ yx ∈ Nil(R) by using Remark 2.8.

Now we have xy ∈ Nil(R) by using Lemma 2.2. So for any x,y ∈ R, xy ∈ Nil(R)⇔ xα(y) ∈

Nil(R). Thus R is weak α-compatible.



6 M. DUTTA, K. H. SINGH, N. ANSARI

(ii) From Proposition 2.10(i), we have R is weak α-compatible. Now R is weakly α-shifting by

using Proposition 2.9(ii).

Proposition 2.5. Weak α-symmetric rings are always weak α-reversible.

Proof. Let R be a weak α-symmetric ring. Let xy ∈ Nil(R) for any x,y ∈ R. Since R is weak

α-symmetric ring, so xy = 1.x.y ∈ Nil(R) implies yα(x) = 1.y.α(x) ∈ Nil(R). Thus R is weak

α-reversible.

The next corollary is a direct deduction of Proposition 2.11 and Proposition 2.10(ii).

Corollary 2.1. Weak α-symmetric rings are weakly α-shifting whenever α is monomorphism.

The next example provides a weak α-symmetric which is not weak α-compatible.

Example 2.2. Let us consider that F be any field and R = F [x]. Let α : R −→ R such that

α( f (x)) = f (0) for all f (x) ∈ F [x]. Clearly α is a ring endomorphism of F [x]. We know that

R is a domain. We can easily show that for any ring endomorphism α , domains are weak α-

symmetric ring. Thus F [x] is weak α-symmetric. Now let f (x) = x 6= 0 and g(x) = a 6= 0. So

clearly g(x)α( f (x)) = 0∈Nil(R). But g(x) f (x) 6= 0 6∈Nil(R) where Nil(R) = 0 as R is domain.

Thus we can see that R is not weak α-compatible.

Remark 2.3. Since the ring R = F [x] given in Example 2.13 is also a weak α-reversible ring by

Proposition 2.11. Therefore the above example also provides a weak α-reversible ring which is

not weak α-compatible.

In the next example, we give a weakly α-shifting ring which is not weak α-reversible.

Example 2.3. Let R be a commutative ring. Let α : R⊕R−→ R⊕R such that α((a,b)) = (b,a)

for all(a,b) ∈ R⊕R. Then α is a ring endomorphism of R⊕R. Now our first motive is to show

that R⊕R is weakly α-shifting ring. Therefore let us consider (a,b)α((c,d)) ∈ Nil(R⊕R) for

any (a,b),(c,d) ∈ R⊕R. It implies (ad,bc) ∈ Nil(R⊕R). So there exists a positive integer

m such that ((ad,bc))m = 0. So we have ((ad))m = ((bc))m = 0. Since R is commutative, so

((da))m =((cb))m = 0. Now ((c,d)α(a,b))m =((cb,da))m = 0⇒ (c,d)α((a,b))∈Nil(R⊕R).
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Therefore R⊕R is weakly α-shifting ring.

Now we see that(1,0)(0,1) = 0 ∈Nil(R⊕R). But (0,1)α(1,0) = (0,1) is not nilpotent element

of R⊕R. So R⊕R is not weak α-reversible.

Remark 2.4. We can see that R⊕R, the weakly α-shifting ring given in Example 2.15 is neither

weak α-compatible nor weak α-symmetric by using Proposition 2.9(i) and Proposition 2.11

respectively.

Proposition 2.6. If R is weak α-rigid ring and Nil(R) forms an ideal, then R is weakly α-

shifting.

Proof. Let us consider R is weak α-rigid ring. Let xα(y) ∈ Nil(R) for any x,y ∈ R. It implies

yxα(y)α(x) = yxα(yx) ∈ Nil(R) as Nil(R) forms an ideal. Since R is weak α-rigid ring, we

have yx∈Nil(R). Now yx∈Nil(R)⇒α(yx)∈Nil(R) by using Lemma 2.7. Since Nil(R) forms

an ideal, then we have α2(x)α(y)α(x)y ∈ Nil(R). It implies α(α(x)y)α(x)y ∈ Nil(R). Now

by using the definition of weak α-rigid ring, we have α(x)y ∈ Nil(R). Now α(x)y ∈ Nil(R)⇒

yα(x) ∈ Nil(R) by using Lemma 2.2. Thus R is weakly α-shifting ring.

Example 2.4. From the example of weakly α-shifting ring given in Example 2.15, we can see

that (1,0)α(1,0) = (1,0)(0,1) = 0 ∈ Nil(R⊕R) but (1,0) is not nilpotent element of R⊕R.

Thus R⊕R is not weak α-rigid ring.

Lemma 2.3. [16] R is semicommutative⇒ Nil(R) forms an ideal.

We have the following corollary from the Proposition 2.17 and Lemma 2.19.

Corollary 2.2. If R is weak α-rigid ring and semicommutative then R is weakly α-shifting.

Proposition 2.7. Let R be weakly α-shifting ring. Then we have the following:

(i) If xαk(y) ∈ Nil(R), then yαk(x) ∈ Nil(R) for any positive integer k.

(ii) If xy ∈ Nil(R), then xαk(y),yαk(x) ∈ Nil(R) for any positive integer k = 2m.

Proof. (i) For k = 1, xα(y) ∈ Nil(R) implies yα(x) ∈ Nil(R) by the definition of weakly

α-shifting ring. Let us consider xαm(y) ∈ Nil(R) implies yαm(x) ∈ Nil(R) for some m > 1.
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Now let xαm+1(y) ∈ Nil(R). It implies xα(αm(y)) ∈ Nil(R) ⇒ αm(y)α(x) ∈ Nil(R) as R

is weakly α-shifting ring. By using the Lemma 2.2, we have α(x)αm(y) ∈ Nil(R). Again

by using our assumption yαm+1(x) = yαm(α(x)) ∈ Nil(R). Thus xαk(y) ∈ Nil(R) implies

yαk(x) ∈ Nil(R) for any positive integer k by using principle of mathematical induction.

(ii) Let xy ∈ Nil(R). By using Lemma 2.7, we have α(xy) = α(x)α(y) ∈ Nil(R). Since R is

weakly α-shifting, then yα2(x) = yα(α(x)) ∈ Nil(R). Again by using Lemma 2.7, we have

α(yα2(x)) ∈ Nil(R). It implies α(y)α3(x) ∈ Nil(R). Now by using Lemma 2.2, we have

α3(x)α(y)∈Nil(R. Since R is weakly α-shifting ring, therefore yα4(x) = yα(α3(x))∈Nil(R).

Continuing the same process, we get yαk(x) ∈ Nil(R) for any positive integer k = 2m. On the

other hand, if xy ∈ Nil(R), then yx ∈ Nil(R) by using Lemma 2.2. Using the above method for

yx in lieu xy, we get xαk(y) ∈ Nil(R) for any positive integer k = 2m.

Proposition 2.8. Let R be weakly α-shifting ring for monomorphism α . Then the following are

equivalent:

(i) xy ∈ Nil(R) for any x,y ∈ R.

(ii) xαk(y) ∈ Nil(R) for any positive integer k = 2m.

Proof. (i)⇒ (ii) is obvious by Proposition 2.21 (ii).

(ii)⇒ (i). If xαk(y) ∈ Nil(R) for any positive integer k = 2m, then xα(αk−1(y)) ∈ Nil(R).

Since R is weakly α-shifting ring, we get αk−1(y)α(x) ∈ Nil(R). It implies α(αk−2(y)x) ∈

Nil(R). By using Remark 2.8, we have αk−2(y)x ∈ Nil(R). Again by using Lemma 2.2, we get

xαk−2(y) ∈ Nil(R). It implies xα(αk−3(y)) ∈ Nil(R). Since R is weakly α-shifting ring, we

get αk−3(y)α(x) ∈ Nil(R). It implies α(αk−4(y)x) ∈ Nil(R). Again by using Remark 2.8 and

Lemma 2.2, we get xαk−4(y) ∈ Nil(R). Now continuing this procedure, we obtain xy ∈ Nil(R).

Lemma 2.4. [8] If R is semicommutative and f (x) = r0 + r1x+ r2x2 + ...+ rnxn ∈ R[x]. Then

f (x) ∈ Nil(R[x])⇔ r0,r1, . . . ,rn ∈ Nil(R).

Let us define ᾱ : R[x] −→ R[x] such that ᾱ(r0 + r1x+ r2x2 + ...+ rnxn) = α(r0)+α(r1)x+

...+α(rn)xn for all r(x) = r0 + r1x+ r2x2 + ...+ rnxn ∈ R[x]. Then ᾱ is a ring endomorphism

of R[x].
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Proposition 2.9. Let R be semicommutative, then R is weakly α-shifting iff R[x] is weakly ᾱ-

shifting whereas ᾱ(r0 + r1x+ r2x2 + ...+ rnxn) = α(r0)+α(r1)x+ ...+α(rn)xn.

Proof. Let us consider that R be weakly α-shifting ring. Now let r(x) = r0 + r1x+ r2x2 + ...+

rnxn and s(x) = s0 + s1x+ s2x2 + ...+ smxm in R[x] so that r(x)ᾱ(s(x)) ∈ Nil(R[x]). We know

that

(2.1) r(x)ᾱ(s(x)) = Σ
m+n
k=0

(
Σi+ j=kriα(s j)

)
xk

Now by using Lemma 2.23, we have

(2.2) Σi+ j=kriα(s j) ∈ Nil(R)

For k = 0, (2) implies r0α(s0) ∈ Nil(R) and it implies α(s0)r0 ∈ Nil(R) by using Lemma 2.2.

Now for k = 1, r0α(s1) + r1α(s0) ∈ Nil(R) from Eq(2). Again it implies (r0α(s1) +

r1α(s0))r0 ∈Nil(R) by using Lemma 2.19. By using the same Lemma 2.19, we have r0α(s1)∈

Nil(R). Similarly we can show that(r0α(s1)+ r1α(s0))r1 ∈ Nil(R) implies r1α(s0) ∈ Nil(R).

So riα(s j) ∈ Nil(R) for k = i+ j = 0,1.

Now let us assume that there exists some positive integer p > 1 such that riα(s j) ∈ Nil(R)

where i+ j ≤ p. Therefore r0α(sp),r1α(sp−1), ...,rpα(s0) ∈ Nil(R). Then we have

α(sp)r0,α(sp−1)r1, ...,α(s0)rp ∈ Nil(R) by using Lemma 2.2.

Now we will show that riα(s j) ∈ Nil(R) for i+ j = p+1. From Eq. (2) for k = p+1, we have

(2.3) r0α(sp+1)+ r1α(sp)+ ...+ rp+1α(s0) ∈ Nil(R)

Now multiplying Eq. (3) by r0 from the right hand side, we have

(2.4) (r0α(sp+1)+ r1α(sp)+ ...+ rp+1α(s0))r0 ∈ Nil(R).
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Again by using our assumption that riα(s j) ∈ Nil(R) for i+ j ≤ p and Lemma 2.19, we have

r0α(sp+1)r0 ∈ Nil(R) and it leads to r0α(sp+1) ∈ Nil(R).

Again multiplying Eq.(3) by r1 from the right hand side and continuing with the same procedure

as above, we can show that r1α(sp) ∈ Nil(R). Similarly we can get r2α(sp−1), ...,rp+1α(s0) ∈

Nil(R). Thus riα(s j) ∈ Nil(R) for i+ j = p+1. Now by induction hypothesis we can conclude

that riα(s j) ∈ Nil(R) for any k = i+ j where k = 0,1, ...,m+ n. Again riα(s j) ∈ Nil(R)⇒

s jα(ri) ∈ Nil(R) as R is weakly α-shifting ring.

Therefore it can be easily shown that

s(x)ᾱ(r(x)) = Σ
m+n
k=0

(
Σi+ j=ks jα(ri)

)
xk ∈ Nil(R[x])

by using Lemma 2.23 and hence R[x] is weakly ᾱ-shifting. Converse part is trivial.

Let I be an ideal and α be a ring endomorphism of a ring R. Then the map ᾱ : R/I −→ R/I

defined by ᾱ(x+ I) = α(x)+ I for all x+ I ∈ R/I is a ring endomorphism of quotient ring R/I.

Proposition 2.10. If I ⊆ Nil(R). Then R is weakly α-shifting⇔ R/I is weakly ᾱ-shifting.

Proof. Let R be weakly α-shifting ring. Now let us consider that (x+ I)ᾱ(y+ I) ∈ Nil(R/I) for

any x+ I,y+ I ∈ R/I. It implies clearly that (xα(y)+ I)m = I for some positive integer m. It

implies (xα(y))m+I = I. So we have (xα(y))m ∈Nil(R) by using the condition that I ⊆Nil(R).

So there exists some positive integer k such that (xα(y))mk = 0. Clearly, xα(y) ∈ Nil(R). Since

R is weakly α-shifting, therefore xα(y) ∈ Nil(R)⇒ yα(x) ∈ Nil(R). Thus (yα(x))n = 0 for

some positive integer n. It implies (yα(x))n+I = I⇒ ((y+I)ᾱ(x+I))n = I⇒ (y+I)ᾱ(x+I)∈

Nil(R/I). Thus R/I is weakly ᾱ-shifting.

Conversely let us consider R/I is weakly ᾱ-shifting ring. Now we have to prove that R is weakly

α-shifting ring. Let xα(y) ∈ Nil(R) for any x,y ∈ R. So we have (xα(y))t = 0 for some t ∈ N.

Then (xα(y))t + I = I. Therefore ((x+ I)ᾱ(y+ I))t = I. It implies (x+ I)ᾱ(y+ I) ∈ Nil(R/I).

Since R/I is weakly ᾱ-shifting ring, so (y+ I)ᾱ(x+ I) ∈ Nil(R/I). It implies (yα(x)+ I)r = I

for some r ∈ N. Thus (yα(x))r ∈ I ⊆ Nil(R). Now it leads to yα(x) ∈ Nil(R). Therefore R is

weakly α-shifting.

Proposition 2.11. If R is weakly α-shifting for a monomorphism α , then α(1) = 1.
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Proof. Let R be weakly α-shifting ring for a monomorphism α . Here (1−α(1))α(1) = 0 ∈

Nil(R) as α(1) is an idempotent element of R. Now by using the definition of weakly α-shifting

of R, α(1−α(1)) = 1.α(1−α(1)) ∈ Nil(R). It implies 1−α(1) ∈ Nil(R) by using Remark

??. Therefore (1−α(1))m = 0 for some integer m. It implies 1−α(1) = 0 as 1−α(1) is an

idempotent element. Thus α(1) = 1.

Proposition 2.12. Let σ : R −→ S be a ring isomorphism. Then R is a weakly α-shifting ring

⇔ S is weakly σασ−1-shifting ring.

Proof. Let R be a weakly α-shifting ring. Let x̄, ȳ ∈ S so that x̄(σασ−1)(ȳ) ∈ Nil(S). Since

σ is onto, therefore there exist x and y in R such that σ(x) = x̄ and σ(y) = ȳ. It implies

σ(x)(σασ−1)(σ(y)) ∈ Nil(S). It leads to σ(xα(y)) ∈ Nil(S). Now by using the Remark

2.8, xα(y) ∈ Nil(R). Since R is weakly α-shifting ring, therefore yα(x) ∈ Nil(R). Again by

using Lemma 2.7, we have σ(yα(x)) ∈ Nil(S). It leads to σ(y)(σασ−1)(σ(x)) ∈ Nil(S)⇒

ȳ(σασ−1)(x̄) ∈ Nil(S). Thus we can conclude that S is weakly σασ−1-shifting ring.

Conversely let S be a weakly σασ−1-shifting ring. Let rα(s) ∈ Nil(R) for any r,s ∈ R. Then

σ(rα(s)) ∈ Nil(S) by Lemma 2.7. It implies σ(r)(σασ−1)(σ(s)) ∈ Nil(S)⇒ r̄(σασ−1)(s̄) ∈

Nil(S) where σ(r) = r̄ and σ(s) = s̄. Since S is weakly σασ−1-shifting, so s̄(σασ−1)(r̄) ∈

Nil(S). It implies σ(sα(r)) ∈ Nil(S). Now using Remark 2.8, we get sα(r) ∈ Nil(R). Thus R

is weakly α-shifting.
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