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Abstract. In this paper, we introduce a graphical structure of non empty finite commutative ring R called as

divisor graph of R, denoted as D[R], is undirected simple graph with vertex set V= R−{0,1} and for distinct

vertices a,b ∈ V,a ∼ b if and only if either a | b or b | a, i.e. ∃ c ∈ R such that a = bc or b = ac. We will discuss

structure and properties of divisor graph of ring Zn. Moreover, we also determine diameter, girth, eulerian, planar,

clique number of the D[Zn],∀ n. The main objective of this paper is to study interplay of ring theoretic properties

of R with graph theoretic properties of D[Zn].
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1. INTRODUCTION

The study of zero divisor graph was initiated by I. Beck[6] in 1988. He introduced graph to

commutative ring with vertex set as set of all zero divisors. Then Anderson and Livingston[4]

has changed vertex set which was defined by I.Beck[6] and studied the properties of zero divisor
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graph over the commutative ring. Later on many researcher studied properties of graph on var-

ious algebraic structures such as group, semi group, commutative ring, non commutative ring,

field, vector space in [1, 2, 3, 5, 7, 8, 9]. Recently B. S. Reddy, R. S. Jain, N. Laxmikanth[3],

studied Eulerians of zero divisor graph Zn for natural number n. In the current era S. Akabari,

M. Habibi[9], studied zero divisor graph on ideals of the ring. Later on Anshuman Das studied

Non-Zero Component Union Graph of a Finite Dimensional Vector Space[1], Subspace Inclu-

sion Graph of a Vector Space[2], R. A. Muneshwar and K. L. Bondar[7], introduced an open

subset inclusion graph of a topological space and discussed some properties of this graph such

as diameter, girth, connectivity, maximal independent sets, different variants of domination

number, clique number and chromatic number, degree and connectivity. R. A. Muneshwar and

K. L. Bondar[8], introduced an the intersection graph of a topological space and proved that if

(X ,τ) is the discrete topological space and |X | ≥ 3 then this graph is a connected and also find

its diameter and girth.

In this paper we introduced graph on ring of integer modulo n, denoted by D[Zn] called divisor

graph of Zn and studied some properties of the graph D[Zn]. The main objective of this paper is

to study interplay of ring theoretic properties of Zn with graph theoretic properties of D[Zn].

2. DEFINITION AND PRELIMINARIES

In this section we recall some notations and basic definitions of ring theory and graph theory.

An ordered pair G = (V,E) is called graph where V is set of vertices and E is set of edges, is the

binary relation on V . If there is an edge between any two vertices u,v of V then they are said

to be adjacent vertices. H = (W,F) is subgraph of G = (V,E) where φ 6= W ⊆ V and F ⊆ E.

If V is finite, the graph G is said to be finite, otherwise graph is infinite. If all the vertices of G

are pairwise adjacent, then G is said to be complete graph. A complete subgraph of a graph G

is called a clique. A clique with maximum size is called clique number of graph G. It is written

as ω(G),. The chromatic number of G, denoted as χ(G), is the minimum number of colours

needed to label the vertices so that the adjacent vertices receive different colours.

A graph is said to be triangulated if for any vertex u in V, there exist v,w in V, such that (u,v,w)

is a triangle. A path in graph G is a sequence of adjacent vertices and edges.For vertices x

and y of G, let d(x,y) be the lenth of a shortest path from vertex x to y. clearly d(x,x) = 0



ON THE DIVISOR GRAPH OF FINITE COMMUTATIVE RING 3

and d(x,y) = ∞ if there is no path connecting x and y.The diameter of a graph G is defined

as diam(G) = Sup{d(u,v) : u and v are vertices of G}, is the largest distance between pairs of

vertices of the graph, if it exists. Otherwise, diam(G) is defined as ∞. The girth of a graph is

the length of its shortest cycle, if it exists. Otherwise, it is defined as ∞. If a and b belong to a

commutative ring R and a is non zero, we say that a divides b (or that a is a factor of b), write

as a | b, if there exists an element c in R such that b = ac. If a does not divide b, we write

a - b. A zero divisor is a element r in a ring R, such that r · s = 0 for some non zero s in R. The

greatest integer function [x] indicates an integral part of the real number x which is the nearest

and smallest integer to x. For n > 1, the Euler’s phi function φ(n) denote the number of positive

integers not exceeding n that are relatively prime to n.

3. DIVISOR GRAPH OF RING

Definition 3.1 Let R be any commutative ring. We associate a simple undirected graph to ring

R denoted byG[R] with vertex set V = R and for non zero r1,r2 ∈V,r1 ∼ r2 if and only if either

r1|r2 or r2|r1, i.e. ∃ r3 ∈ R such that r1 = r2r3 or r2 = r1r3.

Note that if r 6= 0 ∈ R, then r ∼ 0 and r ∼ 1(if unity is exist). To avoid this triviality we will

redefine vertex set.

Let divisor graph of ring with vertex set V = {r ∈ R|r 6= 0,r 6= 1} and for distinct r1,r2 ∈V,r1 ∼

r2 or (r1,r2) ∈ E if and only if either r1|r2 or r2|r1. We will denote this graph by D[R] and

observe that D[R] is induced subgraph of G[R]. We feel D[R] will better illustrate the structure

of ring R.

Example 3.2 For n=2, the D[Zn] is empty graph. Since vertex set of D[R] is R−{0,1}, hence

D[Zn] is empty graph.

Example 3.3 For n=3, D[Zn] is single vertex graph.

Example 3.4 For n=4,5,6, D[Zn] is as follows,
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FIGURE 1. D[z4]

FIGURE 2. D[Z5]

FIGURE 3. D[Z6]

After above discussion we will describe structure of D[Zn].

Structure of D[Zn]

Let R be ring of integer modulo n, where n = pk1
1 pk2

2 · · · pkm
m . A vertex set V (D[Zn]),V =

Zn−{0,1}= {2,3, · · · ,(n−1)}= A∪B, where A =U(R)−{1} and B = Z(R)−{0}. Since by

definition 3.1, units are adjacent to each other, then we divide set of zero divisor into subsets Vi,
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B = ∪Vi, where Vi = 〈pi〉 , i = 1,2,3, · · · ,m. Since not all vertices of Vi are adjacent to vertices

of Vj. Define subsets of Vi by such that for i | n, j|n, Wi = {k(i)|k ∈ R,k /∈ 〈 j〉 , i - j, j - i, i 6= j}

and Wi∩Wj = φ . Let Wi and Wj are subset of vertex set V , then Wi↔Wj denote that each vertex

of Wi is adjacent to every vertex of Wj and Wi =Wj denote that no vertex of Wi is adjacent to

any vertex of Wj. A loop at subset A of V denote vertices of A are mutually adjacent.

FIGURE 4. D[ZPk ]

FIGURE 5. D[Zp1 p2..pm]

Theorem 3.5 If R is ring and I is subring of R then D[I] is subgraph of D[R].

Proof: The proof is follows from definition 3.1
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Theorem 3.6 If u ∈U(R), where U(R) is set of units of R then u∼ y,∀y ∈ R.

Proof: Let u is unit element and y any other element in ring R then by definition of unit, we

get u−1 ∈ R,u · u−1 = 1. Multiplying this expression by y, we obtain y · u · u−1 = y · 1, As R is

commutative, finally we get expression u ·k = y, where k = y ·u−1. Thus by divisibility relation

u∼ y, ∀y ∈ R. Hence theorem is proved.

Corollary 3.7 If vertices u and v are associates in ring R, then u∼ v.

Proof: Let u and v are associate in R then there exists unit w ∈ R such that u = wv. Thus u∼ v.

Since w is unit in R therefore ∃w−1 such that w−1u = w−1wv i.e. w−1u = v. Hence v∼ u.

Corollary 3.8 If U(R) is set of unit element of R then D[U(R)] is complete subgraph of D[R]

Proof: Let R be finite ring and U(R) be its set of unit elements. Let u,v ∈ U(R) are any

two distinct elements then from theorem 3.6, u ∼ v, ∀ u,v ∈U(R). Thus D[U(R)] is complete

subgraph of D[R].

Theorem 3.9 D[Zn] is connected graph.

Proof: Let R is ring of integer modulo n and r1,r2 ∈V (D[Zn]).

Claim: There exits a path connecting r1 and r2.

Since elements of Zn are either unit or a zero divisor. If either r1 ∈ U(R) or r2 ∈ U(R) then

theorem 3.6, shows that r1 ∼ r2. If r1,r2 ∈ Z∗(R) and r1 � r2, then ∃r3 ∈ U(R) such that

r1 ∼ r3 ∼ r2. Hence we obtain path connecting r1 and r2. This show that D[Zn] is connected

graph.

Theorem 3.10 D[Zn] is triangulated for n≥ 5 and not triangulated for n = 1,2,3,4,6.

Proof: At first we show that D[Zn] is not triangulated for n = 6.

case I: For n=6, a vertex set V is {2,3,4,5} where A = {5},B = {2,3,4}, then from figure 3,

vertex 3∼ 5 only. i.e. 3 is not vertex of triangle. Hence D[Zn] is not triangulated for n = 6

case II: For n = 1,2,3,4 A vertex set is φ ,{2} and {2,3} respectively. Therefore D[Zn] is not

triangulated.

case III: For n ≥ 5 , number of units are φ(5) = 5− 1 = 4. Since all units adjacent to every

elements of ring. i.e. every vertex is vertex of triangle and hence theorem is proved.
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4. DIVISOR GRAPH OF Zn

Theorem 4.1 D[R] is empty graph if and only if R = Z1,R = Z2.

Proof: The proof follows from definition 3.1.

Theorem 4.2 For ring of integer modulo n, D[Zn] is complete graph iff n = pk,k ≥ 1.

Proof: Since V (D[Zn]),V = {2,3, ....,(n− 1)} = A ∪ B where A = U(R)− {1} and B =

Z(R)−{0}. Let u,v ∈V be arbitrary vertices and we claim that u∼ v. If either u or v in A then

from theorem 3.6, vertex u∼ v. If both u,v ∈ B,then for some r1,r2 ∈ R such that u < v,u = r1 p

and v = r2 p. If v is not multiple of u and gcd(u,v) = p then gcd(r1,r2) = 1. If possible both

r1 and r2 are in Z(R) then gcd(r1,r2) = p or gcd(r1,r2) = q. Which is contradiction to our

supposition. Hence either r1 or r2 will be unit, if r1 is unit, we obtain vertex r3 ∈ R such that

r2 = r3r1, Multiply last expression by p. Finally we obtain u = r3v. Thus D[Zpk ] is complete

graph.

Conversely consider D[Zn] is complete graph and assume that, n 6= pk i.e. n can be expressed as

product of power of distinct primes. For simplicity let n = pq, p 6= q. Since p,q ∈V and p - q,

hence graph is disconnected. Which is contradiction. Thus D[Zn] is complete graph if and only

if n = pk.

Corollary 4.3 If R is finite field then D[R] is complete graph. Converse need not be true.

Proof: The proof follows from theorem 4.2. For converse see figure 1.

Theorem 4.4 For n = pk, zero divisor graph Γ(Zn) is complete subgraph of divisor graph D[Zn].

Proof: Since V = Zn − {0,1} = A ∪ B where A = U(R)− {1} and B = Z(R)− {0} i.e.

V (Γ[Zn])⊆V (D[Zn]) and by theorem 4.2 , D[Zpk ] is complete graph. Thus theorem is proved.

Theorem 4.5 The divisor graph D[Zpk ] is Eulerian graph if p is odd prime.

Proof: Since by theorem 4.2, divisor graph D[Zpk ] is complete graph Kpk−2, then of every ver-

tex has degree pk− 3. If p is odd[even] then pk− 3 is even[odd]. Hence by theorem 2.4[3],

D[Zpk ] is Eulerian if p is odd prime.

Theorem 4.6 If R is ring of integer modulo n and n = pk1
1 · p

k2
2 · p

k3
3 · · · pkm

m , then for di|n,


ui ∼ vi if ui,vi ∈Wdi,

ui � v j if ui ∈W
pki

i
and v j ∈W

p
k j
j
, i 6= j.
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Proof: Let R = Zn and di be divisors of n ∀i

Case I: Let Wdi = {si(di)|si ∈ R,si /∈< d j >,di - d j,d j - di, i 6= j} and ui,vi ∈Wdi be any two

vertices, then for some choice of r1,r2 ∈ R,ui = r1di,vi = r2di. If ui|vi then from defini-

tion 3.1, ui ∼ vi. If vi is not multiple of ui then gcd(ui,vi) = d,gcd(r1,r2) = d′ such that

di|d′|d, Note that si is either multiple of di or a unit element. Choose r′1,r
′
2 ∈ R, such that

r1 = r′1d′,r2 = r′2d′,gcd(r′1,r
′
2) = d′′ and di|d′′|d′|d. Continue this fassion, after k steps we ob-

tain gcd(r(k)1 ,r(k)2 ) = 1 and 1|di| · · ·d′′|d′|d, where either r(k)1 or r(k)2 is unit element. If r(k)1 is unit

then by theorem 3.6, r(k)2 = kṙ(k)1 for some k ∈ R. Hence by substituting this values we get vi|ui.

Thus vi ∼ ui.

Case III: Let ui ∈ W
pki

i
,v j ∈ W

p
k j
j
, i 6= j, where W

pki
i
= {si(pki

i )|si ∈ R,si /∈< p j >, i 6= j},

W
p

k j
j
= {s j(pk j

j )|s j ∈ R,s j /∈< pi >, i 6= j}. Assume that, ui ∼ v j then either ui|v j or v j|ui.

i.e. v j ∈W
pki

i
or ui ∈W

p
k j
j

. Which is contradiction to assumption. Hence ui � v j.

Theorem 4.7 If n = pk1
1 · p

k2
2 · p

k3
3 · · · pkm

m ,ki ≥ 2, then Γ(Zn) is not subgraph of D[Zn].

Proof: Let n = pk1
1 · p

k2
2 · p

k3
3 · · · pkm

m and V = A∪B, where A =U(R)−{1} and B = Z(R)−{0}.

It is observed that B is vertex set of zero divisor graph. Then we obtain u= pk1
1 · p

k2
2 · p

k3
3 · · · p

km−1
m−1

and v = pm in set B, such that u · v = 0. i.e. u∼ v in Γ(Zn), but u� v in D[R], Since u - v. Thus

result is valid.

Theorem 4.8 If n = pk1
1 · p

k2
2 · p

k3
3 · · · pkm

m ,m > 1 then D[Zn] is not Eulerian graph if pi is even

prime for some i.

Proof: Let R = Zn and n = pk1
1 · p

k2
2 · p

k3
3 · · · pkm

m and vertex set of D[Zn],V = A∪ B where

A = U(R)−{1},B = Z(R)−{0} and | A |= φ(n)− 1, | B |= n− φ(n) + 1. Suppose that p1

is even prime number then then all multiples of p1 and all units are adjacent to p1. Therefore

deg(p1) = | A |+
[

n
p1

]
−2. (∵V = R−{0,1})

= even−1+ even−2

= odd

Hence by theorem 2.4[3], It shows that, D[R] is not Eulerian if pi is even prime for some i.
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5. DIAMETER AND GIRTH OF D[Zn]:

Theorem 5.1 If R is ring of integer modulo n then

diam(D[R]) =


∞ if n≤ 3.

1 if n > 3,n .
= pk,

2 if n > 3,n 6= pk

Proof: In ring Zn, The co-totient function φ(n) and n−φ(n) counts no. of units and no.of zero

divisors respectively. Since Diam(G) = Sup{d(u,v) : u,v are vertices of graph }. Let n ≤ 3, a

vertex V is either empty or a singleton set, Diam(D[Zn]) = ∞. If n = pk then by theorem 4.2,

divisor graph D[Zn] is complete graph then Diam(D[Zn]) = 1. Now for n > 3,n 6= pk divisor

graph D[Zn] is not a complete graph. i.e. we will get non adjacent vertices (say) r1,r2. Then by

theorem 3.6,∃r3 ∈ R such that r1 ∼ r3 ∼ r2. This shows that Diam(D[Zn]) = 2.

Theorem 5.2 If R is ring of integer modulo n then

girth(D[Zn]) =

 ∞ if n < 5

3 if n≥ 5.

Proof: Let n< 5, |V (D[Zn]) |< 3 which is not enough to form cycle and hence girth(D[R]) =∞.

Let n≥ 5 consider following cases.

Case I: If n ≥ 5,n = pk then by theorem 4, D[Zpk ] is complete graph of order Kpk−2. Thus

girth(D[Zn]) = 3.

Case II: If n ≥ 5,n 6= pk,n 6= 6. Vertex set V contains more than two unit elements. These

unit elements will form 3-cycle with any other elements of ring. For n = 6 see FIG. 3, Thus

girth(D[Zn]) = 3.

6. CLIQUE NUMBER OF Zn :

In this section, we calculate clique number of divisor graph. A clique number is largest

complete subgraph of graph.

Theorem 6.1 If n = pk,ω(D[Zn]) = pk−2, for some integer k > 1.

Proof: Since D[Zpk ] is complete graph of order pk− 2. This shows that ω(D[Zpk ]) = pk− 2.

Theorem 6.2 If n = p1 p2, p1 < p2 then ω(D[Zn]) = φ(n)−1+ p2−1.
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Proof: Let R is ring of integer modulo n and n = p1 p2. Let vertex set V = A∪ B, where

A = U(R)−{1} and B = Z(R)−{0}. Let the subset B be divided as B = Wp1 ∪Wp2 , where

Wp1 = {k1 p1|k1 6= 0 ∈ R,k1 /∈ 〈p2〉} and Wp2 = {k2 p2|k2 6= 0 ∈ R,k2 /∈ 〈p1〉}. From figure 5,

for u,v ∈Wpi, i = 1,2 then u ∼ v. As p1 < p2, then multiples of p1 are more than multiples of

p2. Hence by theorem 3.6, maximum clique is of order | A |+ |Wp1 |= φ(n)−1+ p2−1. Thus

ω(D[Zn]) = φ(n)−1+ p2−1.

Theorem 6.3 For n = p1 · p2 · p3 · · · pm, where p1 < p j, j = 2,3 · · · ,m then

ω(D[Zn]) = φ(n)−1+(pm−1)[(pm−1−1)[. . . [(p2−1)+1] . . .]+1]

Proof: Let R is ring of integer modulo n and n = p1 · p2 · p3 · · · pm Then let A = U(R)−{1}

and Z(R) = ∪iVi such that Vi = 〈pi〉 , i = 1,2, . . . ,m, Since p1 p j - p1 ps, j 6= s,s = j = 2,3, . . . ,m

and p1|p1 p2|p1 p2 p3| · · · p1 p2 · · · p(m−2)|p1 p2 · · · p(m−1). We delete some vertices which makes

problem to form complete subgraph. From figure 5 and theorem 4.6, Wp1 ↔ Wp1 p2 ↔

Wp1 p2 p3 · · · ↔Wp1 p2 p3···pp(m−1) . Therefore subset Wp1 ∪Wp1 p2 ∪Wp1 p2 p3 ∪·· ·∪Wp1 p2....p(m−1) ∪A

forms maximum clique in D[Zn].

Thus ω(D[Zn]) = |A|+ |Wp1|+ |Wp1 p2|+ · · ·+ |Wp1 p2 p3···p(m−1)|.

To determine formula consider following values of n.

Case I: Let n = p1 · p2 · p3 then Wp1 = {k · (p1)|k ∈ R,k /∈
〈

p j
〉
, j 6= 2,3}

and Wp1 p2 = {k · (p1 p2)|k /∈ 〈pz〉z 6= 1,2} Since p1 p2 - p1 p3. Therefore set Wp1 ∪Wp1 p2 , forms

largest complete subgraph and

|Wp1|=
[

n
p1

]
−
[

n
p1 p2

]
−
[

n
p1 p3

]
+

[
n

p1 p2 p3

]
=p2 p3− p3− p2 +1

=p3(p2−1)− (p2−1)

=(p2−1)(p3−1)

|Wp1 p2|=
[

n
p1 p2

]
−
[

n
p1 p2 p3

]
=(p3−1)
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∴ ω(D[Zn]) =|A|+ |Wp1 ∪Wp1 p2|

=|A|+ |Wp1 |+ |Wp1 p2|

=φ(n)−1+
[

n
p1

]
−
[

n
p1 p2

]
−
[

n
p1 p3

]
+

[
n

p1 p2 p3

]
+

[
n

p1 p2

]
−
[

n
p1 p2 p3

]
=φ(n)−1+(p2−1)(p3−1)+(p3−1)

=φ(n)−1+(p3−1)[(p2−1)+1]

Case II: Let n = p1 · p2 · p3 · p4 then observe that Wp1 ∪Wp1 p2 ∪Wp1 p2 p3 form largest complete

subgraph.

ω(D[Zn]) = |A|+ |Wp1 ∪Wp1 p2 ∪Wp1 p2 p3 |

= |A|+ |Wp1|+ |Wp1 p2|+ |Wp1 p2 p3|

= φ(n)−1+
[

n
p1

]
−
[

n
p1 p2

]
−
[

n
p1 p3

]
−
[

n
p1 p4

]
+

[
n

p1 p2 p3

]
+

[
n

p1 p2 p4

]
+

[
n

p1 p3 p4

]
−
[

n
p1 p2 p3 p4

]
+

[
n

p1 p2

]
−
[

n
p1 p2 p3

]
−
[

n
p1 p2 p4

]
+

[
n

p1 p2 p3 p4

]
+

[
n

p1 p2 p3

]
−
[

n
p1 p2 p3 p4

]
= φ(n)−1+(p2−1)(p3−1)(p4−1)+(p3−1)(p4−1)+(p4−1)

= φ(n)−1+(p4−1)[(p2−1)(p3−1)+(p3−1)+1]

= φ(n)−1+(p4−1)[(p3−1)[(p2−1)+1]+1]

Therefore we may conclude that, if n = p1 · p2 · p3 · · · pm then

ω(D[Zn]) = φ(n)−1+(pm−1)[(pm−1−1)[. . . [(p2−1)+1] . . .]+1]

Theorem 6.4 For n = pk1
1 · p

k2
2 · p

k3
3 · · · pkm

m ,k1 ≥ 1, p,

ω(D[Zn]) = φ(n)−1+ pk1−1
1 pk2−1

2 pk3−1
3 ..pkm−1

m (p2−1)(p3−1) · · ·(pm−1)

+ pk2−1
2 pk3

3 · · · p
km
m −1

Proof: Let n = pk1
1 · p

k2
2 · p

k3
3 · · · pkm

m . Let di be divisors of n and consider the partition of vertex

set V = A∪i Tdi , where, Tdi = {s(di)|s ∈ R,s /∈< d j >, i 6= j,di - d j,d j - di}. It is clear that if

ki = 1∀i then Tdi =Wdi . Since pi
ki - pi p j,ki > 1, i, j = 2,3, · · · ,m, i 6= j but pk1

1 p2 | pk1
1 p2 p3 · · · pm.
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Hence from theorem 4.6, Tp1 ∪T
pk1

1 p2
∪T

pk1
1 p2 p3

∪ ·· · ∪T
pk1

1 p2 p3···pm
forms maximum clique in

D[Zn]. To determine generalised formula consider the following cases.

Case I : if n = pk1
1 p2,k1 > 1

ω(D[Zn]) = |A|+ |Tp1 |+ |Tpk1
1 p2
|

= φ(n)−1+
[

n
p1

]
−
[

n
p1 p2

]
+0

= φ(n)−1+ pk1−1
1 p2− pk1−1

1

= φ(n)−1+ pk1−1
1 (p2−1)

Case II: if n = pk1
1 · p

k2
2 ,k1 > 1 , Since pk1

1 p2 | pk1
1 · p

k2
2 and pk - p1 p2 then

ω(D[Zn]) = |A|+ |Tp1|+ |Tpk1
1 p2
|

= φ(n)−1+
[

n
p1

]
−
[

n
p1 p2

]
+

[
n

pk1
1 p2

]
−

[
n

pk1
1 pk2

2

]
= φ(n)−1+ pk1−1

1 pk2
2 − pk1−1

1 pk2−1
2 + pk2−1

2 −1

= φ(n)−1+
[

pk1−1
1 pk2−1

2 (p2−1)
]
+ pk2−1

2 −1

case III: if n = pk1
1 · p

k2
2 · p

k3
3 then

ω(D[Zn]) = |A|+ |Tp1|+ |Tpk1
1 p2
|+ |T

pk1
1 p2 p3

|

= φ(n)−1+ pk1−1
1 pk2−1

2 pk3−1
3 (p2−1)(p3−1)+ pk2−1

2 pk3
3 −1.

By observing above value of clique number we conclude the following

if n = pk1
1 · p

k2
2 · p

k3
3 · · · pkm

m then

ω(D[Zn]) = φ(n)−1+ pk1−1
1 pk2−1

2 pk3−1
3 · · · pkm−1

m (p2−1)(p3−1) · · ·(pm−1)

+ pk2−1 pk3
3 · · · p

km
m −1.
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7. PLANARITY AND CHROMATIC NUMBER OF Zn :

Theorem 7.1 D[Zn] is planar graph if n≤ 6 and not planar graph if n > 6.

Proof: Let n > 6. Since vertex set is disjoint union of A and B where A = U(R)−{1}. For

n > 6, | A |≥ 4. These unit vertices forms complete subgraph K5 either with unit vertices or with

zero divisors. Hence D[Zn] is not planar graph if n > 6. For n≤ 6 see figure 1,2,3.

Theorem 7.2 For positive integer n, ω(D[Zn]) = χ(D[Zn]).

Proof: Let R be ring of integer modulo n. Since for any graph G, χ([G]) ≥ ω([G]). We just

need to prove χ([G])≤ ω([G]). For this consider the following cases.

Case I: If n = pk, then D[R] is complete graph. i.e. result is true.

Case II: If n = p1 · p2 · p3 · · · pm. Then vertex set can be rewrite as V = A∪B where A =U(R)−

{1} and B = Z(R) = ∪iVi such that Vi = 〈pi〉 , i = 1,2, . . . ,m. We have, if n = p1 · p2 · p3 · · · pm

then

ω(D[Zn]) = |A|+ |Wp1 |+ |Wp1 p2|+ |Wp1 p2 p3|+ |Wp1 p2..p(m−1)|

Where Wdi = {s(di)|s ∈ R,s /∈< d j >, i 6= j,di - d j,d j - di} and Wi =Wj, i - j, i 6= j and Wi ↔

Wj, i | j. To generalised result start with n = p1 p2,

Let n = p1 p2 then vertex set V = A∪V1∪V2, where V1 =Wp1 ,V2 =Wp2, |Wp1| = (p2−1) and

|Wp2 | = (p1− 1). We have A←→Wp1,A←→Wp2,Wp1 =Wp2 Hence total no. distinct color

will be |A|+ |Wp1|. Thus we conclude that, ω(D[Zn]) = χ(D[Zn]).

For n = p1 p2 p3, We have,

V = A∪V1∪V2∪V3

V1 = Wp1 ∪Sp1,2 ∪Sp1,3 ∪Sp1,2,3,

V2 = Wp2 ∪Sp1,2 ∪Sp1,3 ∪Sp1,2,3

V3 = Wp3 ∪Sp1,3 ∪Sp2,3 ∪Sp1,2,3

and Wp1 =Wp2 ,Wp1 =Wp3,Wp2 =Wp3,Wp1 p2 =Wp1 p3 ,Wp1 p2 =Wp2 p3,Wp2 p3 =Wp1 p3

|Wp1 | =

[
n
p1

]
−
[

n
p1 p2

]
−
[

n
p1 p3

]
+

[
n

p1 p2 p3

]
|Wp2| =

[
n
p2

]
−
[

n
p1 p2

]
−
[

n
p2 p3

]
+

[
n

p1 p2 p3

]



14 P. D. KHANDARE, S. M. JOGDAND, R. A. MUNESHWAR

|Wp1 |− |Wp2| = p2 p3− p1 p3− p2 + p1

= p2(p3−1)− p1(p3−1) = (p3−1)(p2− p1)> 0

i.e.|Wp1 |>|Wp2 |>|Wp3 | simillarly it is easy to show that |Wp1 p2|> |Wp2 p3|> |Wp1 p3|. Hence

same colour can be used for above non adjacent vertices. Therefore, for n= p1 p2 p3, χ(D[Zn]) =

|A|+ |Wp1|+ |Wp1 p2|= ω(D[Zn]). Thus we conclude that, result is true for n = p1 p2 · · · pm.

case III: Let n = pk1
1 · p

k2
2 · p

k3
3 · · · pkm

m , then pi
ki - pi p j, i 6= j = 1,2,3, . . . ,m but pk1

1 · p2 | pk1
1 ·

pk2
2 · p

k3
3 · · · pkm

m . Let the partition of vertex set V = A∪i Tdi , where Tdi = {s(di)|s ∈ R,s /∈< d j >

, i 6= j,di - d j,d j - di}. We have p1|pk1
p p2|pk1

1 p2 p3| · · · | · · · |pk1
1 p2 · · · pm and hence Tp1 ∪T

pk1
1 p2
∪

T
pk1

1 p2 p3
· · ·∪T

pk1
1 p2···pm

.

Consider n = pk1
1 pk2

2 , We have V = Tp1 ∪Tp1 p2 ∪Tp2 such that Tp1 = Tp2,Tp1 ↔ T
pk1

1 p2
,Tp2 ↔

T
pk1

1 p2
, and Tp1 p2 ↔ T

pk1
1 p2

,

|Tp1 |− |Tp2 | = pk1−1
1 pk2

2 − pk1
1 pk2−1

2

= pk1−1
1 pk2−1

2 (p2− p1)

|Tp1 p2 | = pk1−1
1 pk2−1

2 −1

|T
pk1

1 p2
| = pk2−1

2 −1

ω(D[Zn]) = |A|+ |Tp1|+ |Tpk1
1 p2
|

Thus for n = pk1
1 · p

k2
2 , we have shown that ω(D[Zn]) = χ(D[Zn]). In this manner we may show

that ω(D[Zn]) = χ(D[Zn]),∀ n ∈ N.

8. CONCLUSION

In this paper we introduced a divisor graph D[R] of a commutative ring and studied rela-

tionship of D[R] and ring R, Also learn the basic properties such as subgraph, connectedness,

completeness, Eulerian graph, girth, diameter, clique number, chromatic number, planarity of

graph etc.
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