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Abstract. In this paper, we present a simple approach in order to build up recursively the connection coefficients

between a sequence of polynomials {Qn}n≥0 and an orthogonal polynomials sequence {Pn}n≥0 when

Pn(x) = Qn(x)+ rnQn−1(x), n≥ 0.

This yields the relation between the parameters of the corresponding recurrence relations. Some special cases are

developed. More specifically, assuming that {Pn}n≥0 is a discrete classical orthogonal polynomials sequence.
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1. INTRODUCTION

Let P be the linear space of polynomials in one variable with complex coefficients and

let P ′ be its algebraic dual. We denote by 〈u, f 〉 the action of u in P ′ on f in P and by

(u)n := 〈u,xn〉 , n≥ 0, the moments of u with respect to the monomial sequence {xn}n≥0. When

(u)0 = 1, the linear functional u is said to be normalized. The linear functional u is called regular
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(quasi-definite) if the leading principal submatrices Hn of the Hankel matrix H =
(
ui+ j

)
i, j≥0

related to the moments un = 〈u,xn〉 , n≥ 0, are nonsingular, for each n≥ 0 [8].

Let {Pn}n≥0 be a monic orthogonal polynomials sequence, in short MOPS, with respect to the

linear functional u ∈P ′, i.e.

〈u,Pn (x)Pm (x)〉= knδn,m, n,m≥ 0,

where kn 6= 0, n≥ 0.

In this way, {Pn}n≥0 satisfies the following three-term recurrence relation

(1)

 Pn+1(x) = (x−βn)Pn(x)− γnPn−1(x), n≥ 1,

P0(x) = 1, P1(x) = x−β0,

where γn 6= 0, for each n≥ 1.

Definition 1. [8] The sequence {P}n≥0 is called symmetric if it fulfils

Pn(−x) = (−1)n Pn(x), n≥ 0.

Theorem 2. [8] For each MOPS {Pn}n≥0 , the following statements are equivalent

(i) {Pn}n≥0 is symmetric.

(ii) {Pn}n≥0 satisfies the recurrence relation Pn+1(x) = xPn(x)− γnPn−1(x), n≥ 1,

P0(x) = 1, P1(x) = x,

where γn 6= 0, for each n≥ 1.

Definition 3. An OPS {Pn}n≥0 is said to be a sequence of discrete classical orthogonal polyno-

mials if the PS {Qn}n≥0 defined by (n+1)Qn(x) = ∆Pn+1(x) is also an OPS where ∆ denotes

the difference operator defined by

∆( f )(x) = f (x+1)− f (x).

Let u and v be two regular linear functionals and let {Pn}n≥0 and {Qn}n≥0 be the correspond-

ing sequences of monic orthogonal polynomials. Assume that there exist non-negative integer
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numbers M and N, and sequences of complex numbers {ri,n}n≥0 and
{

sk,n
}

n≥0 such that the

structure relation

Qn(x)+
M

∑
i=1

ri,nQn−i(x) = Pn(x)+
N

∑
i=1

si,nPn−i(x)

holds for n≥ 0. Further, assume that rM,M+N 6= 0 and sN,M+N 6= 0, det
[
αi j
]M+N

i, j=1 6= 0, where the

entries αi j of the matrix are defined on the basis of {ri,n}n≥0 and
{

sk,n
}

n≥0 . Then there exist

two polynomials Φ and Ψ with degΦ = M and degΨ = N such that

Φ(z)u = Ψ(z)v.

These polynomials Φ and Ψ can be constructed in an explicit way [15]. On the other hand,

the converse result is also analyzed. A characterization theorem for the sequence {Qn}n≥0 to

be orthogonal assuming {Pn}n≥0 is orthogonal is obtained when M = 0 and N = 1, M = 1 and

N = 1, M = 0 and N = 2, M = 1 and N = 2, M = 0 and N = 3, M = 0 and N = k [2, 3, 4, 5, 6].

In this contribution, the main purpose is to analyze the existence of a MOPS {Qn}n≥0 satisfying

the connection relation of two consecutive elements

(2) Pn(x) = Qn(x)+ rnQn−1(x), n≥ 0,

with the initial conditions Q0 (x) = P0 (x) = 1 and Q−1 (x) = P−1 (x) = 0, and where {rn}n≥0 is

a sequence of complex numbers with the initial condition r0 = 0 and rn 6= 0 for all n≥ 1. This

paper is organized as follows. In section 2, we develop some basic results and lemmas. Section

3, we discuss some particular cases. Finally, we illustrate this study with some examples of

discrete classical orthogonal polynomials.

2. CHARACTERIZATION OF ORTHOGONALITY

Let {Pn}n≥0 be a MOPS, so it satisfies the three-term recurrence relation (1) . Necessary and

sufficient conditions for the orthogonality of {Qn}n≥0 are given by the following proposition.

Proposition 4. Let {Pn}n≥0 be a MOPS satisfies (1) , and let {Qn}n≥0 be a sequence of polyno-

mials given by the structure relation (2) . Then, {Qn}n≥0 is a MOPS if and only if the following

conditions hold

(i) rn−1−βn−1 +
γn

rn
= µ, n≥ 2, where µ =−β0 +

γ1

r1
.
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(ii) γ̃n := γn + rn(βn−βn−1− rn + rn−1) 6= 0, n≥ 1.

Proof. Let

(3) Qn(x) = Pn(x)+
n

∑
i=1

αn,iPn−i(x), n≥ 0

where αn,i = (−1)i i−1
Π
j=0

rn− j, 1≤ i≤ n, n≥ 1.

Multiplying the left and the right hand sides the above expression by x and applying (1) to

xPn(x), we get

xQn(x) = Pn+1(x)+(βn +αn,1)Pn(x)+(γn +αn,1βn−1 +αn,2)Pn−1(x)

+
n

∑
i=2

[αn,i−1γn−i+1 +αn,iβn−i +αn,i+1]Pn−i(x).

Hence, it follows

(4) xQn(x) = Pn+1(x)+ β̃nPn(x)+ γ̃nPn−1(x)+
n

∑
i=2

α̃n,iPn−i(x)

where

β̃n : = βn +αn,1,(5)

γ̃n : = γn +αn,1βn−1 +αn,2

and

(6) α̃n,i := αn,i−1γn−i+1 +αn,iβn−i +αn,i+1, 2≤ i≤ n, with αn,n+1 = 0.

Replacing (2) in (4) , we obtain

xQn(x) = Qn+1(x)+
(

β̃n + rn+1

)
Qn(x)+

(
γ̃n + rnβ̃n

)
Qn−1(x)

+(α̃n,2 + rn−1γ̃n)Qn−2(x)+
n−1

∑
i=2

(α̃n,i+1 + rn−iα̃n,i)Qn−i−1(x).

So, {Qn}n≥0 will be orthogonal if and only if

(7) γ̃n = γ̃n + rnβ̃n 6= 0, n≥ 1,

(8) α̃n,2 + rn−1γ̃n = 0, n≥ 1,
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(9) α̃n,i+1 + rn−iα̃n,i = 0, 2≤ i≤ n.

From (8) and (9)

(10) α̃n,i = (−1)i+1
γ̃n

i−1
Π
j=1

rn− j, 2≤ i≤ n,

and from (6) and (8)

αn,3 +αn,2iβn−2 +αn,1γn−1 =−rn−1γ̃n.

Moreover, from (6) and (10) , for 2≤ i≤ n,

αn,i+1 +αn,iβn−i +αn,i−1γn−i+1 = (−1)i+1
γ̃n

i−1
Π
j=1

rn− j =−
γ̃n

rn
αn,i,

dividing in this last expression by αn,i, we get

rn−i−βn−i +
γn−i+1

rn−i+1
=

γ̃n

rn
, 2≤ i≤ n,

using (5) , for 2≤ i≤ n,

(11) rn−i−βn−i +
γn−i+1

rn−i+1
= rn−1−βn−1 +

γn

rn
.

Taking into account (11), for n and n−1 instead of i, we get

−β0 +
γ1

r1
= r1−β1 +

γ2

r2
,

for r1 is fix, we deduce r2.

By iterating the process, we have

rn−2−βn−2 +
γn−1

rn−1
= rn−1−βn−1 +

γn

rn
, n≥ 2.

This last expression implies

(12) rn−1−βn−1 +
γn

rn
= µ, n≥ 2

where µ =−β0 +
γ1

r1
.

Again, from (5) and (7)

(13) γ̃n = γn + rn (βn−βn−1− rn + rn−1) , n≥ 1.
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Dividing the left and the right hand sides in the above expression by rn, leads to

γ̃n

rn
=

γn

rn
+βn−βn−1− rn + rn−1, n≥ 1,

using (12) , we obtain
γ̃n

rn
= µ +βn− rn =

γn+1

rn+1
6= 0.

This accomplish the proof. �

Let {tn}n≥1 be a sequence of complex numbers,

such that t1 = 1 and rn =
tn

tn+1
.

The relation (12) becomes

tn−1

tn
−βn−1 +

tn+1

tn
γn = µ, n≥ 2,

hence

(14) tn−1−βn−1tn + γntn+1 = µtn, n≥ 2.

From the relation (14) and taking into account

t1 (µ) = 1, t2 (µ) = γ
−1
1 (µ +β0),

we can deduce that tn is a polynomial of degree n−1.

If we denote by kn its leading coefficient as well as we denote

tn (µ) = knt̃n−1 (µ) ,

then the relation (14) reads

µ t̃n−1 (µ) = t̃n (µ)−βn−1t̃n−1 (µ)+ γn−1t̃n−2 (µ) , n≥ 2,

with t̃0 (µ) = 1, t̃1 (µ) = µ +β0.

In other words,

t̃n (µ) = (−1)n Pn (−µ) ,

and, as a consequence, we can deduce the explicit expression of tn.

The next result gives the solution of the above linear difference equation.
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Proposition 5. Let

γ2n+1t2n+2 = R2n+1(µ), n≥ 0,

γ2nt2n+1 = S2n(µ), n≥ 1,

then  R2n+1(µ) = (µ +β2n)γ
−1
2n S2n(µ)− γ

−1
2n−1R2n−1(µ), n≥ 1,

R1(µ) = µ +β0

and  S2n(µ) = (µ +β2n−1)γ
−1
2n−1R2n−1(µ)− γ

−1
2n−2S2n−2(µ), n≥ 2,

S0 = 1, S2(µ) = (µ +β1)γ
−1
1 R1(µ)−1.

Proof. From the relation (14) , we have

γntn+1 = (µ +βn−1)tn− tn−1, n≥ 2,

then

γ1t2 = µ +β0 = R1(µ)

with R1 is an odd polynomial of degree 1.

On the other hand

γ2t3 = (µ +β1)t2− t1 = (µ +β1)γ
−1
1 R1(µ)−1 = S2(µ)

with S2 is an even polynomial of degree 2.

Moreover

γ3t4 = (µ +β2)t3− t2 = (µ +β2)γ
−1
2 S2(µ)− γ

−1
1 R1(µ) = R3(µ)

with R3 is an odd polynomial of degree 3.

And

γ4t5 = (µ +β3)t4− t3 = (µ +β3)γ
−1
3 R3(µ)− γ

−1
2 S2(µ) = S4(µ)

with S4 is an even polynomial of degree 4.

Thus

R2n+1(µ) = (µ +β2n)γ
−1
2n S2n(µ)− γ

−1
2n−1R2n−1(µ), n≥ 1,

S2n(µ) = (µ +β2n−1)γ
−1
2n−1R2n−1(µ)− γ

−1
2n−2S2n−2(µ), n≥ 2
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with initial conditions R1(µ) = µ +β0, S0(µ) = 1, S2(µ) = (µ +β1)γ
−1
1 R1(µ)−1. �

In the following result, we assume that the sequence of polynomials {Qn}n≥0 is a MOPS, i.e.

(15) Qn+1(x) =
(

x− β̃n

)
Qn(x)− γ̃nQn−1(x), n≥ 0,

with the initial conditions Q0(x) = 1, Q−1(x) = 0 and the conditions γ̃n 6= 0, for each n≥ 1.

Lemma 6. Let {Qn}n≥0 be a MOPS satisfying the decomposition (2) , then

(16)


β̃n = βn− rn + rn+1, n≥ 0,

γ̃n = γn + rn(βn−βn−1− rn + rn−1), n≥ 1,

γ̃n =
rn

rn+1
γn+1, n≥ 1.

3. SOME SPECIAL CASES

We will consider the following two special cases.

3.1. {Pn}n≥0 is symmetric

Let us suppose that {Pn}n≥0 is a symmetric orthogonal polynomials sequence. From Proposition

5 and Theorem 2, we have R2n+1(µ) = µγ
−1
2n S2n(µ)− γ

−1
2n−1R2n−1(µ), n≥ 1,

R1(µ) = µ

and  S2n(µ) = µγ
−1
2n−1R2n−1(µ)− γ

−1
2n−2S2n−2(µ), n≥ 2,

S0 = 1, S2(µ) = µγ
−1
1 R1(µ)−1.

Moreover, from Lemma 6, we obtain

(17)


β̃n = rn+1− rn, n≥ 0,

γ̃n = γn + rn(rn−1− rn), n≥ 1,

rnγ̃n−1 = rn−1γn, n≥ 2.

Then

(18)
γ̃n

rn
+ rn =

γ̃1

r1
+ r1, n≥ 2, and

γ1

r1
+ r1 6= 0.

equivalently,
γn+1

rn+1
+ rn =

γ1

r1
, n≥ 1.



APPLICATION OF THE DISCRETE CLASSICAL CASE 9

By summation in (17) , we get
n

∑
i=0

β̃i = rn+1, n≥ 0.

We deal with two particular cases.

(i) If β̃n = β̃ , n≥ 0, then

rn = nβ̃ , n≥ 1.

The relation (18) becomes

γ̃n

n
= γ̃1 +(1−n) β̃

2, n≥ 1, and γ̃1 = γ1− β̃
2

with γ1 6= β̃ 2.

Then, the sequence {Pn}n≥0 has the recurence coefficients

γn+1

n+1
= γ1−nβ̃

2, n≥ 1.

(ii) If β̃n = 1+n, n≥ 0, then

rn =
n(1+n)

2

and
γ̃n

n(1+n)
=

γ̃1

2
− n(1+n)

4
+

1
4
, n≥ 1, and γ̃1 = γ1−1

with γ1 6= 1.

Then, the sequence {Pn}n≥0 has the recurence coefficients

γn+1

(n+1)(n+2)
=

γ1

2
− n(1+n)

4
, n≥ 1.

3.2. The sequence {rn}n≥1 is constant

Let as consider rn = r, n≥ 1, where r ∈ R�{0} . From Lemma 6, we get

(19)



β̃n = βn, n≥ 1, β̃0 = β0 + r,

γ̃n = γn + r(βn−βn−1), n≥ 2,

γ̃1 = γ1 + r(β1−β0− r),

γ̃n = γn+1, n≥ 1.

Using the above system, we can deduce

γn+1 = γ1 + r(βn−β1), n≥ 2,

γ2 = γ1 + r(β1−β0− r).
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Then, we have two cases.

1st Case: Let consider βn = β , n≥ 0, γn = γ, n≥ 1. From (19) , we obtain
β̃n = β , n≥ 1, β̃0 = β + r,

γ̃1 = γ− r2,

γ̃n = γ, n≥ 1,

thus, r = 0

so, Pn ≡ Qn, n≥ 0.

2nd Case: If βn = β , n≥ 1, and β0 6= β , γn = γ, n≥ 1. From (19) , we get
β̃n = β , n≥ 1, β̃0 = β0 + r,

γ̃1 = γ + r(β −β0− r),

γ̃n = γ, n≥ 1,

thus, r = β −β0.

In this case {Qn}n≥0 and {Pn}n≥0 have the same recurrence relation with initial conditions

Q1(x) = P1(x)− r and Q2(x) = P2(x)− r(x−β0− r).

4. EXAMPLES

In this section we illustrate some examples of classical discrete orthogonal polynomials.

The three referred families of monic discrete orthogonal polynomials: Charlier C(a)
n , Meixner

M(ν ,µ)
n , Krawtchouk K(p)

n (.;N) and Hahn h(α,β )
n (.;N) have the following hypergeometric repre-

sentations [9]

C(a)
n (x) = (−a)n

2F0

 −n, −x

−
;−1

a

 , a > 0,

M(ν ,µ)
n (x) = (ν)n

(
µ

µ−1

)n

2F1

 −n, −x

ν

;1− 1
µ

 , ν > 0, µ ∈ ]0,1[ ,

K(p)
n (x;N) =

(−p)n N!
(N−n)! 2F1

 −n, −x

−N
;

1
p

 , p ∈ ]0,1[ , N ∈ Z+, n≤ N,

h(α, β )
n (x;N) =

(−N +α +1)n
(α +β +n+1)n

3F2

 −n α +β +n+1 −x

−N α +1
;1

 , α >−1, β >−1.
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where pFq is the hypergeometric series defined by

pFq

 a1, a2, ..., ap

b1, b2, ..., bq

;z

 :=
∞

∑
k=0

(a1)k (a2)k ...(ap)k

(b1)k (b2)k ...
(
bq
)

k

zk

k!

with the Pochhammer symbol (a)n being defined by

(a)n =

 1, if n = 0,

a(a+1)(a+2)...(a+n−1), if n≥ 1.

And their recurrence relations can be written as follows [9]

(20) C(a)
n+1(x) = (x−n−a)C(a)

n (x)−an C(a)
n−1(x), n≥ 0,

with the initial conditions C(a)
0 (x) = 1, C(a)

−1(x) = 0 and a > 0.

(21) M(ν ,µ)
n+1 (x) =

(
x− n+(n+ν)µ

1−µ

)
M(ν ,µ)

n (x)− n(n+ν−1)µ

(1−µ)2 M(ν ,µ)
n−1 (x) , n≥ 0,

with the initial conditions M(ν ,µ)
0 (x) = 1, M(ν ,µ)

−1 (x) = 0 and ν > 0, µ ∈ ]0,1[ .

K(p)
n+1(x;N) = (x−n(1− p)− p(N−n))K(p)

n (x;N)

−np(1− p)(N−n+1) K(p)
n−1(x;N), n≥ 0,(22)

with the initial conditions K(p)
0 (x;N) = 1, K(p)

−1 (x;N) = 0 and p ∈ ]0,1[ , n≤ N, N ∈ Z+.

h(α, β )
n+1 (x;N) =

(
x− (α +1)N (α +β )+n(2N−α +β )(α +β +2N)

4(α +β +2n)(α +β +2n+2)

)
h(α, β )

n (x;N)

− n(N−n−1)(α +β +n)(α +n)(β +n)(α +β +N +n+1)

(α +β +2n−1)(α +β +2n)2 (α +β +2n+1)
h(α, β )

n−1 (x;N), n≥ 0,(23)

with initial conditions h(α, β )
0 (x;N) = 1, h(α, β )

−1 (x;N) = 0 and α >−1, β >−1.

4.1. MOPS of Charlier

From (16) and (20) , the recurrence coefficients of {Qn}n≥0 are getting as follows

β̃n = rn+1− rn +n+a, n≥ 0,

γ̃n = na−
(

β̃n−1−n−a
)n−1

∑
k=0

(
β̃k− k−a

)
, n≥ 1.
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As such, the ∆ operator acts as a lowering operator on this family of polynomials. The explicit

expression is [14]
∆C(a)

n+1(x)
n+1

=C(a)
n (x), n≥ 0,

if we get Qn(x) =
∆C(a)

n+1(x)
n+1

, n≥ 0, then Qn ≡C(a)
n .

Thus, there is no a sequence {rn}n≥0 such the decomposition (2) holds.

4.2. MOPS of Meixner

From (16) and (21) , the recurrence coefficients of {Qn}n≥0 are obtained as follows

β̃n = rn+1− rn +
n+(n+ν)µ

1−µ
, n≥ 0,

γ̃n =
n(n+ν−1)µ

(1−µ)2 −
(

β̃n−1−
n+(n+ν)µ

1−µ

)n−1

∑
k=0

(
β̃k−

k+(k+ν)µ

1−µ

)
, n≥ 1.

It is well known that the Meixner polynomials satisfy the following relation [14]

∆M(ν ,µ)
n+1 (x)
n+1

= M(ν+1,µ)
n (x) , n≥ 0,

if we get Qn(x) =
∆M(ν ,µ)

n+1 (x)
n+1

, n≥ 0, then Qn ≡M(ν+1,µ)
n .

And as

γ̃n =
n

n+1
γn+1

=
n

n+1
(n+1)(n+ν)µ

(1−µ)2

=
n(n+ν)µ

(1−µ)2 , n≥ 1,

then, there is a sequence {rn}n≥0 such the decomposition (2) holds.

4.3. MOPS of Krawtchouk

From (16) and (22) , the recurrence coefficients of {Qn}n≥0 are determined as follows

β̃n = rn+1− rn +n(1− p)+ p(N−n), n≥ 0,

γ̃n = np(1− p)(N−n+1)

−
[
β̃n−1−n(1− p)− p(N−n)

]n−1

∑
k=0

[
β̃k− k(1− p)− p(N− k)

]
, n≥ 1.
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Moreover, the Krawtchouk polynomials satisfy the following relation [14]

∆K(p)
n+1(x;N)

n+1
= K(p)

n (x;N−1), n≥ 0,

if we get Qn(x) =
∆K(p)

n+1(x;N)

n+1
, n≥ 0, then Qn ≡ K(p)

n (.;N−1).

And as

γ̃n =
n

n+1
γn+1

=
n

n+1
p(n+1)(1− p)(N−n)

= np(1− p)(N−n), n≥ 1,

then, there is a sequence {rn}n≥0 such the decomposition (2) holds.

4.4. MOPS of Hahn

From (16) and (23) , the recurrence coefficients of {Qn}n≥0 are getting as follows

β̃n = rn+1− rn +
(α +1)N (α +β )+n(2N−α +β )(α +β +2N)

4(α +β +2n)(α +β +2n+2)
, n≥ 0,

γ̃n =
n(N−n−1)(α +β +n)(α +n)(β +n)(α +β +N +n+1)

(α +β +2n−1)(α +β +2n)2 (α +β +2n+1)

−
[

β̃n−1−
(α +1)N (α +β )+n(2N−α +β )(α +β +2N)

4(α +β +2n)(α +β +2n+2)

]
×

n−1

∑
k=0

[
β̃k−

(α +1)N (α +β )+ k (2N−α +β )(α +β +2N)

4(α +β +2k)(α +β +2k+2)

]
, n≥ 1.

Moreover, the Hahn polynomials satisfy the following relation [14]

∆h(α, β )
n+1 (x;N)

n+1
= h(α+1, β+1)

n (x;N−1), n≥ 0,
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if we get Qn(x) =
∆h(α, β )

n (x;N)

n+1
, n≥ 0, then Qn ≡ h(α+1, β+1)

n (.;N−1).

And as

γ̃n 6=
n

n+1
γn+1

=
n

n+1
(n+1)(N−n−2)(α +β +n+1)(α +n+1)(β +n+1)(α +β +N +n+2)

(α +β +2n+1)(α +β +2n+2)2 (α +β +2n+3)

=
n(N−n−2)(α +β +n+1)(α +n+1)(β +n+1)(α +β +N +n+2)

(α +β +2n+1)(α +β +2n+2)2 (α +β +2n+3)
, n≥ 1.

Thus, there is no a sequence {rn}n≥0 such the decomposition (2) holds.
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