Available online at http://scik.org J. Math. Comput. Sci. 3 (2013), No. 1, 195-206 ISSN: 1927-5307

ON THE NONLINEAR CIRCLE PLUS OPERATOR RELATED TO THE LAPLACIAN

T. PANYATIP

Department of Mathematics, Rajamangala University of Technology Lanna, Thailand.

Abstract. In this paper, we study the solution of nonlinear equation

$$\oplus^k u(x) = f(x, \triangle^{k-1} \square^k L^k u(x)),$$

where the operator \oplus^k is defined by

$$\oplus^{k} = \left[\left(\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}} \right)^{4} - \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right)^{4} \right]^{k},$$

or the operator \oplus^k can be express by $\oplus^k = \triangle^k \square^k L^k$. The operator \triangle^k is Laplacian operator, \square^k is ultrahyperbolic operator and L^k is operator defined by

$$L^{k} = \left[\left(\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}} \right)^{2} + \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right)^{2} \right]^{k},$$

p + q = n is the dimension of the *n*-dimension Euclidean space \mathbb{R}^n , $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, k is a positive integer, u(x) is an unknown and f is a given function. It is found that the existence of the solution u(x) of such equation depending on the condition of f and $\triangle^{k-1} \Box^k L^k u(x)$ and moreover such solution u(x) related to the Laplacian depending on the conditions of p, q and k.

 ${\bf Keywords:} \ {\bf Laplacian, \ Kernel, \ Schauders's \ estimates.}$

2000 AMS Subject Classification: 46F10

This work was supported by Rajamangala University of Technology Lanna under the National Research Council of Thailand.

Received November 29, 2012

1. Introduction

The operator \oplus^k has been studied first by Kananthai, Suantai and Longani [5] and is defined by

where p + q = n is the dimension of \mathbb{R}^n , $i = \sqrt{-1}$ and k is a nonnegative integer. The diamond operator is denoted by

(2)
$$\Diamond^k = \left(\sum_{i=1}^p \frac{\partial^2}{\partial x_i^2}\right)^2 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}\right)^2.$$

The operator L_1 and L_2 are defined by

(3)
$$L_1 = \sum_{i=1}^p \frac{\partial^2}{\partial x_i^2} - i \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}$$

and

(4)
$$L_2 = \sum_{i=1}^p \frac{\partial^2}{\partial x_i^2} + i \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}$$

Thus equation (1) can be written as

$$\oplus^k = \diamondsuit^k L_1^k L_2^k.$$

Otherwise, the operator \Diamond can also be expressed in the form $\Diamond = \Box \triangle = \triangle \Box$, where \Box is the ultra-hyperbolic operator defined by

(5)
$$\Box = \sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} - \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2},$$

where p + q = n and \triangle is the Laplacian defined by

(6)
$$\triangle = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}.$$

The linear equation $\Diamond^k u(x) = f(x)$, see [6], has been already studied and the convolution $u(x) = (-1)^k K_{2k,2k}(x) * f(x)$ has been obtained as a solution of such an equation where $K_{2k,2k}(x) = R_{2k}^H(x) * R_{2k}^e(x)$. The function $R_{2k}^H(x)$ and $R_{2k}^e(x)$ are defined by (9) and (11), respectively, with $\alpha = \beta = 2k$.

Kananthai, Suantai and Longani, see[4], has been studied the operator \oplus^k . They obtained

$$K(x) = [R_{2k}^{H}(u) * (-1)^{k} R_{2k}^{e}] * (-1)^{k} (-i)^{q/2} S_{2k}(w) * (-1)^{k} (i)^{q/2} T_{2k}(z)$$

is the elementary solution of such operator.

In this work, we study the nonlinear equation of the form

(7)
$$\oplus^{k} u(x) = f(x, \triangle^{k-1} \Box^{k} L^{k} u(x)).$$

with f defined and continuous for all $x \in \Omega \cup \partial \Omega$ where Ω is an open subset of \mathbb{R}^n and $\partial \Omega$ denotes the boundary of Ω . We can find the solution u(x) of (7) which is unique under the condition $|f(x, \Delta^{k-1} \Box^k L^k u(x))| \leq N$ where N is a constant for all $x \in \Omega$ and the boundary condition $\Delta^{k-1} \Box^k L^k u(x) = 0$ for $x \in \partial \Omega$.

2. Preliminaries

Definition 2.1. Let $x = (x_1, x_2, ..., x_n)$ be a point in the space \mathbb{R}^n of the n-dimensional Euclidean space and write

(8)
$$v = x_1^2 + x_2^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_{p+q}^2,$$

where p + q = n is the dimension of \mathbb{R}^n .

Denote by $\Gamma_+ = \{x \in \mathbb{R}^n : x_1 > 0 \text{ and } u > 0\}$ the set of an interior of the forward cone and $\overline{\Gamma}_+$ denotes it closure and \mathbb{R}^n is the *n*-dimensional Euclidean space.

For any complex number α , define

(9)
$$R_{\alpha}^{H}(v) = \begin{cases} \frac{v^{\frac{\alpha-n}{2}}}{K_{n}(\alpha)}, & \text{for } x \in \Gamma_{+} \\ 0, & \text{for } x \notin \Gamma_{+}, \end{cases}$$

where the constant $K_n(\alpha)$ is given by the formula

$$K_n(\alpha) = \frac{\pi^{\frac{n-1}{2}} \Gamma(\frac{2+\alpha-n}{2}) \Gamma(\frac{1-\alpha}{2}) \Gamma(\alpha)}{\Gamma(\frac{2+\alpha-p}{2}) \Gamma(\frac{p-\alpha}{2})}.$$

The function $R^H_{\alpha}(v)$ is called the hyperbolic kernel of Marcel Riesz and was introduced by *Y. Nozaki* [4, p72]. It is well known that $R^H_{\alpha}(v)$ is an ordinary function if $Re(\alpha) \ge n$ and is a distribution of α if $Re(\alpha) < n$. Let supp $R^H_{\alpha}(v)$ denote the support of $R^H_{\alpha}(v)$ and suppose supp $R^H_{\alpha}(v) \subset \overline{\Gamma}_+$, that is supp $R^H_{\alpha}(v)$ is compact.

Definition 2.2. Let $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ and write

(10)
$$|x| = x_1^2 + x_2^2 + \dots + x_n^2$$

For any complex number β , define

(11)
$$R^{e}_{\beta}(x) = 2^{-\beta} \pi^{\frac{-n}{2}} \Gamma(\frac{n-\beta}{2}) \frac{|x|^{\frac{\beta-n}{2}}}{\Gamma(\frac{\beta}{2})}$$

The function $R^e_{\beta}(x)$ is called the elliptic kernel of Marcel Riesz and is ordinary function for $Re(\beta) \ge n$ and is a distribution of β for $Re(\beta) < n$.

Definition 2.3. Let $x = (x_1, x_2, ..., x_n)$ be a point of \mathbb{R}^n and write

(12)
$$z = x_1^2 + x_2^2 + \dots + x_p^2 + i\left(x_{p+1}^2 + x_{p+2}^2 + \dots + x_{p+q}^2\right)$$

and

(13)
$$w = x_1^2 + x_2^2 + \dots + x_p^2 - i\left(x_{p+1}^2 + x_{p+2}^2 + \dots + x_{p+q}^2\right),$$

For any complex number γ and ν , we define

(14)
$$T_{\nu}(z) = 2^{-\nu} \pi^{\frac{-n}{2}} \Gamma(\frac{n-\nu}{2}) \frac{z^{\frac{\nu-n}{2}}}{\Gamma(\frac{\nu}{2})}$$

and

(15)
$$S_{\gamma}(w) = 2^{-\gamma} \pi^{\frac{-n}{2}} \Gamma(\frac{n-\gamma}{2}) \frac{w^{\frac{\gamma-n}{2}}}{\Gamma(\frac{\gamma}{2})}$$

The function $S_{\gamma}(w)$ and $T_{\nu}(z)$ is an ordinary function if $Re(\gamma) \ge n$ and $Re(\nu) \ge n$, is a distribution of γ for $Re(\gamma) < n$ and ν for $Re(\nu) < n$.

Lemma 2.1. Given the equation

(16)
$$\Delta^k u(x) = 0,$$

where Δ^k is the Laplacian operator iterated k-times defined by equation (6) we obtain $u(x) = ((-1)^{k-1} R^e_{2(k-1)}(x))^{(m)}$ as a solutions of (16) where $m = (n-4)/2, n \ge 4$ is nonnegative integer and n is even and $R^e_{2(k-1)}(x)$ defined by equation (11) with m derivatives and $\beta = 2(k-1)$.

Proof. see [6, Lemma 2.2].

Lemma 2.2. Given the equation

$$(17) \qquad \qquad \Box^k u(x) = 0,$$

where \Box^k is the Ultra-hyperbolic operator iterated k-times defined by equation (5) we obtain $u(x) = (R_{2(k-1)}^H(v))^{(m)}$ as a solutions of (17) where $m = (n-4)/2, n \ge 4$ is non-negative integer and n is even and $R_{2(k-1)}^H(v)$ defined by equation (9) with m derivatives and $\alpha = 2(k-1)$.

Proof. see [6, Lemma 2.3].

Lemma 2.3. The function $T_{2k}(z) * S_{2k}(w)$ is an elementary solutions of the operator $L^k = L_1^k L_2^k = L_2^k L_1^k$, denoted by

(18)
$$L^{k} = \left[\left(\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}} \right)^{2} - \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right)^{2} \right]^{k},$$

where $T_{2k}(z)$ and $S_{2k}(w)$ are defined by equation (14) and (15), respectively, with $\gamma = \nu = 2k$. The operator L_1^k and L_2^k are defined by equation (3) and (4), respectively. **Proof.** We need to show that $L_1^k[(-1)^k(i)^{\frac{q}{2}}T_{2k}(z)] = \delta$ and $L_2^k[(-1)^k(-i)^{\frac{q}{2}}S_{2k}(w)] = \delta$. At first we have to show that

(19)
$$L_1^k T_{\nu}(z) = (-1)^k T_{\nu-2k}(z), \ L_2^k S_{\gamma}(w) = (-1)^k S_{\gamma-2k}(w)$$

and also

(20)
$$T_{-2k}(z) = (-1)^k (-i)^{\frac{q}{2}} L_1^k \delta, \quad S_{-2k}(w) = (-1)^k (i)^{\frac{q}{2}} L_2^k \delta.$$

Now for k = 1,

$$L_{1}T_{\nu}(z) = \left(\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}} - i\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right) T_{\nu}(z)$$

$$= 2^{-\nu} \pi^{\frac{-n}{2}} \frac{\Gamma(\frac{n-\nu}{2})}{\Gamma(\frac{\nu}{2})} (\nu - n) (\nu - 2) z^{\frac{\nu-2-n}{2}}$$

$$= (-1)2^{-\nu-2} \frac{\Gamma(\frac{n-\nu-2}{2})}{\Gamma(\frac{\nu-2}{2})} z^{\frac{\nu-2-n}{2}}$$

$$= -T_{\nu-2}(z).$$

By repeating k-times in operating L_1 to $T_{\nu}(z)$, we obtain $L_1^k T_{\nu}(z) = (-1)^k T_{\nu-2k}(z)$. Similarly, $L_2^k S_{\gamma}(w) = (-1)^k S_{\gamma-2k}(w)$.

Now consider

$$z = x_1^2 + x_2^2 + \dots + x_p^2 + i \left(x_{p+1}^2 + x_{p+2}^2 + \dots + x_{p+q}^2 \right), p+q = n$$

by changing the variable

$$x_1 = y_1, x_2 = y_2, \dots, x_p = y_p,$$
$$x_{p+1} = \frac{y_{p+1}}{\sqrt{i}} + x_{p+2} = \frac{y_{p+2}}{\sqrt{i}}, \dots, x_{p+q} = \frac{y_{p+q}}{\sqrt{i}}.$$

Thus we have $z = y_1^2 + y_2^2 + \dots + y_p^2 + y_{p+1}^2 + y_{p+2}^2 + \dots + y_{p+q}^2$.

Denote $z = r^2 = y_1^2 + y_2^2 + ... + y_n^2$ and consider the generalized function $z^{\lambda} = r^{2\lambda}$ where λ is any complex number. Now $\langle z^{\lambda}, \varphi \rangle = \int_{\mathbb{R}^n} z^{\lambda} \varphi(x) dx$, where $\varphi \in \mathfrak{D}$ the space of infinitely differentiable functions with compact supports. Thus

$$\langle z^{\lambda}, \varphi \rangle = \int_{R^{n}} r^{2\lambda} \varphi \frac{\partial(x_{1}, x_{2}, \dots, x_{n})}{\partial(y_{1}, y_{2}, \dots, y_{n})} \mathrm{d}y_{1} \mathrm{d}y_{2} \cdots \mathrm{d}y_{n}$$

$$= \frac{1}{(\mathrm{i})^{q/2}} \int_{R^{n}} r^{2\lambda} \varphi \mathrm{d}y$$

$$= \frac{1}{(\mathrm{i})^{q/2}} \langle r^{2\lambda}, \varphi \rangle .$$

By Gelfand and Shilov [3, p.271], the function $r^{2\lambda}$ have simple poles at $\lambda = (-n/2) - k, k$ is nonnegative and for k = 0 we can find the residue of $r^{2\lambda}$ at $\lambda = -n/2$ and by [3, p.73], we obtain

$$\operatorname{res}_{\lambda = -\frac{n}{2}}(r^{2\lambda}) = \frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})}\delta(x).$$

Thus

(21)
$$\operatorname{res}_{\lambda = -\frac{n}{2}}(z^{\lambda}) = (-\mathrm{i})^{\frac{q}{2}} \frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})} \delta(x).$$

We next find the residues of z^{λ} at $\lambda = (-n/2) - k$. Now, by computing directly we have

$$L_1 z^{\lambda+1} = 2(\lambda+1)(2\lambda+n)z^{\lambda}.$$

By k- fold iteration, we obtain

$$L_1^k z^{\lambda+k} = 4^k \quad (\lambda+1)(\lambda+2)\cdots(\lambda+k)\left(\lambda+\frac{n}{2}\right) \times \left(\lambda+\frac{n}{2}+1\right)\cdots\left(\lambda+\frac{n}{2}+k-1\right)z^{\lambda}$$

or

$$z^{\lambda} = \frac{1}{4^{k}(\lambda+1)(\lambda+2)\cdots(\lambda+k)} \times \frac{1}{\left(\lambda+\frac{n}{2}\right)\left(\lambda+\frac{n}{2}+1\right)\cdots\left(\lambda+\frac{n}{2}+k-1\right)} L_{1}^{k} z^{\lambda+k}.$$

Thus

$$\operatorname{res}_{\lambda = -\frac{n}{2} - k} (z^{\lambda}) = \frac{1}{4^k k \left(\frac{n}{2} + k - 1\right) \left(\frac{n}{2} + k - 2\right) \cdots \left(\frac{n}{2}\right)} \operatorname{res}_{\lambda = -\frac{n}{2}} L_1^k z^{\lambda + k}.$$

By (21) and the properties of Gamma functions, we obtain

(22)
$$\operatorname{res}_{\lambda = -\frac{n}{2} - k}(z^{\lambda}) = (-i)^{q/2} \frac{2\pi^{\frac{n}{2}}}{4^k \Gamma(\frac{n}{2} + k)} L_1^k \delta(x).$$

Now we consider $T_{-2k}(z)$ we have

$$\begin{split} T_{-2k}(z) &= \lim_{\nu \to -2k} T(z) \\ &= \pi^{-\frac{n}{2}} \frac{\lim_{\nu \to -2k} z^{(\nu-n)/2}}{\lim_{\nu \to -2k} \Gamma(\frac{\nu}{2})} \lim_{\nu \to -2k} 2^{-\nu} \Gamma\left(\frac{n-\nu}{2}\right) \\ &= \pi^{-\frac{n}{2}} \frac{\lim_{\nu \to -2k} (\nu+2k) z^{(\nu-n)/2}}{\lim_{\nu \to -2k} \Gamma(\nu+2k)(\frac{\nu}{2})} \lim_{\nu \to -2k} 2^{2k} \Gamma\left(\frac{n+2k}{2}\right) \\ &= 4^k \pi^{-\frac{n}{2}} \frac{\underset{\nu = -2k}{\operatorname{res}} z^{(\nu-n)/2}}{\underset{\nu = -2k}{\operatorname{res}} \Gamma(\frac{\nu}{2})} \Gamma\left(\frac{n+2k}{2}\right). \end{split}$$

Since $\operatorname{res}_{\lambda=-\frac{n}{2}-k} z^{\lambda} = \operatorname{res}_{\nu=-2k} z^{(\nu-n)/2}$ and $\operatorname{res}_{\nu=-2k} \Gamma(\frac{\nu}{2}) = \frac{2(-1)^k}{k!}$, by (22) and the properties of Gamma function we obtain

$$T_{-2k}(z) = (-1)^k (-i)^{\frac{q}{2}} L_1^k \delta(x).$$

Similarly

$$S_{-2k}(w) = (-1)^k (\mathbf{i})^{\frac{q}{2}} L_2^k \delta(x)$$

Thus we have

(23)
$$T_0(z) = (-i)^{\frac{q}{2}}\delta(x) , S_0(w) = (i)^{\frac{q}{2}}\delta(x).$$

Now, from (19) $L_1^k T_{2k}(z) = (-1)^k T_0(z)$ for $\nu = 2k$. Thus by (23) we obtain $L_1^k(-1)^k(i)^{\frac{q}{2}}T_{2k}(z) = \delta(x)$. It follows that $(-1)^k(i)^{\frac{q}{2}}T_{2k}(z)$ is an elementary solution of the operator L_1^k . Similarly

 $(-1)^k(-i)^{\frac{q}{2}}S_{2k}(w)$ is also an elementary solution of the operator L_2^k . Thus we have

$$L^{k}(T_{2k}(z) * S_{2k}(w)) = L^{k}_{2}(-1)^{k}(i)^{\frac{q}{2}}T_{2k}(z) * L^{k}_{1}(-1)^{k}(-i)^{\frac{q}{2}}S_{2k}(w) = \delta$$

Lemma 2.4. Given the equation

(24)
$$\Delta u(x) = f(x, u(x)),$$

where f is defined and has continuous first derivatives for all $x \in \Omega \cup \partial\Omega, \Omega$ is an open subset of \mathbb{R}^n and $\partial\Omega$ denotes the boundary of Ω . Assume f is a bounded, that is $|f(x, u)| \leq N$ and the boundary condition u(x) = 0 for $x \in \partial\Omega$. Then we obtain u(x) as a unique solution of (24).

Proof. We can prove this lemma by the method of iterations and the Schauder's estimates, see [1, pp. 369-372].

3. Main results

Theorem 3.1. Given the nonlinear equation

(25)
$$\oplus^{k} u(x) = f(x, \triangle^{k-1} \Box^{k} L^{k} u(x)),$$

where \oplus^k is the operator iterated k times, defined by (1), \triangle^{k-1} is the Laplacian iterated k-1 times defined by (6) and \square^k is the ultrahyperbolic operator iterated k times defined by (5). Let f be defined and have continuous first derivatives for all $x \in \Omega \cup \partial\Omega, \Omega$ is an open subset of \mathbb{R}^n and $\partial\Omega$ denotes the boundary of Ω and n is even with $n \ge 4$. Let f be a bounded function, that is

$$(26) |f(x, \triangle^{k-1}\Box^k L^k u(x))| \le N$$

and the boundary condition

(27)
$$\Delta^{k-1} \Box^k L^k u(x) = 0, \text{ for } x \in \partial \Omega;$$

then we obtain

(28)
$$u(x) = (-1)^{k-1} R^{e}_{2(k-1)}(x) * R^{H}_{2k}(v) * S_{2k}(w) * T_{2k}(z) * W(x)$$

as a solution of (25) with the boundary condition

$$u(x) = S_{2k}(w) * T_{2k}(z) * R_{2k}^{H}(v) * (-1)^{k-2} (R_{2(k-2)}^{e}(x))^{(m)}$$

for $x \in \partial\Omega$, m = (n-4)/2, k = 2, 3, 4, ... and v is given by (8), W(x) is a continuous function for $x \in \Omega \cup \partial\Omega$, $R^e_{2(k-2)}(x)$ and $R^H_{2k}(v)$ are given by (11) and (9), respectively, with $\beta = 2(k-2)$ and $\alpha = 2k$. Moreover, for q = 0 then (25) becomes

with boundary condition

(30)
$$\Delta^{4k-1}u(x) = 0, \ for \ x \in \partial\Omega,$$

where \triangle_p^{4k} is the Laplacian of p-dimension iterated 4k-times. we have

(31)
$$u(x) = (-1)^{k-1} R^{e}_{2(k-1)}(x) * R^{e}_{6k}(x) * W(x)$$

as a solution of (29) where $|x| = x_1^2 + x_2^2 + \ldots + x_p^2$.

Proof. From equation (25), we have

(32)
$$\oplus^{k} u(x) = \triangle(\triangle^{k-1}\Box^{k}L^{k}u(x)) = f(x, \triangle^{k-1}\Box^{k}L^{k}u(x)).$$

Since u(x) has continuous derivatives up to order 4k for k = 1, 2, 3, ... we can assume

(33)
$$\Delta^{k-1} \Box^k L^k u(x) = W(x), \text{ for } x \in \partial\Omega.$$

Thus, (32) can be written in the form

(34)
$$\oplus^k u(x) = \triangle W(x) = f(x, W(x)),$$

by (26)

$$|f(x, W(x))| \le N,$$

and by (27), W(x)=0 or

(36)
$$\Delta^{k-1} \Box^k L^k u(x) = 0, \text{ for } x \in \partial \Omega$$

Thus by Lemma 2.4 there exist a unique solution W(x) of (34) which satisfies (35). Now consider (33), we have $\triangle^{k-1}(-1)^{k-1}R^e_{2(k-1)}(x) = \delta$ and $\square^k R^H_{2k}(v) = \delta$ where δ is the Diracdelta distribution, that is $R^H_{2k}(v)$ and $(-1)^{k-1}R^e_{2(k-1)}(x)$ are the elementary solutions of the operators \square^k and \triangle^{k-1} , respectively, see[8, p.11] and see[2, p.118]. The functions $R^H_{2k}(v)$ and $R^e_{2(k-1)}(x)$ are defined by (9) and (11), respectively, with $\beta = 2(k-1), \alpha = 2k$. And by Lemma 2.3, the function $T_{2k}(z) * S_{2k}(w)$ is an elementary solutions of the operator L^k , are defined by equation (14) and (15), respectively, with $\gamma = \nu = 2k$. Thus, convolving both sides of (33) by

$$(-1)^{k-1} R^e_{2(k-1)}(x) * R^H_{2k}(v) * T_{2k}(z) * S_{2k}(w),$$

we obtain

$$[(-1)^{k-1}R^{e}_{2(k-1)}(x) * R^{H}_{2k}(v) * T_{2k}(z) * S_{2k}(w)] * \triangle^{k-1} \Box^{k}L^{k}u(x)$$
$$= [(-1)^{k-1}R^{e}_{2(k-1)}(x) * R^{H}_{2k}(v) * T_{2k}(z) * S_{2k}(w)] * W(x).$$

By properties of convolution, we obtain

$$\begin{split} [\triangle^{k-1}(-1)^{k-1}R^{e}_{2(k-1)}(x)] &* [\square^{k}R^{H}_{2k}(v)] * [L^{k}T_{2k}(z) * S_{2k}(w)] * u(x) = \\ [(-1)^{k-1}R^{e}_{2(k-1)}(x) * R^{H}_{2k}(v) * T_{2k}(z) * S_{2k}(w)] * W(x), \\ \delta &* \delta * \delta * u(x) = \\ [(-1)^{k-1}R^{e}_{2(k-1)}(x) * R^{H}_{2k}(v) * T_{2k}(z) * S_{2k}(w)] * W(x). \end{split}$$

Thus

(37)
$$u(x) = (-1)^{k-1} R^{e}_{2(k-1)}(x) * R^{H}_{2k}(v) * T_{2k}(z) * S_{2k}(w) * W(x)$$

as required. Consider $\triangle^{k-1} \Box^k L^k u(x) = 0$, for $x \in \partial \Omega$. By Lemma 2.1, we have

$$\Box^{k} L^{k} u(x) = (-1)^{k-2} (R^{e}_{2(k-2)}(x))^{(m)}.$$

Convolving both sides of the above equation by $R_{2k}^{H}(v) * T_{2k}(z) * S_{2k}(w)$, we obtain

$$R_{2k}^{H}(v) * T_{2k}(z) * S_{2k}(w) * \Box^{k} L^{k} u(x)$$

= $R_{2k}^{H}(v) * T_{2k}(z) * S_{2k}(w) * (-1)^{k-2} (R_{2(k-2)}^{e}(x))^{(m)},$
[$\Box^{k} R_{2k}^{H}(v)$] * [$L^{k} * T_{2k}(z) S_{2k}(w)$] * $u(x)$
= $R_{2k}^{H}(v) * T_{2k}(z) * S_{2k}(w) * (-1)^{k-2} (R_{2(k-2)}^{e}(x))^{(m)},$

$$\delta * \delta * u(x)$$

$$= R_{2k}^{H}(v) * T_{2k}(z) * S_{2k}(w) * (-1)^{k-2} (R_{2(k-2)}^{e}(x))^{(m)},$$

$$u(x) = R_{2k}^{H}(v) * T_{2k}(z) * S_{2k}(w) * (-1)^{k-2} (R_{2(k-2)}^{e}(x))^{(m)},$$

for $x \in \partial \Omega$ and $k = 2, 3, 4, \ldots$

Moreover, for q = 0 then (25) becomes

with boundary condition

$$\Delta^{4k-1}u(x) = 0, \text{ for } x \in \partial\Omega,$$

where \triangle_p^{4k} is the Laplacian of *p*-dimension iterated 4k-times. we have

(39)
$$u(x) = (-1)^{k-1} R^{e}_{2(k-1)}(x) * R^{e}_{6k}(x) * W(x)$$

as a solution of (38) where $|x| = x_1^2 + x_2^2 + \dots + x_p^2$.

On the other hand, we can also find (39) from (37), since q = 0, we have $R_{2k}^H(v)$ reduces to $R_{2(k)}^e(x)$, $S_{2k}(w)$ reduces to $R_{2(k)}^e(x)$ and $T_{2k}(z)$ reduces to $R_{2(k)}^e(x)$, where $|x| = x_1^2 + x_2^2 + \ldots + x_p^2$.

Thus, by (37) for q = 0, we obtain

$$\begin{split} u(x) &= (-1)^{k-1} R^e_{2(k-1)}(x) * R^e_{2k}(x) * R^e_{2k}(x) * R^e_{2k}(x) * W(x) \\ &= (-1)^{k-1} R^e_{2(k-1)}(x) * R^e_{2k+2k+2k}(x) * W(x) \\ &= (-1)^{k-1} R^e_{2(k-1)}(x) * R^e_{6k}(x) * W(x). \end{split}$$

This completes the proof.

References

- R. Courant, D. Hilbert, On Methods of Mathematical Physics, vol.2, Interscience Publishers, New York, (1966).
- [2] W.F. Donoghue, Distributions and Fourier Transforms, Academic Press, New York, 1 (1964).
- [3] I.M. Gelfand and G.E. Shilov, Generalized functions, Academic Press, New York, 1 (1964).
- [4] Y. Nozaki, On Riemann-Liouville Integral of Ultrahyperbolic Type, Kodai Mathematical Seminar Reports 6(2) (1964), 69-87.
- [5] A. Kananthai, S. Suantai and V. Longani, On the the operator \oplus^k related to the wave equation and Laplacian., *Applied Mathematics and Computation*, 132 (2002), 219-229.
- [6] A. Kananthai, On the Diamond operatorRelated to the wave equation, Nonlinear Analysis, 47 (2) (2001), 1373-1382.
- [7] A. Kananthai, On the solution of the n-dimensional Diamond operator, Applied Mathematics and Computation, 88 (2) (1997), 27-37.
- [8] S.E. Trione, On the Marcel Riesz's ultrahyperbolic kernel, *Trabajos de Matematica*, 1987, p.116, preprint.