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T. PANYATIP

Department of Mathematics, Rajamangala University of Technology Lanna, Thailand.

Abstract. In this paper, we study the solution of nonlinear equation

⊕ku(x) = f(x,4k−1�kLku(x)),

where the operator ⊕k is defined by

⊕k =

( p∑
i=1

∂2

∂x2
i

)4

−

 p+q∑
j=p+1

∂2

∂x2
j

4

k

,

or the operator ⊕k can be express by ⊕k = 4k�kLk. The operator 4k is Laplacian operator, �k is

ultrahyperbolic operator and Lk is operator defined by

Lk =

( p∑
i=1

∂2

∂x2
i

)2

+

 p+q∑
j=p+1

∂2

∂x2
j

2

k

,

p + q = n is the dimension of the n-dimension Euclidean space Rn, x = (x1, x2, . . . , xn) ∈ Rn, k is a

positive integer, u(x) is an unknown and f is a given function. It is found that the existence of the

solution u(x) of such equation depending on the condition of f and 4k−1�kLku(x) and moreover such

solution u(x) related to the Laplacian depending on the conditions of p, q and k.
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1. Introduction

The operator ⊕k has been studied first by Kananthai, Suantai and Longani [5] and is

defined by

⊕k =

( p∑
i=1

∂2

∂x2i

)2

−

(
p+q∑
j=p+1

∂2

∂x2j

)2
k × [ p∑

i=1

∂2

∂x2i
− i

p+q∑
j=p+1

∂2

∂x2j

]k

×

[
p∑
i=1

∂2

∂x2i
+ i

p+q∑
j=p+1

∂2

∂x2j

]k
=

( p∑
i=1

∂2

∂x2i

)4

−

(
p+q∑
j=p+1

∂2

∂x2j

)4
k ,(1)

where p + q = n is the dimension of Rn, i =
√
−1 and k is a nonnegative integer. The

diamond operator is denoted by

(2) ♦k =

(
p∑
i=1

∂2

∂x2i

)2

−

(
p+q∑
j=p+1

∂2

∂x2j

)2

.

The operator L1 and L2 are defined by

(3) L1 =

p∑
i=1

∂2

∂x2i
− i

p+q∑
j=p+1

∂2

∂x2j

and

(4) L2 =

p∑
i=1

∂2

∂x2i
+ i

p+q∑
j=p+1

∂2

∂x2j
.

Thus equation (1) can be written as

⊕k = ♦kLk1L
k
2.

Otherwise, the operator ♦ can also be expressed in the form ♦ = �4 = 4�, where � is

the ultra-hyperbolic operator defined by

(5) � =

p∑
i=1

∂2

∂x2i
−

p+q∑
j=p+1

∂2

∂x2j
,

where p+ q = n and 4 is the Laplacian defined by

(6) 4 =
n∑
i=1

∂2

∂x2i
.
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The linear equation ♦ku(x) = f(x), see [6], has been already studied and the convolution

u(x) = (−1)kK2k,2k(x) ∗ f(x) has been obtained as a solution of such an equation where

K2k,2k(x) = RH
2k(x) ∗Re

2k(x). The function RH
2k(x) and Re

2k(x) are defined by (9) and (11),

respectively, with α = β = 2k.

Kananthai, Suantai and Longani, see[4], has been studied the operator ⊕k. They

obtained

K(x) = [RH
2k(u) ∗ (−1)kRe

2k] ∗ (−1)k(−i)q/2S2k(w) ∗ (−1)k(i)q/2T2k(z)

is the elementary solution of such operator.

In this work, we study the nonlinear equation of the form

(7) ⊕ku(x) = f(x,4k−1�kLku(x)).

with f defined and continuous for all x ∈ Ω∪∂Ω where Ω is an open subset of Rn and ∂Ω

denotes the boundary of Ω. We can find the solution u(x) of (7) which is unique under

the condition |f(x,4k−1�kLku(x))| ≤ N where N is a constant for all x ∈ Ω and the

boundary condition 4k−1�kLku(x) = 0 for x ∈ ∂Ω.

2. Preliminaries

Definition 2.1. Let x = (x1, x2, ..., xn) be a point in the space Rn of the n-dimensional

Euclidean space and write

(8) v = x21 + x22 + ...+ x2p − x2p+1 − ...− x2p+q,

where p+ q = n is the dimension of Rn.

Denote by Γ+ = {x ∈ Rn : x1 > 0 and u > 0} the set of an interior of the forward cone

and Γ+ denotes it closure and Rn is the n-dimensional Euclidean space.

For any complex number α, define

(9) RH
α (v) =


v
α−n
2

Kn(α)
, for x ∈ Γ+

0, for x 6∈ Γ+,
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where the constant Kn(α) is given by the formula

Kn(α) =
π
n−1
2 Γ(2+α−n

2
)Γ(1−α

2
)Γ(α)

Γ(2+α−p
2

)Γ(p−α
2

)
.

The function RH
α (v) is called the hyperbolic kernel of Marcel Riesz and was introduced

by Y. Nozaki [ 4, p72 ]. It is well known that RH
α (v) is an ordinary function if Re(α) ≥ n

and is a distribution of α if Re(α) < n. Let supp RH
α (v) denote the support of RH

α (v) and

suppose supp RH
α (v) ⊂ Γ̄+, that is supp RH

α (v) is compact.

Definition 2.2. Let x = (x1, x2, ..., xn) ∈ Rn and write

(10) |x| = x21 + x22 + ...+ x2n.

For any complex number β, define

(11) Re
β(x) = 2−βπ

−n
2 Γ(

n− β
2

)
|x|β−n2
Γ(β

2
)
.

The function Re
β(x) is called the elliptic kernel of Marcel Riesz and is ordinary function

for Re(β) ≥ n and is a distribution of β for Re(β) < n.

Definition 2.3. Let x = (x1, x2, ..., xn) be a point of Rn and write

(12) z = x21 + x22 + ...+ x2p + i
(
x2p+1 + x2p+2 + ...+ x2p+q

)
and

(13) w = x21 + x22 + ...+ x2p − i
(
x2p+1 + x2p+2 + ...+ x2p+q

)
,

For any complex number γ and ν, we define

(14) Tν(z) = 2−νπ
−n
2 Γ(

n− ν
2

)
z
ν−n
2

Γ(ν
2
)

and

(15) Sγ(w) = 2−γπ
−n
2 Γ(

n− γ
2

)
w

γ−n
2

Γ(γ
2
)
.

The function Sγ(w) and Tν(z) is an ordinary function if Re(γ) ≥ n and Re(ν) ≥ n , is a

distribution of γ for Re(γ) < n and ν for Re(ν) < n.

Lemma 2.1. Given the equation

(16) 4ku(x) = 0,
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where 4k is the Laplacian operator iterated k-times defined by equation (6) we obtain

u(x) = ((−1)k−1Re
2(k−1)(x))(m) as a solutions of (16) where m = (n− 4)/2, n ≥ 4 is non-

negative integer and n is even and Re
2(k−1)(x) defined by equation (11) with m derivatives

and β = 2(k − 1).

Proof. see [6, Lemma 2.2].

Lemma 2.2. Given the equation

(17) �ku(x) = 0,

where �k is the Ultra-hyperbolic operator iterated k-times defined by equation (5) we

obtain u(x) = (RH
2(k−1)(v))(m) as a solutions of (17) where m = (n − 4)/2, n ≥ 4 is non-

negative integer and n is even and RH
2(k−1)(v) defined by equation (9) with m derivatives

and α = 2(k − 1).

Proof. see [6, Lemma 2.3].

Lemma 2.3. The function T2k(z) ∗ S2k(w) is an elementary solutions of the operator

Lk = Lk1L
k
2 = Lk2L

k
1, denoted by

(18) Lk =

( p∑
i=1

∂2

∂x2i

)2

−

(
p+q∑
j=p+1

∂2

∂x2j

)2
k ,

where T2k(z) and S2k(w) are defined by equation (14) and (15), respectively, with γ =

ν = 2k. The operator Lk1 and Lk2 are defined by equation (3) and (4), respectively.

Proof. We need to show that Lk1[(−1)k(i)
q
2T2k(z)] = δ and

Lk2[(−1)k(−i)
q
2S2k(w)] = δ. At first we have to show that

(19) Lk1Tν(z) = (−1)kTν−2k(z), Lk2Sγ(w) = (−1)kSγ−2k(w)

and also

(20) T−2k(z) = (−1)k(−i)
q
2Lk1δ, S−2k(w) = (−1)k(i)

q
2Lk2δ.
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Now for k = 1,

L1Tν(z) =

(
p∑
i=1

∂2

∂x2i
− i

p+q∑
j=p+1

∂2

∂x2j

)
Tν(z)

= 2−νπ
−n
2

Γ(n−ν
2

)

Γ(ν
2
)

(ν − n)(ν − 2)z
ν−2−n

2

= (−1)2−ν−2
Γ(n−ν−2

2
)

Γ(ν−2
2

)
z
ν−2−n

2

= −Tν−2(z).

By repeating k−times in operating L1 to Tν(z), we obtain Lk1Tν(z) = (−1)kTν−2k(z).

Similarly, Lk2Sγ(w) = (−1)kSγ−2k(w).

Now consider

z = x21 + x22 + ...+ x2p + i
(
x2p+1 + x2p+2 + ...+ x2p+q

)
, p+ q = n

by changing the variable

x1 = y1, x2 = y2, ..., xp = yp,

xp+1 =
yp+1√

i
+ xp+2 =

yp+2√
i
, ..., xp+q =

yp+q√
i
.

Thus we have z = y21 + y22 + ...+ y2p + y2p+1 + y2p+2 + ...+ y2p+q.

Denote z = r2 = y21 + y22 + ...+ y2n and consider the generalized function zλ = r2λ where λ

is any complex number. Now
〈
zλ, ϕ

〉
=
∫
Rn
zλϕ(x)dx, where ϕ ∈ D the space of infinitely

differentiable functions with compact supports. Thus〈
zλ, ϕ

〉
=

∫
Rn
r2λϕ

∂(x1, x2, . . . , xn)

∂(y1, y2, . . . , yn)
dy1dy2 · · · dyn

=
1

(i)q/2

∫
Rn
r2λϕdy

=
1

(i)q/2
〈
r2λ, ϕ

〉
.

By Gelfand and Shilov [3, p.271], the function r2λ have simple poles at λ = (−n/2)− k, k

is nonnegative and for k = 0 we can find the residue of r2λ at λ = −n/2 and by [3, p.73],

we obtain

res
λ=−n

2

(r2λ) =
2π

n
2

Γ(n
2
)
δ(x).
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Thus

(21) res
λ=−n

2

(zλ) = (−i)
q
2

2π
n
2

Γ(n
2
)
δ(x).

We next find the residues of zλ at λ = (−n/2)− k. Now, by computing directly we have

L1z
λ+1 = 2(λ+ 1)(2λ+ n)zλ.

By k− fold iteration, we obtain

Lk1z
λ+k = 4k (λ+ 1)(λ+ 2) · · · (λ+ k)

(
λ+ n

2

)
×(

λ+ n
2

+ 1
)
· · ·
(
λ+ n

2
+ k − 1

)
zλ

or

zλ =
1

4k(λ+ 1)(λ+ 2) · · · (λ+ k)
×

1(
λ+ n

2

) (
λ+ n

2
+ 1
)
· · ·
(
λ+ n

2
+ k − 1

)Lk1zλ+k.
Thus

res
λ=−n

2
−k

(zλ) =
1

4kk
(
n
2

+ k − 1
) (

n
2

+ k − 2
)
· · ·
(
n
2

) res
λ=−n

2

Lk1z
λ+k.

By (21) and the properties of Gamma functions, we obtain

(22) res
λ=−n

2
−k

(zλ) = (−i)q/2
2π

n
2

4kΓ(n
2

+ k)
Lk1δ(x).

Now we consider T−2k(z) we have

T−2k(z) = lim
ν→−2k

T (z)

= π−
n
2

lim
ν→−2k

z(ν−n)/2

lim
ν→−2k

Γ(ν
2
)

lim
ν→−2k

2−νΓ

(
n− ν

2

)

= π−
n
2

lim
ν→−2k

(ν + 2k)z(ν−n)/2

lim
ν→−2k

Γ(ν + 2k)(ν
2
)

lim
ν→−2k

22kΓ

(
n+ 2k

2

)

= 4kπ−
n
2

res
ν=−2k

z(ν−n)/2

res
ν=−2k

Γ(ν
2
)

Γ

(
n+ 2k

2

)
.
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Since res
λ=−n

2
−k
zλ = res

ν=−2k
z(ν−n)/2 and res

ν=−2k
Γ(ν

2
) = 2(−1)k

k!
, by (22) and the properties of

Gamma function we obtain

T−2k(z) = (−1)k(−i)
q
2Lk1δ(x).

Similarly

S−2k(w) = (−1)k(i)
q
2Lk2δ(x).

Thus we have

(23) T0(z) = (−i)
q
2 δ(x) , S0(w) = (i)

q
2 δ(x).

Now, from (19) Lk1T2k(z) = (−1)kT0(z) for ν = 2k. Thus by (23) we obtain Lk1(−1)k(i)
q
2T2k(z) =

δ(x). It follows that (−1)k(i)
q
2T2k(z) is an elementary solution of the operator Lk1. Simi-

larly

(−1)k(−i)
q
2S2k(w) is also an elementary solution of the operator Lk2. Thus we have

Lk(T2k(z) ∗ S2k(w)) = Lk2(−1)k(i)
q
2T2k(z) ∗ Lk1(−1)k(−i)

q
2S2k(w) = δ.

Lemma 2.4. Given the equation

(24) 4u(x) = f(x, u(x)),

where f is defined and has continuous first derivatives for all x ∈ Ω ∪ ∂Ω,Ω is an open

subset of Rn and ∂Ω denotes the boundary of Ω. Assume f is a bounded, that is |f(x, u)| ≤

N and the boundary condition u(x) = 0 for x ∈ ∂Ω. Then we obtain u(x) as a uniqe

solution of (24).

Proof. We can prove this lemma by the method of iterations and the Schauder’s esti-

mates, see [1, pp. 369-372].

3. Main results

Theorem 3.1. Given the nonlinear equation

(25) ⊕ku(x) = f(x,4k−1�kLku(x)),
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where ⊕k is the operator iterated k times, defined by (1), 4k−1 is the Laplacian iterated

k − 1 times defined by (6) and �k is the ultrahyperbolic operator iterated k times defined

by (5). Let f be defined and have continuous first derivatives for all x ∈ Ω ∪ ∂Ω,Ω is an

open subset of Rn and ∂Ω denotes the boundary of Ω and n is even with n ≥ 4. Let f be

a bounded function, that is

(26) |f(x,4k−1�kLku(x))| ≤ N

and the boundary condition

(27) 4k−1�kLku(x) = 0, for x ∈ ∂Ω;

then we obtain

(28) u(x) = (−1)k−1Re
2(k−1)(x) ∗RH

2k(v) ∗ S2k(w) ∗ T2k(z) ∗W (x)

as a solution of (25) with the boundary condition

u(x) = S2k(w) ∗ T2k(z) ∗RH
2k(v) ∗ (−1)k−2(Re

2(k−2)(x))(m)

for x ∈ ∂Ω,m = (n − 4)/2, k = 2, 3, 4, . . . and v is given by (8), W (x) is a continuous

function for x ∈ Ω ∪ ∂Ω, Re
2(k−2)(x) and RH

2k(v) are given by (11) and (9), respectively,

with β = 2(k − 2)and α = 2k. Moreover, for q = 0 then (25) becomes

(29) 44k
p u(x) = f(x,44k−1u(x)),

with boundary condition

(30) 44k−1u(x) = 0, for x ∈ ∂Ω,

where 44k
p is the Laplacian of p-dimension iterated 4k-times. we have

(31) u(x) = (−1)k−1Re
2(k−1)(x) ∗Re

6k(x) ∗W (x)

as a solution of (29) where |x| = x21 + x22 + ...+ x2p.

Proof. From equation (25), we have

(32) ⊕ku(x) = 4(4k−1�kLku(x)) = f(x,4k−1�kLku(x)).
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Since u(x) has continuous derivatives up to order 4k for k = 1, 2, 3, . . . we can assume

(33) 4k−1�kLku(x) = W (x), for x ∈ ∂Ω.

Thus, (32) can be written in the form

(34) ⊕ku(x) = 4W (x) = f(x,W (x)),

by (26)

(35) |f(x,W (x))| ≤ N,

and by (27), W (x)=0 or

(36) 4k−1�kLku(x) = 0, for x ∈ ∂Ω.

Thus by Lemma 2.4 there exist a unique solution W (x) of (34) which satisfies (35). Now

consider (33), we have4k−1(−1)k−1Re
2(k−1)(x) = δ and �kRH

2k(v) = δ where δ is the Dirac-

delta distribution, that is RH
2k(v) and (−1)k−1Re

2(k−1)(x) are the elementary solutions of

the operators �k and 4k−1, respectively, see[8, p.11] and see[2, p.118]. The functions

RH
2k(v) and Re

2(k−1)(x) are defined by (9) and (11), respectively, with β = 2(k−1), α = 2k.

And by Lemma 2.3, the function T2k(z)∗S2k(w) is an elementary solutions of the operator

Lk, are defined by equation (14) and (15), respectively, with γ = ν = 2k. Thus, convolving

both sides of (33) by

(−1)k−1Re
2(k−1)(x) ∗RH

2k(v) ∗ T2k(z) ∗ S2k(w),

we obtain

[(−1)k−1Re
2(k−1)(x) ∗RH

2k(v) ∗ T2k(z) ∗ S2k(w)] ∗ 4k−1�kLku(x)

= [(−1)k−1Re
2(k−1)(x) ∗RH

2k(v) ∗ T2k(z) ∗ S2k(w)] ∗W (x).



CIRCLE PLUS OPERATOR 205

By properties of convolution, we obtain

[4k−1(−1)k−1Re
2(k−1)(x)] ∗ [�kRH

2k(v)] ∗ [LkT2k(z) ∗ S2k(w)] ∗ u(x) =

[(−1)k−1Re
2(k−1)(x) ∗RH

2k(v) ∗ T2k(z) ∗ S2k(w)] ∗W (x),

δ ∗ δ ∗ δ ∗ u(x) =

[(−1)k−1Re
2(k−1)(x) ∗RH

2k(v) ∗ T2k(z) ∗ S2k(w)] ∗W (x).

Thus

(37) u(x) = (−1)k−1Re
2(k−1)(x) ∗RH

2k(v) ∗ T2k(z) ∗ S2k(w) ∗W (x)

as required. Consider 4k−1�kLku(x) = 0, for x ∈ ∂Ω. By Lemma 2.1, we have

�kLku(x) = (−1)k−2(Re
2(k−2)(x))(m).

Convolving both sides of the above equation by RH
2k(v) ∗ T2k(z) ∗ S2k(w), we obtain

RH
2k(v) ∗ T2k(z) ∗ S2k(w) ∗�kLku(x)

= RH
2k(v) ∗ T2k(z) ∗ S2k(w) ∗ (−1)k−2(Re

2(k−2)(x))(m),

[�kRH
2k(v)] ∗ [Lk ∗ T2k(z)S2k(w)] ∗ u(x)

= RH
2k(v) ∗ T2k(z) ∗ S2k(w) ∗ (−1)k−2(Re

2(k−2)(x))(m),

δ ∗ δ ∗ u(x)

= RH
2k(v) ∗ T2k(z) ∗ S2k(w) ∗ (−1)k−2(Re

2(k−2)(x))(m),

u(x) = RH
2k(v) ∗ T2k(z) ∗ S2k(w) ∗ (−1)k−2(Re

2(k−2)(x))(m),

for x ∈ ∂Ω and k = 2, 3, 4, . . ..

Moreover, for q = 0 then (25) becomes

(38) 44k
p u(x) = f(x,44k−1u(x)),

with boundary condition

44k−1u(x) = 0, for x ∈ ∂Ω,
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where 44k
p is the Laplacian of p-dimension iterated 4k-times. we have

(39) u(x) = (−1)k−1Re
2(k−1)(x) ∗Re

6k(x) ∗W (x)

as a solution of (38) where |x| = x21 + x22 + ...+ x2p.

On the other hand, we can also find (39) from (37), since q = 0, we have RH
2k(v) reduces

to Re
2(k)(x), S2k(w) reduces to Re

2(k)(x) and T2k(z) reduces to Re
2(k)(x), where |x| = x21 +

x22 + ...+ x2p.

Thus, by (37) for q = 0, we obtain

u(x) = (−1)k−1Re
2(k−1)(x) ∗Re

2k(x) ∗Re
2k(x) ∗Re

2k(x) ∗W (x)

= (−1)k−1Re
2(k−1)(x) ∗Re

2k+2k+2k(x) ∗W (x)

= (−1)k−1Re
2(k−1)(x) ∗Re

6k(x) ∗W (x).

This completes the proof. �
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