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1. INTRODUCTION

Since 1922, when the Polish mathematician Banach presented his theorem known as the

Banach Contraction Principle (see [6]), the fixed point theorems have witnessed rapid and sig-

nificant development Bakhtin [7] or Czerwik, Stefan [8] in many fields. Studies of the fixed

point theorems have developed with the introduction of many generalized metric space such as

b-metric space and F -metric space, which was introduced by Jalili and Samet [4] in (2018). For
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more details see ([2], [3], [4], [9]) etc. On the other hand several researchers stated various con-

traction conditions for the fixed point theorem, like convex contraction , F-contraction,(α−ψ)-

contraction, (αθ −ψ)- contraction ([1], [5], [15], [16], [17], [18]) etc.

2. PRELIMINARIES

We will first start by providing a definition of the set F (see Jleli [4]).

Definition 1.[4]. Consider the family F consisting of each function f from (0,+∞) to R,

such that:

(F1) 0 < s< c implies f(s)≤ f(c), this means f is non decreasing .

(F2) for all a sequence {cn} ⊂ (0,+∞), we have

lim
n→+∞

cn = 0 i f and only i f lim
n→+∞

f(cn) =−∞.

Now the generalized definition of metric space is as follows:

Definition 2.[4]. Let Z be a set that is not empty, and let the function ρ : Z×Z→ [0,∞) be a

given. Assume that ∃ (f,γ) ∈F × [0,∞), such that,

(D1) (κ, κ̃) ∈ Z×Z, ρ(κ, κ̃) = 0 if and only if κ = κ̃ .

(D2) ρ(κ, κ̃) = ρ(κ̃,κ) for all (κ, κ̃) ∈ Z×Z.

(D3) For every (κ, κ̃) ∈ Z × Z, ∀ N in N and N ≥ 2, and also for each (v j)
N
j=1 ⊂ Z with

(v1,vN) = (κ, κ̃), we have

ρ(κ, κ̃)> 0⇒ f(ρ(κ, κ̃))≤ f
(N−1

∑
j=1

ρ(v j,v j+1)
)
+ γ.

Then we say that ρ is an F -metric on Z, and (Z,ρ) is called F -metric space.

Example 1.[4] Let Z = N, and let ρ : Z×Z→ [0,∞) be the mapping define by

ρ(κ, κ̃) =


0 i f κ = κ̃

e|κ−κ̃| i f κ 6= κ̃
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for all (κ, κ̃) ∈ Z×Z. Then ρ is an F -metric on Z with f (c) = −1
c , c> 0 and γ = 1.

Definition 3. [4]: Let (Z,ρ) be an F -metric space.

1. We can say that the sequence {κn} ⊂ Z is F -convergent to κ if :

lim
n→∞

ρ(κn,κ) = 0,

2. we say that {κn} is F -Cauchy if:

lim
n,m→+∞

ρ(κn,κm) = 0,

3. also we say that (Z,ρ) is F -complete, if each F -Cauchy sequence in Z is F -convergent to

a certain element in Z.

Let Ψ the family consisting of all nondecreasing functions ψ from [0,∞) to [0,∞) such that
∞

∑
n=1

ψn(κ) < ∞ for all κ > 0, where ψn is the n-th iterate of ψ . Also ψ(κ) < κ, ∀ κ > 0 and

ψ(κ) = 0⇐⇒ κ = 0.

The concept of α −ψ-contractions and α-admissible mapping was introduced by, Samet et

al, in 2012.[13] They defined the notion of α-admissible mappings as follows:

Definition 4.[13] Let H : Z → Z and α : Z×Z → [0,∞). be a mapping. Then H is called

α-admissible mapping if :

α(κ, κ̃)≥ 1⇒ α(Hκ,Hκ̃)≥ 1,

∀ κ, κ̃ ∈ Z.

The extended concept of α-admissible mapping introduced by Hussain et al. [12] As follows:
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Definition 5.[12] Let H : Z→ Z and α, θ : Z×Z→ [0,∞). Then H is called α-admissible

mapping with respect to θ if:

α(κ, κ̃)≥ θ(κ, κ̃)⇒ α(Hκ,Hκ̃)≥ θ(Hκ,Hκ̃),

∀ κ, κ̃ ∈ Z.

In 2020 Al-Mezel et al [1]. introduced definition of generalized (αθ −ψ)-contraction in

F -metric spaces and established fixed point theorem for such mappings in F -metric spaces.

In this section, we define the concept of generalized (αθ−ψ)-rational contraction and establish

a new fixed point theorem in the context of F -metric spaces.

3. MAIN RESULTS

Definition 6. : Let (Z,ρ) be an F -metric space and H : Z → Z. Then H is said to be

generalized (αθ−ψ)- rational contraction if there exists α , θ : Z×Z→ [0,∞) and ψ ∈Ψ such

that

α(κ,Hκ)α(κ̃,Hκ̃)≥ θ(κ,Hκ)θ(κ̃,Hκ̃)

implies

(1) ρ(Hκ,Hκ̃)≤ ψ

(
max

{
ρ(κ, κ̃),min

{ρ(κ,Hκ)ρ(κ̃,Hκ̃)

1+ρ(κ, κ̃)
,
ρ(κ̃,Hκ̃)[1+ρ(κ,Hκ)]

1+ρ(κ, κ̃)
}
})

∀κ ,κ̃ ∈ Z.

Theorem 1. : Let (Z,ρ) be an F -complete F -metric space and H : Z→ Z be a generalized

(αθ −ψ)- rational contraction such that H satisfies the condition in definition 5, and suppose

that:

(i) ∃ κ0 ∈ Z such that α(κ0,Hκ0)≥ θ(κ0,Hκ0).

(ii) If {κn} is a sequence in Z such that κn → κ , α(κn,κn+1) ≥ θ(κn,κn+1) ∀n ∈ N, then

α(κ,Hκ)≥ θ(κ,Hκ). Then H has a unique fixed point κ∗ ∈ Z.
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Proof: Define {κn} in Z by κn+1 = Hnκ0 = Hκn, ∀n∈N. And let κ0 ∈ Z such that (i) is hold

. Since H satisfies the condition in definition 5, then we have:

α(κ0,κ1) = α(κ0,Hκ0)≥ θ(κ0,Hκ0) = θ(κ0,κ1).

Continuing in this way, we get

(2) α(κn−1,κn) = α(κn−1,Hκn−1)≥ θ(κn−1,Hκn−1) = θ(κn−1,κn),

and

(3) α(κn,κn+1) = α(κn,Hκn)≥ θ(κn,Hκn) = θ(κn,κn+1).

from (2)and (3) we get

(4) α(κn−1,Hκn−1)α(κn,Hκn)≥ θ(κn−1,Hκn−1)θ(κn,Hκn)

∀n ∈ N. Now if there is natural number n0, κn0+1 = κn0 , then Hκn0 = κn0 and hence κn0 is a

fixed point of H. In this case, the proof is finished. Suppose that κn+1 6= κn ∀n ∈ N, and let

f ∈F , γ ∈ [0,∞) be such that (D3) is satisfied.

Let ε > 0 then by (F2) there exists δ > 0 such that,

(5) 0 < c< δ ⇒ f(c)< f(ε)− γ.

Now by (1) we have:

ρ(κn,κn+1) = ρ(Hκn−1,Hκn)

≤ ψ

(
max

{
ρ(κn−1,κn),

min
{ρ(κn−1,Hκn−1)ρ(κn,Hκn)

1+ρ(κn−1,κn)
,
ρ(κn,Hκn)[1+ρ(κn−1,Hκn−1)]

1+ρ(κn−1,κn)
}
})

≤ ψ

(
max

{
ρ(κn−1,κn),

min
{ρ(κn−1,κn)ρ(κn,κn+1)

1+ρ(κn−1,κn)
,
ρ(κn,κn+1)[1+ρ(κn−1,κn)]

1+ρ(κn−1,κn)
}
})

≤ ψ

(
max

{
ρ(κn−1,κn),min

{
ρ(κn,κn+1),ρ(κn,κn+1)}

})
≤ ψ

(
max

{
ρ(κn−1,κn),ρ(κn,κn+1)

})
.
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Now if max
{

ρ(κn−1,κn),ρ(κn,κn+1)
}
= ρ(κn,κn+1) then ρ(κn,κn+1) ≤ ψ(ρ(κn,κn+1)) <

ρ(κn,κn+1) which is a contradiction, and hence max
{

ρ(κn−1,κn),ρ(κn,κn+1)
}
= ρ(κn−1,κn),

then we get:

(6) ρ(κn,κn+1)≤ ψ(ρ(κn−1,κn))≤ ψ(ψ(ρ(κn−2,κn−1))≤ ...≤ ψ
n(ρ(κ0,κ1)).

Let n(ε) ∈ N such that 0 < ∑n≥n(ε)ψn(ρ(κ0,κ1))< δ . By (5),(6) and (F1) we get:

(7) f
(m−1

∑
j=n

σ(κ j,κ j+1)
)
≤ f
(m−1

∑
j=n

ψ
j(ρ(κ0,κ1))

)
≤ f
(

∑
n≥n(ε)

ψ
n(ρ(κ0,κ1))

)
< f(ε)− γ,

for m> n≥ n(ε) with ρ(κn,κm)> 0. Using (D3) and (7) we obtain:

f(ρ(κn,κm))≤ f
(m−1

∑
j=n

ρ(κ j,κ j+1)
)
+ γ < f(ε).

By (F1) we get ρ(κn,κm) < ε . This means {κn} is F -Cauchy sequence, and since (Z,ρ) is

F -complete, then there exists κ∗ ∈ Z such that

(8) lim
n→∞

ρ(κn,κ
∗) = 0.

Since κn→ κ∗ and α(κn,κn+1)≥ θ(κn,κn+1), then by (ii) α(κ∗,Hκ∗)≥ θ(κ∗,Hκ∗). Thus

(9) α(κ∗,Hκ
∗)α(κn,Hκn)≥ θ(κ∗,Hκ

∗)θ(κn,Hκn).

Now we prove that κ∗ is a fixed point of H. Suppose that ρ(Hκ∗,κ∗)> 0 then by (D3) we have

f(ρ(Hκ
∗,κ∗))≤ f(ρ(Hκ

∗,Hκn)+ρ(Hκn,κ
∗))+ γ ∀n ∈ N.

Using (1) we get
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f(ρ(Hκ∗,κ∗))

≤ f
(

ψ

(
max

{
ρ(κ∗,κn),min

{ρ(κ∗,Hκ∗)ρ(κn,Hκn)

1+ρ(κ∗,κn)
,
ρ(κn,Hκn)[1+ρ(κ∗,Hκ∗)]

1+ρ(κ∗,κn)
}
})

+ρ(Hκn,κ
∗)
)
+ γ

≤ f
(

ψ

(
max

{
ρ(κ∗,κn),min

{ρ(κ∗,Hκ∗)ρ(κn,κn+1)

1+ρ(κ∗,κn)
,
ρ(κn,κn+1)[1+ρ(κ∗,Hκ∗)]

1+ρ(κ∗,κn)
}
})

+ρ(κn+1,κ
∗)
)
+ γ

< f
(

max
{

ρ(κ∗,κn),min
{ρ(κ∗,Hκ∗)ρ(κn,κn+1)

1+ρ(κ∗,κn)
,
ρ(κn,κn+1)[1+ρ(κ∗,Hκ∗)]

1+ρ(κ∗,κn)
}
}

+ρ(κn+1,κ
∗)
)
+ γ.

Now either (a)

min
{ρ(κ∗,Hκ∗)ρ(κn,κn+1)

1+ρ(κ∗,κn)
,
ρ(κn,κn+1)[1+ρ(κ∗,Hκ∗)]

1+ρ(κ∗,κn)
}= ρ(κ∗,Hκ∗)ρ(κn,κn+1)

1+ρ(κ∗,κn)
.

Or (b)

min
{ρ(κ∗,Hκ∗)ρ(κn,κn+1)

1+ρ(κ∗,κn)
,
ρ(κn,κn+1)[1+ρ(κ∗,Hκ∗)]

1+ρ(κ∗,κn)
}= ρ(κn,κn+1)[1+ρ(κ∗,Hκ∗)]

1+ρ(κ∗,κn)
.

If (a) satisfies, then

f(ρ(Hκ
∗,κ∗))< f

(
max

{
ρ(κ∗,κn),

ρ(κ∗,Hκ∗)ρ(κn,κn+1)

1+ρ(κ∗,κn)

}
+ρ(κn+1,κ

∗)
)
+ γ.

In this case if

max
{

ρ(κ∗,κn),
ρ(κ∗,Hκ∗)ρ(κn,κn+1)

1+ρ(κ∗,κn)

}
= ρ(κ∗,κn),

then

f(ρ(Hκ
∗,κ∗))< f

(
ρ(κ∗,κn)+ρ(κn+1,κ

∗)
)
+ γ.

Taking the limit and by (8) and (F2) we get,

lim
n→∞

f(ρ(Hκ
∗,κ∗))≤ lim

n→∞
f
(

ρ(κ∗,κn)+ρ(κn+1,κ
∗)
)
+ γ =−∞.

Which is a contradiction, and hence ρ(Hκ∗,κ∗) = 0 . And if

max
{

ρ(κ∗,κn),
ρ(κ∗,Hκ∗)ρ(κn,κn+1)

1+ρ(κ∗,κn)

}
=

ρ(κ∗,Hκ∗)ρ(κn,κn+1)

1+ρ(κ∗,κn)
,
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then

f(ρ(Hκ
∗,κ∗))< f

(
ρ(κ∗,Hκ∗)ρ(κn,κn+1)

1+ρ(κ∗,κn)
+ρ(κn+1,κ

∗)
)
+ γ.

Also taking the limit and by (8) and (F2) we get

lim
n→∞

f(ρ(Hκ
∗,κ∗))≤ lim

n→∞
f
(

ρ(κ∗,Hκ∗)ρ(κn,κn+1)

1+ρ(κ∗,κn)
+ρ(κn+1,κ

∗)
)
+ γ =−∞.

Also which is a contradiction, and hence ρ(Hκ∗,κ∗) = 0. Through applying the same steps

in (b) we get ρ(Hκ∗,κ∗) = 0 i.e. Hκ∗ = κ∗. Now we prove that κ∗ is a unique fixed point

of H, so suppose that H has another fixed point ζ ∗ such that Hζ ∗ = ζ ∗. Since κn → κ∗ and

α(κn,κn+1)≥ θ(κn,κn+1) then

(10) α(κ∗,Hκ
∗)≥ θ(κ∗,Hκ

∗).

And ζn→ ζ ∗ and α(ζn,ζn+1)≥ θ(ζn,ζn+1) then

(11) α(ζ ∗,Hζ
∗)≥ θ(ζ ∗,Hζ

∗).

By (10) and (11) for κ∗,ζ ∗ ∈ Z we have,

(12) α(κ∗,Hκ
∗)θ(ζ ∗,Hζ

∗)≥ θ(κ∗,Hκ
∗)θ(ζ ∗,Hζ

∗).

Using (1) we get

ρ(κ∗,ζ ∗) = ρ(Hκ
∗,Hζ

∗)

≤ ψ

(
max

{
ρ(κ∗,ζ ∗),

min
{ρ(κ∗,Hκ∗)ρ(ζ ∗,Hζ ∗)

1+ρ(κ∗,ζ ∗)
,
ρ(ζ ∗,Hζ ∗)[1+ρ(κ∗,Hκ∗)]

1+ρ(κ∗,ζ ∗)
}
})

,

⇒ ρ(κ∗,ζ ∗) ≤ ψ(ρ(κ∗,ζ ∗)) < ρ(κ∗,ζ ∗), which is a contradiction. Hence H has unique

fixed point in Z.

Example 2. Let Z = R and ρ be an F -metric given in example 1. Define H : Z→ Z by

Hκ =


4κ, i f κ > 0

κ

4 , i f 0≤ κ ≤ 1

0, otherwise.
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And define α,θ : Z×Z→ [0,∞) by

α(κ, κ̃) = θ(κ, κ̃)


1, i f κ, κ̃ ∈ [0,1]

0, otherwise.

Then H is generalized (αθ −ψ)- rational contraction mapping with ψ(c) = kc, ∀c ≥ 0 and

k ∈ (0,1) that is

ρ(Hκ,Hκ̃)≤ k
(

max
{

ρ(κ, κ̃),min
{ρ(κ,Hκ)ρ(κ̃,Hκ̃)

1+ρ(κ, κ̃)
,
ρ(κ̃,Hκ̃)[1+ρ(κ,Hκ)]

1+ρ(κ, κ̃)
}
})

.

All the condition of theorem 1 are satisfied, and hence H has unique fixed point 0 ∈ Z.

4. APPLICATION

We will using the theorem (1) to prove that there exists a solution to the following differential

equations. And also we will prove that this solution is unique.

(13) z′(`) =−a(`)z(`)+b(`)ℑ(z(`− ς(`)))+ c(`)z′(`− ς(`)),

where a(`), b(`) are continuous, c(`) is continuously differentiable and ς(`) > 0 for all ` ∈ R

and is twice continuously differentiable. For more information in this direction, (see[10]-[11]).

Lemma 1.[14]. Suppose that ς ′(`) 6= 1 for all ` ∈ R. Then z(`) is a solution of (13) if and

only if

z(`) =
(

z(0)− c(0)
1− ς ′(0)

z(−ς(0))
)

e
−
∫̀
0

a(s)ds
+

c(`)
1− ς ′(`)

z(`− ς(`))

−
`∫

0

(h(v)z(v− ς(v)))−b(v)ℑ(z(v− ς(v)))e
−
∫̀
0

a(s)ds
dv,(14)

where

(15) h(v) =
ς ′′(v)c(v)+(c′(v)+ c(v)a(v))(1− ς ′(v))

(1− ς ′(v))2 .

Now let ξ : (−∞,0]→ R be given continuous bounded initial function.Then z(`) = z(`,0,ξ ) is

a solution of (13) if z(`) = ξ (`) for ` ≤ 0 and satisfies (13) for ` ≥ 0. Let C be the space
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consisting of all continuous functions ν from R to R. Now we will define the following set

(16) Zξ = {ν : R→ R, ν(`) = ξ (`) i f `≤ 0, ν(`)→ 0 as `→ ∞, ν ∈ C }.

Then Zξ is a Banach space equipped with the supremum norm ‖ . ‖.

Lemma 2. :[5] The Banach space (Zξ ,‖ . ‖) endowed with the metric ρ defined by

ρ(`,`∗) =‖ `− `∗ ‖= sup | `(z)− `∗(z) |, where `,`∗ ∈ Zξ , is an F -metric space.

Theorem 2 : Let H : Zξ → Zξ be a mapping defined by

(Hν)(`) =
(

ν(0)− c(0)
1− ς ′(0)

ν(−ς(0))
)

e
−
∫̀
0

a(s)ds
+

c(`)
1− ς ′(`)

ν(`− ς(`))

−
`∫

0

(h(v)ν(v− ς(v)))−b(v)ℑ(ν(v− ς(v)))e
−
∫̀
v

a(s)ds
dv,(17)

∀ ν ∈ Zξ . Suppose that these assertions are satisfied:

(i) there exists µ ≥ 0 and ψ ∈Ψ such that

`∫
0

| (h(v)ν(v− ς(v)))−κ(v− ς(v)) | e
−
∫̀
v

a(s)ds
dv

(18) ≤ µ

2
ψ

(
max

{
‖ν−κ‖,min{‖ν−Hν‖‖κ−Hκ‖

1+‖ν−κ‖
,
‖κ−Hκ‖[1+‖ν−Hν‖]

1+‖ν−κ‖
}
})

and
`∫

0

| (b(v)ℑ(ν(v− ς(v)))−ℑ(κ(v− ς(v))) | e
−
∫̀
v

a(s)ds
dv

(19) ≤ µ

2
ψ

(
max

{
‖ν−κ‖,min{‖ν−Hν‖‖κ−Hκ‖

1+‖ν−κ‖
,
‖κ−Hκ‖[1+‖ν−Hν‖]

1+‖ν−κ‖
}
})

∀ ν ,κ ∈ Zξ .

(ii)

(20)
∣∣∣ c(`)
1− ς ′(`)

∣∣∣+ µ ≤ 1, `≥ 0.
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Then H has unique fixed point in Zξ .

Proof: Define α,θ : C ×C → R by

α(ν ,κ) = θ(ν ,κ) =


1, i f ν ,κ ∈ Zξ

0, otherwise.

Next for ν ,κ ∈ Zξ such that α(ν ,κ) = θ(ν ,κ) ≥ 1. It follows from (17) that Hν , Hκ ∈ Zξ

and hence α(Hν ,Hκ) = θ(Hν ,Hκ)≥ 1. As (18)-(20) hold, then for ν ,κ ∈ Zξ , we have

| (Hν)(`)− (Hκ)(`) |≤
∣∣∣ c(`)

1−ς ′(`)

∣∣∣‖ν−κ‖

+

`∫
0

| (h(v)ν(v− ς(v)))−κ(v− ς(v)) | e
−
∫̀
v

a(s)ds
dv

+

`∫
0

| (b(v)ℑ(ν(v− ς(v)))−ℑ(κ(v− ς(v))) | e
−
∫̀
v

a(s)ds
dv

≤
∣∣∣ c(`)
1− ς ′(`)

∣∣∣‖ν−κ‖+µψ

(
max

{
‖ν−κ‖,min{‖ν−Hν‖‖κ−Hκ‖

1+‖ν−κ‖
,
‖κ−Hκ‖[1+‖ν−Hν‖]

1+‖ν−κ‖
}
})

≤

{∣∣∣ c(`)
1− ς ′(`)

∣∣∣+µ

}
ψ

(
max

{
‖ν−κ‖,min{‖ν−Hν‖‖κ−Hκ‖

1+‖ν−κ‖
,
‖κ−Hκ‖[1+‖ν−Hν‖]

1+‖ν−κ‖
}
})

≤ ψ

(
max

{
‖ν−κ‖,min{‖ν−Hν‖‖κ−Hκ‖

1+‖ν−κ‖
,
‖κ−Hκ‖[1+‖ν−Hν‖]

1+‖ν−κ‖
}
})

.

And hence

ρ(Hν ,Hκ)≤ ψ

(
max

{
ρ(ν ,κ),min

{ρ(ν ,Hν)ρ(κ,Hκ)

1+ρ(ν ,κ)
,
ρ(κ,Hκ)[1+ρ(ν ,Hν)]

1+ρ(ν ,κ)

}})
.

This means that H is generalized (αθ −ψ)- rational contraction. Thus by Theorem 1, H has a

unique fixed point in Zξ which solves (13).

5. CONCLUSIONS

In this paper we defined generalized (αθ −ψ)-rational contraction in F -metric space and

achieved novel fixed point results . And application of our findings, we looked into the exis-

tence of a solution for the nonlinear neutral differential equation with an unbounded delay and

provided that this solution is unique.
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