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1. INTRODUCTION AND BASIC NOTATIONS 

In what follows 𝑌  is a metric space with metric 𝑑 . Through the paper ℝ  is the real line. 

Furthermore ℤ, ℚ stand for the set of integers and rational numbers respectively, 𝜙 denotes the 

empty set and 𝑆(𝑥, 𝑟)  is the open sphere with centre 𝑥  and radius 𝑟 . For a subset 𝐴 ⊆ ℝ , 

𝑐𝑙(𝐴), 𝑖𝑛𝑡(𝐴) denote the closure and interior of 𝐴 respectively. For a function 𝑓: ℝ → 𝑌, 𝐺(𝑓) 

denotes the graph of 𝑓and then the symbol 𝑐𝑙(𝐺(𝑓) denotes the closure of 𝐺(𝑓)in the product 

topology ℝ × 𝑌𝑑(𝑌𝑑 being the topology on 𝑌 induced by  𝑑). 

The notion of graph continuity of real valued functions on the closed interval [0,1]  was 

introduced by Z. Grande [4]. K. Sakalava [11] also dealt with that notion. A function 𝑓: ℝ → 𝑌 is 
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said to be graph continuous [4] if there exists a continuous function 𝑔: ℝ → 𝑌 such that 𝐺(𝑔) ⊆

𝑐𝑙(𝐺(𝑓)). A. Mikuka [10] defined graph quasi-continuity and other types of continuity and 

studied its relation with graph continuity and other types of continuity. A function 𝑓: ℝ → 𝑌 is 

said to be graph quasi continuous [10] if there exists a quasi continuous function 𝑔: ℝ → 𝑌 such 

that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)). In [7], [8] a notion of graph cliquish functions and its relations with other 

types of generalized continuous functions  were investigated . A function  𝑓: ℝ → 𝑌 is said to be 

graph cliquish[7] if there exists a cliquish function 𝑔: ℝ → 𝑌such that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)).  

Recall that a function 𝑓: ℝ → 𝑌 is said to be : 

- Almost continuous (in the sense of Husain) at a point 𝑥 ∈ ℝ if for any neighbourhood 𝑉 

of 𝑓(𝑥), the set 𝑖𝑛𝑡(𝑐𝑙(𝑓−1(𝑉))) is a neighbourhood of 𝑥. [6] 

- Quasi continuous at a point 𝑥 ∈ ℝ  if for each open neighbourhood 𝑈  of 𝑥  and each 

neighbourhood 𝑉 of 𝑓(𝑥) there exists a non-empty open set 𝐺 ⊆ 𝑈 such that 𝑓(𝐺) ⊆ 𝑉. 

[9]  

- Cliquish at a point 𝑥 ∈ ℝ if for each 휀 > 0 and each open neighbourhood 𝑈 of 𝑥, there 

exists a non-empty open set 𝐺 ⊆ 𝑈 such that 𝑑(𝑓(𝑦), 𝑓(𝑧)) < 휀 whenever 𝑦, 𝑧 ∈ 𝐺.  [12] 

- Right-sidedly (left-sidedly) quasi-continuous at a point 𝑥 ∈ ℝ if for each 𝛿 > 0 and each 

open neighbourhood 𝑉 of 𝑓(𝑥), there is a non-empty open set 𝑈 ⊆ (𝑥, 𝑥 + 𝛿)(resp. 𝑈 ⊆

(𝑥 − 𝛿, 𝑥)) such that  𝑓(𝑈) ⊆ 𝑉. [1] 

- Right-sidedly (left-sidedly) cliquish at a point 𝑥 ∈ ℝ if for each 𝛿 > 0 and 휀 > 0 there is 

a non-empty open set 𝑈 ⊆ (𝑥, 𝑥 + 𝛿)(resp. 𝑈 ⊆ (𝑥 − 𝛿, 𝑥)) such that 𝑑(𝑓(𝑦), 𝑓(𝑧)) < 휀 

whenever 𝑦, 𝑧 ∈ 𝑈. [3] 

  𝑓 is called almost continuous (respectively quasi-continuous, cliquish, right(left)-sidedly quasi-

continuous, right(left)-sidedly cliquish) if it is so at each point. 

By 𝐴𝐸(𝑓), 𝐴+(𝑓), 𝐴−(𝑓)   we denote the sets of all points at which 𝑓 is almost continuous, right 

sidedly, left-sidedly cliquish respectively.  

Here we introduce the notion of one-sidedly graph cliquish functions as follows: 
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Definition 1.1: A function 𝑓: ℝ → 𝑌 is said to be right-sidedly (left-sidedly) graph cliquish if 

there exists a right –sidedly (respectively left-sidedly) cliquish function 𝑔: ℝ → 𝑌  such that 

𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)). 

 

2. ONE-SIDEDLY GRAPH CLIQUISH FUNCTIONS AND OTHER TYPES OF FUNCTIONS  

Evidently every right-sidedly (left-sidedly) cliquish function is right-sidedly (respectively left-

sidedly) graph cliquish. Also, every right-sidedly (left-sidedly) graph cliquish function with 

closed graph is right-sidedly (respectively left-sidedly) cliquish. 

The following implications follow from the above definitions: 

                         One-sidedly quasi-continuity⟹ One-sidedly cliquish 

                                           ⇓                                         ⇓                                    

Continuity         ⇒     Quasi-continuity        ⇒           Cliquish          

          ⇓                           ⇓                                   ⇓ 

Graph continuity   ⇒ Graph quasi-continuity    ⇒   Graph cliquish 

And all of these are not invertible. 

Example 2.1: Let 𝑓: ℝ → ℝ be defined by 

𝑓(𝑥) = {
1,            if     𝑥 ∈  ℚ
0,     if    𝑥 ∈  ℝ\ℚ

.  Here 𝑓 is right-sidedly (left-sidedly) graph cliquish but 𝑓is not 

cliquish. 

Example 2.2: Let 𝑓: ℝ → ℝ be defined by 

𝑓(𝑥) = {
1,   𝑥 < 1         
2,         𝑥 ≥ 1   

 

Here 𝑓 is right-sidedly (left-sidedly) graph cliquish. Also 𝑓is right-sidedly, left-sidedly cliquish. 

Example 2.3: Let 𝑋 be the space of real numbers with the discrete metric and 𝑓: 𝑋 → ℝ be 

defined by 𝑓(𝑥) = {
1,            if     𝑥 ∈  ℚ
0,           if    𝑥 ∉  ℚ

 

Here 𝑐𝑙(𝐺(𝑓)) = [𝑄 × {1}] ∪ [(𝑋\𝑄) × {0}]  



4                                                                               PIYALI MALLICK 

There is no one-sidedly cliquish function 𝑔: 𝑋 → ℝ such that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)) and so, 𝑓 is not 

one-sidedly graph cliquish. 

 

3. RESULTS ON ONE-SIDEDLY GRAPH CLIQUISH FUNCTIONS 

The following results, lemmas are known: 

Result 3.1: A function 𝑓: ℝ → 𝑌 is cliquish if and only if 𝐴+(𝑓) ∩ 𝐴−(𝑓) is dense in ℝ.[3] Using 

this result it easily follows that  

Result 3.2:  If a function 𝑓: ℝ → 𝑌  is right-sidedly (left-sidedly) cliquish then  𝐴−(𝑓) 

(respectively 𝐴+(𝑓)) is dense in ℝ. 

Result 3.3:  If 𝑓: ℝ → 𝑌  is almost continuous at a point 𝑥 ∈ ℝ  then there exists an open 

neighbourhood 𝑈 of 𝑥 such that 𝑓−1(𝑉) is dense in 𝑈 for any neighbourhood 𝑉 of 𝑓(𝑥).  

It easily follows from the definition of almost continuity. 

Lemma 3.1: Let 𝐴 ⊆ 𝑊 ⊆ ℝ. If 𝐴 is semi-open in ℝ then 𝐴 is semi-open in the subspace 𝑊. [6] 

Lemma 3.2: If a set 𝐴 is dense and semi-open in ℝ and a set 𝐵 is dense in ℝ then 𝐴⋂𝐵 is dense 

in ℝ. [10] 

Now we can formulate the following theorems on one-sidedly graph cliquish functions. 

Theorem 3.1: Let 𝑓: ℝ → 𝑌 be given. For a one-sidedly cliquish function 𝑔: ℝ → 𝑌 with 𝐺(𝑔) ⊆

𝑐𝑙(𝐺(𝑓)) the set 𝐴(𝑓, 𝑔, 휀) =  {𝑥 ∈ ℝ:   𝑑(𝑓(𝑥), 𝑔(𝑥)) < 휀} is dense for any 휀 > 0. 

Proof: Assume that 𝑔: ℝ → 𝑌 is right-sidedly cliquish.  

Let 휀 > 0 and 𝑈 be a non-empty open set in ℝ. By the Result 3.2, 𝐴−(𝑔) is dense in ℝ.  

Let 𝑥0 ∈ 𝑈 ∩ 𝐴−(𝑔) . 𝑥0 ∈ 𝑈 ⇒ ∃ 𝛿 > 0 such that (𝑥0−𝛿, 𝑥0 + 𝛿) ⊆ 𝑈. 

𝑥0 ∈ 𝐴−(𝑔)  ⇒ ∃  a non-empty open set 𝑈1 ⊆ (𝑥0−𝛿, 𝑥0)  such that 𝑑(𝑔(𝑥), 𝑔(𝑦)) < 휀 2⁄  

whenever 𝑥, 𝑦 ∈ 𝑈1. 

Let 𝑥1 ∈ 𝑈1. Then (𝑥1, 𝑔(𝑥1)) ∈ 𝑐𝑙(𝐺(𝑓)). 

So, [𝑈1 × 𝑆(𝑔(𝑥1), 휀 2⁄  )] ∩ 𝐺(𝑓) ≠ 𝜑. 

Choose 𝑥2 ∈ 𝑈1 such that 𝑑(𝑓(𝑥2), 𝑔(𝑥1)) < 휀 2⁄ .  

Now, 𝑑(𝑓(𝑥2), 𝑔(𝑥2)) ≤ 𝑑(𝑓(𝑥2), 𝑔(𝑥1)) + 𝑑(𝑔(𝑥1), 𝑔(𝑥2)) < 휀. 
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So, 𝑥2 ∈ 𝐴(𝑓, 𝑔, 휀). Hence, 𝐴(𝑓, 𝑔, 휀) is dense in ℝ. 

Remark 3.1: Let 𝑓: ℝ → 𝑌 be given and 𝑔: ℝ → 𝑌 be a one-sidedly cliquish function such that 

for any 휀 > 0 , the set 𝐴(𝑓, 𝑔, 휀) is dense in ℝ . Then it is not necessarily true that 𝐺(𝑔) ⊆

𝑐𝑙(𝐺(𝑓)). 

Example 3.1: Let 𝑌 be the space of real numbers with the discrete metric 𝑑. Let 𝑓: ℝ → 𝑌, 

𝑔: ℝ → 𝑌 be defined by  

𝑓(𝑥) = {

0,         𝑥 ∈ ℤ
−1,     𝑥 ∈ ℚ\ℤ

1, 𝑥 ∈ ℝ\ℚ
       and     𝑔(𝑥) = {

2, 𝑥 ∈ ℤ
1, 𝑥 ∈ ℝ\ℤ

            

𝑔 is left-sidedly as well as right-sidedly cliquish.  

Let 휀 > 0.  Then 𝐴(𝑓, 𝑔, 휀) = {𝑥 ∈ ℝ:   𝑑(𝑓(𝑥), 𝑔(𝑥)) < 휀} 

                                             = {
ℝ\ℚ,     0 < 휀 ≤ 1

ℝ,             휀 > 1 
 

𝐴(𝑓, 𝑔, 휀) is dense for any 휀 > 0. But 𝐺(𝑔) ⊈ 𝑐𝑙(𝐺(𝑓)). 

Theorem 3.2: Let 𝑓: ℝ → 𝑌 be given. For a one-sidedly cliquish function 𝑔: ℝ → 𝑌 with 𝐺(𝑔) ⊆

𝑐𝑙(𝐺(𝑓)) the set 𝐵(𝑓, 𝑔, 휀) = {𝑥 ∈ ℝ: 𝑑(𝑓(𝑥), 𝑔(𝑥)) ≥ 휀} is nowhere dense for any 휀 > 0. 

Proof: Let 휀 > 0 and 𝑈 be a non-empty open set in ℝ. Suppose that 𝑔: ℝ → 𝑌 is left-sidedly 

cliquish. Then by the Result 3.2, 𝐴+(𝑔) is dense in ℝ.  

Let 𝑥0 ∈ 𝑈 ∩ 𝐴+(𝑔).  

𝑥0 ∈ 𝑈 ⇒ ∃𝛿 > 0 such that (𝑥0 − 𝛿, 𝑥0 + 𝛿) ⊆ 𝑈. 

𝑥0 ∈ 𝐴+(𝑔)  ⇒ ∃  a non empty open set 𝑈1 ⊆ (𝑥0, 𝑥0 + 𝛿)  such that 𝑑(𝑔(𝑥), 𝑔(𝑦)) < 휀
3⁄  

whenever 𝑥, 𝑦 ∈ 𝑈1. 

By the Theorem 3.1, 𝐴(𝑓, 𝑔, 휀
3⁄ ) is dense in ℝ. 

Let 𝑥1 ∈ 𝑈1 ∩ 𝐴(𝑓, 𝑔, 휀
3⁄ ). Then 𝑥1 ∈ 𝑈1 and 𝑑(𝑓(𝑥1), 𝑔(𝑥1)) < 휀

3⁄ . 

Now, (𝑥1, 𝑔(𝑥1)) ∈ 𝑐𝑙(𝐺(𝑓). So, [𝑈1 × 𝑆(𝑓(𝑥1), 휀
3⁄ )] ∩ 𝐺(𝑓) ≠ 𝜑. 

Choose 𝑥2 ∈ 𝑈1 such that 𝑑(𝑓(𝑥2), 𝑓(𝑥1) ) < 휀
3⁄ .  

Now, 𝑑(𝑓(𝑥2), 𝑔(𝑥2)) ≤ 𝑑(𝑓(𝑥2), 𝑓(𝑥1)) + 𝑑(𝑓(𝑥1), 𝑔(𝑥1)) + 𝑑(𝑔(𝑥1), 𝑔(𝑥2) ) < 휀. 

So, 𝑥2 ∈ ℝ\ 𝐵(𝑓, 𝑔, 휀). Thus 𝐵(𝑓, 𝑔, 휀) is nowhere dense. 
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Corollary 3.1: Let 𝑓: ℝ → 𝑌  be given. For a one-sidedly cliquish function 𝑔: ℝ → 𝑌  with 

𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)) the set 𝐴(𝑓, 𝑔, 휀) is semi-open for any 휀 > 0. 

It follows from the result [2] that the complement of a nowhere dense set is semi-open.  

Theorem 3.3:  Let 𝑓: ℝ → 𝑌  be given. For a one-sidedly cliquish function 𝑔: ℝ →

𝑌 with 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)),  the set {𝑥 ∈ ℝ: 𝑓(𝑥) ≠ 𝑔(𝑥)} is of first category. 

Proof: {𝑥 ∈ ℝ: 𝑓(𝑥) ≠ 𝑔(𝑥)} = ⋃ 𝐵(𝑓, 𝑔,
1

𝑛
)∞

𝑛=1 .  

The set 𝐵(𝑓, 𝑔,
1

𝑛
) is nowhere dense by the Theorem 3.2 and so the proof is completed.  

Corollary 3.2: Let 𝑓: ℝ → 𝑌  be given. For a one-sidedly cliquish function 𝑔: ℝ →

𝑌 with 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)),  the set {𝑥 ∈ ℝ: 𝑓(𝑥) = 𝑔(𝑥)} is dense in ℝ.  

It follows from the fact that {𝑥 ∈ ℝ: 𝑓(𝑥) = 𝑔(𝑥)} = ℝ\{𝑥 ∈ ℝ: 𝑓(𝑥) ≠ 𝑔(𝑥)} is residual in ℝ.  

Theorem 3.4: Let 𝑓: ℝ → 𝑌 be given. For a right-sidedly (left-sidedly) cliquish function 𝑔: ℝ →

𝑌 if 𝐵(𝑓, 𝑔, 휀) is nowhere dense for any 휀 > 0 then 𝑓 is right-sidedly (respectively left-sidedlt) 

cliquish. 

Proof: Let 𝑔: ℝ → 𝑌 be left-sidedly cliquish. 

Let 𝑥0 ∈ ℝ, 𝛿 > 0 and 휀 > 0. Then there is a non-empty open set  𝑈 ⊆ (𝑥0 − 𝛿, 𝑥0) such that 

𝑑(𝑔(𝑥), 𝑔(𝑦) <
𝜀

3
  whenever 𝑥, 𝑦 ∈ 𝑈. 

Since 𝐵 (𝑓, 𝑔,
𝜀

3
  )  is nowhere dense, there is a non-empty open set 𝐺 ⊆ 𝑈  such that 𝐺 ∩

𝐵 (𝑓, 𝑔,
𝜀

3
  ) = 𝜑. 

Then 𝑑(𝑓(𝑥), 𝑔(𝑥) <
𝜀

3
  for all 𝑥 ∈ 𝐺. Let 𝑥, 𝑦 ∈ 𝐺. 

Then 𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑑(𝑓(𝑥), 𝑔(𝑥)) + 𝑑(𝑔(𝑥), 𝑔(𝑦)) + 𝑑(𝑔(𝑦), 𝑓(𝑦)) <
𝜀

3
+

𝜀

3
+

𝜀

3
= 휀. 

 So, 𝑓 is left-sidedly cliquish. 

Theorem 3.5: Let 𝑓: ℝ → 𝑌  be right-sidedly(left-sidedly) quasi-continuous and 𝑔: ℝ → 𝑌  be 

right-sidedly (respectively left-sidedly) cliquish such that 𝐺(𝑔) ⊆ 𝑐𝑙(𝐺(𝑓)). Then 𝑓(𝑥) = 𝑔(𝑥) 

for each 𝑥 ∈ 𝐴𝐸(𝑔). 
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Proof: Suppose that 𝑓: ℝ → 𝑌  be left-sidedly quasi-continuous and 𝑔: ℝ → 𝑌   be left-sidedly 

cliquish. If possible, let 𝑓(𝑥) ≠ 𝑔(𝑥) for some 𝑥 ∈ 𝐴𝐸(𝑔). 

Suppose 𝑟 = 𝑑(𝑓(𝑥), 𝑔(𝑥)). Then 𝑟 > 0. 

Since  𝑥 ∈ 𝐴𝐸(𝑔), there is an open neighbourhood 𝑈 of 𝑥 such that 𝑔−1 (𝑆 (𝑔(𝑥),
𝑟

4
)) is dense in 

𝑈 by the Result 3.3. 

Using the Theorem 3.1, 𝐴(𝑓, 𝑔, 𝑟
4⁄ ) is dense in ℝ and hence dense in the open subspace 𝑈 of 𝑥. 

Also, 𝐴(𝑓, 𝑔, 𝑟
4⁄ ) is semi-open in 𝑈 by the Corollary 3.1 and using the Lemma 3.1. 

Hence by the Lemma 3.2 𝐴(𝑓, 𝑔, 𝑟
4⁄ ) ∩ 𝑔−1 (𝑆 (𝑔(𝑥),

𝑟

4
)) is dense in 𝑈. 

 𝑥 ∈ 𝑈 ⇒ ∃𝛿 > 0 such that (𝑥 − 𝛿, 𝑥) ⊆ 𝑈. 

Since 𝑓 is left − sidedly quasi continuous at 𝑥, there is a non-empty open set 𝐻 ⊆ (𝑥 − 𝛿, 𝑥) 

such that 𝑓(𝐻) ⊆  𝑆 (𝑓(𝑥),
𝑟

2
) 

Choose 𝑥1 ∈ 𝐻 ∩ 𝐴(𝑓, 𝑔, 𝑟
4⁄ ) ∩ 𝑔−1 (𝑆 (𝑔(𝑥),

𝑟

4
)) . 

Then 𝑥1 ∈ 𝐻, 𝑑(𝑓(𝑥1), 𝑔(𝑥1)) <
𝑟

4
 , 𝑑(𝑔(𝑥1), 𝑔(𝑥)) <

𝑟

4
 . 

Now,  𝑑(𝑓(𝑥1), 𝑔(𝑥)) ≤  𝑑(𝑓(𝑥1), 𝑔(𝑥1)) + 𝑑(𝑔(𝑥1), 𝑔(𝑥)) <
𝑟

2
. 

So, 𝑓(𝑥1) ∈ 𝑆 (𝑔(𝑥),
𝑟

2
). Again, 𝑓(𝑥1) ∈ 𝑓(𝐻). 

Thus we arrive at a contradiction as 𝑆 (𝑔(𝑥),
𝑟

2
) ∩ 𝑆 (𝑓(𝑥),

𝑟

2
) = 𝜑. 

Remark 3.2: In the Theorem 3.5, the one-sidedly quasi-continuity cannot be replaced by the 

one-sidedly cliquishness of 𝑓 even if 𝑔 is continuous. 

It follows from the following example. 

Example 3.2: The functions 𝑓: ℝ → ℝ, 𝑔: ℝ → ℝ are defined as 𝑓(𝑥) = {
0, 𝑥 = 0
1, 𝑥 ≠ 0

   and 𝑔(𝑥) =

1 ∀𝑥 ∈ ℝ.  

𝑓 is both right-sidedly, left-sidedly cliquish but 𝑓 is neither right-sidedly nor left-sidedly quasi 

continuous ( 𝑓  fails to be one-sidedly quasi continuous at 0). 𝑔  is continuous and 𝐺(𝑔) ⊆

𝑐𝑙(𝐺(𝑓). Here 𝑓(0) ≠ 𝑔(0). 
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