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1. Introduction

The purpose of this paper is to use Newton like methods to approximate factors of a
given matrix. The factorizations presented in this work are QR and (L + I)U ones, where
Q is a unitary matrix, R and U upper triangular matrices, L a strictly lower triangular
matrix and | denotes the identity matrix. Among Newton like methods, we consider
here the exact classical version extended to a more general context in [4] and [2]. The
above mentioned factorizations are important tools in numerical algorithms covering a
wide spectrum of problems in applied mathematics. In particular, in the domain of eigen-

value approximations performed through the iterative computation of an upper triangular
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similar matrix, we find QR Francis and LR Rutishauser methods. The algorithms of the

present paper are used in this particular context in [1].
2. The General Framework

Let C™*™ (resp. R™™) be the complex (resp. real) algebra of square matrices of order
n with complex (resp. real) entries. The identity matrix will be denoted by | and the null

matrix by O.

Theorem 2.1.QR factorization
For every nonsingular matriz Z € F™" there exists a unitary matriz Q and an upper

triangular matriz R such that

Z=QR.

Proof. See [3].

Theorem 2.2.(L + 1)U factorization
For every nonsingular matrix Z € F**™ there exists a permutation matriz P, a strictly

lower triangular matriz L and nonsingular upper triangular matriz U such that

Z=(L+1)UP.

Proof. See [3].

The purpose of this article is to show that these forms can be approximated using
Newton-Kantorovich method.

We recall the basic aspects of Newton-Kantorovich method for nonlinear equations: Let
B, and B, be real isomorphic finite-dimensional normed linear spaces, O an open set of
B,. For 7,j € {1,2}, BL(B,,B,) denotes the algebra of all bounded linear operators with
domain B, and values in B, and the open subset of BL(B,,B,) of isomorphisms from B,

onto B, is denoted by IS(B,,B,). All the norms involved in these structures are denoted
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by the single symbol |.||. Let F : O — B, be a Fréchet differentiable operator. The

problem to be solved by iterations is
(1) Find ¢_ € O such that F(e_ ) =0.

Let (B, )r>0 be a sequence in IS(B,,B,). The so-called Newton type iterations read as

(2) Yo € Oa Prr1 - — P — B;:I*F(ka)
The Newton-Kantorovich method corresponds to the choice
(3) B, := F'(p,) for all k > 0.

Let O,(p) denote the open ball of B, centered at ¢ with radius r > 0.
Theorem 2.3.A posteriori convergence of (2) with (3)

Suppose that O, F, ¢, € O, ¢, > 0, £ > 0 and m, > 0 satisfy

2.3.1) F'(p,) €1S(B,,B,) , [|7"(,) "Il < my, and [[F' ()~ Flpy)ll < ¢,
2.3.2) Dy :={p € B, ||<,0 — @, |l <2¢,} is included in O,

(
(
(
(2.3.4

)
)
2.3.3) { is a Lipschitz constant for 7" on Dy,
) hy :==mylc, < 1/2.

Then, F has a unique zero ¢_, € Dy, and for all k>0,

[0 = Pull < le, =@ ll®

11— 2h
Proof. See [4]. Some improvements on classical error bounds for Newton’s method in a
more general abstract framework are given in [2].
Ker will denote the kernel (or null space) of a linear operator, and Ran its range (or
image space). Let IF denote either R or C. We introduce the following linear operators:
- M(i,5) if i <,
Up : T = F" 0 Up(M)(4, ) =

0 otherwise,

M(i,5) if 7 <1,
»CIF . ]ann N ]ann7 EF(M)(Z,j) — ( ]) J

0 otherwise,

M(z,j) ifi=j,
D]F : ]Fan — ann’ D[F(M)(Z,]) = ( ]) j

0 otherwise,
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for all M € F**" where U stands for upper, £ for lower and D for diagonal. With
these notations, for instance, Ran(U) is the space of all upper triangular matrices with
coefficients in F and Ker(Uy) is the space of all strictly lower triangular matrices with
entries in F.

For topological purposes, we shall consider the following inner product:

(4) (ALA, A (ALA, A =Y tr(AA)
=1

for any matrices A,, R in FP*? and any integers m > 1, p > 1 and ¢ > 1. The corre-

sponding induced norm will denoted by

m 1/2
(AL A,, ..., A )| := [Ztr(Ain)] .
i=1

We suppose that the matrix Z is invertible, with no zero diagonal entry, and such that

P = I in Theorem 2.2.
3. The QR factorization
3.1. Defining the nonlinear operator F

Let A, B in R™ "™ be the real part and the imaginary part of Z respectively:
A:=RZ, B:=S3Z.
We use indifferently the notations
Z=A+iBeC™" or Z=(AB)eR""xR"™™,
Following Theorem 2.1, there exist Uy, Voo in R™*™ and X, Yo in Ran(Ug), such that
Qoo = U +1Ve, Ry :=Xoo +1Ys
satisfy
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and

Note that if Q is such that QR = Z, and QQ* = I, and if the diagonal entries of Q are
not real then there exists a unitary diagonal matrix D such that Q. := QD has a real
diagonal entries and R, := D*R is still upper triangular.

In order to help the reader to fix and clarify notations, we refer to the following table:

Role Symbol

Unitary matrix Q=U+1iV
(7) Increment of a unitary matrix E=H+iK

Upper triangular matrix R=X+1iY

Increment of an upper triangular matrix F=R+41iS

Some of these symbols may carry subscripts or upperscripts like in R, X, Q,, V or H.

We consider the spaces
B, := R""xKer(Dg)xRan(Ugr)xRan(Ug), B, :=R""xR""xR"™",

Equations (5) and (6) are equivalent to the following system:

(8) UsoXoo — VooYao —A = O,
(9) UsoYoo + VoeXoo —B = O,
(10) Up(U UL +V VL —1) = 0,
(11) Up(VooUL —U VL) = 0,
(12) Dr(Vo) = O.

Equations (8) and (9) hold in R™" and equations (10) and (11) hold in Ran(Ur). We
remark that, for all M, N in R™*",

Ur(MNT — NM") € Ker(Dg)

since Dg(MNT — NMT) = O.
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Let F : B, — B, be the nonlinear operator defined by
(13)F[U,V, X, Y] := [UX=VY—A UY+VX—B,Ug(UUT+VVT —)+Lx(VU" —UVT)].
The problem of finding a QR factorization of Z reduces to

(14) Find [Uso, Voo, Xoo, Yoo] € B, such that F(Uss, Voo, Xoo, Yoo) = [0, O, O].

3.2. A Lipschitz Constant and the Invertibility of the Fréchet

Derivative

The Fréchet derivative of F at [Q,R] is given by
F(Q,R)(E,F) = [E(R+QF), U (HUT-+UH"+KV +VK")+Lp (KUT+VH  —HV™ —UKT)]
Hence, for [Q, R], [(5,/R\], [E,F] € By,

(F'(Q.R)~F(QR))(E,F) = [E(R-R)+(Q-Q)F,

and

|(F/(Q.R)=F(Q,R)(E. F)ll < \/ (IENIR=RII+[FIIQ—QI2+4((HIl, [KI). (U=l [V =V]}))?
< VIER2IQ - QR =R)IP +4](H, K)*|Q — Q>
< VB[(E.F)?I(Q - QR-R).

Thus we may set
(15) ¢ :=/5.

To determine a sufficient condition for the Fréchet derivative F'(U,V,X,Y) to be nonsin-
gular, we study the kernel of F'(U,V,X,Y), where [U,V,X,Y] may be either ¢, or ¢_.

The equation

(16) F'(U,V,X,Y)[H,K,S,T] = [0,0,0]
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translates into the following system:

(17) HX +US—KY -VR = O,
(18) HY + UR+KX+VS = O,
(19) HU" + UHT +KV' + VKT = O,
(20) KUT +VH" —HV'T —UK" = O,
(21) Dr(K) = O.

Theorem 3.1.1If Z and Dg(Uy,) are invertible, then F'(p_) is invertible.

o]

Proof. Multiplying (18) by i and adding the result to (17) we get with the notations of
table (7),

(22) F+GR, = O.
Define

G:=Q.E.
Multiplying (20) by i and adding the result to (19) we get
(23) G* = —G,

because F and R, are upper triangular. The elements of the strict lower triangular part
of G satisfy:
For j < € [2,n],
J
> G(i, k)R (K, j) = 0,
k=1
and since the diagonal entries of R,, are nonzero, G(i,j) = 0 for j < i € [2,n]. Since
G* = -G, G(j,i) = 0= G(i,j) for j <i € [2,n], and RG([,]) =0 for | € [1,n].
Hence G = iD, where D € Ran(Dg). So

E=iQ.D, H=-V.D, K=U,LD.

Since Dr(K) = O, Uy (7,7)D(4,7) = 0 for all j € [1,n], and since the diagonal entries of
Uo are nonzero, D = O. But D = O implies E = G = F = O. This proves that F'(p_ ) is

invertible. This completes the proof.
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Remark 3.2. The proof of theorem 3.1 shows that the condition “for all i € [1,n],
Uoo(4,7) # 0 and Vo (i,7) = 0”7 can be relaxed to “for all i € [1,n], Qs (i,7) # 07 i.e. “for
all i € [1,n], Quo(i,7) # 0 if and only if Vo (i,7) = 0.”

3.3. Finding Constants m, and c,

Suppose that Qy = I, and Ry = Ur(Z) are the initial points, so for given matrices

N € C"*™ and J € R™™", we are led to solve

(24) F+ER, = N,
(25) E+E = M,
(26) Dp(K) = O.

where M := Uz (J) + L2(JT) = D ()] +1 [Lr(J) — Ua(JT)]. Remark that [|M]| < v2||J].

Because F and Ry are upper triangular, equation (24) is equivalent to

J
(27) > E(i, k)Ro(k, 5) = N(, ),
k=1

where j < i € [2,n]. This implies that, for j € [1,n — 1],

Q

(28) E(i,j) = ﬁ (

—1
Ezk;ng;j>
k=1

So for j € [1,n — 1],
IE; .1 (2 )13 < (n = 5)W(;)?[IN],

where

N s .
W(j) := RoG 7l + ;W(k)lRo(k,J)l,
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and
E(p,q) E(p.q+1) E(p,n)
E E(p+1,¢) E(p+1,q+1) E(p+1,n) € Cpx(n-a)
| E(n,q) E(n,q+1) E(n,n) |
NG +1.5) M(j +1.J)
NG 2.7 M(j 12, i |
N, = (y | 7) M- (y ' . i,
| N(n,j) | | M(n,j) |
and equations (25), (26) imply
(29) Eije1( 1) =M = Ejia(s, ),

and for all i € [1,n],

1
E(i,i) = =M(i,1).
2
So
“ 1 1
EG, )| < ZIM|]2 < =||J]2.
> IEG P < GIMI* < 511
Also for all j € [1,n — 1],
IE (s Dl = [IMjll2 + 1B, 1, (25 9) 2
< (V24 Vi =7WG) ) N, )]
Now
n—1
IEI* = UIE, .. Co)I3 + IE,,. (. I3 +Z|EH
=1
So
[E[l < v[I(N, )],
where
1 n—1 9
2= g+ X = IWGR + (Ve VW) |
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From equation (24),

[IFIl < IINJF = IRo[[[[E[} < (T + [[Rol»)[[(N J)I].

Thus

17 (o) (N, DI < VIIEIR + [IFI? < v/ + (1 + [Roll)2 (N, D).

We can set

mo := /12 + (1 + ||Ro||v)2.
To produce ¢, we just estimate
17" (¢0) " F(o) | < moll Flwo) | < mollZ = Roll =: ¢,

Following Theorem 2.3,

1
L—-Up(L)|| < —=—
2= U@ < 5

is a sufficient condition for convergence.

The above computations can be simplied if Z is a quasi-diagonal matrix and if we take

Ro = DF(Z>
3.4. Performing Iterations

In order to simplify notations we will write

0, = (6,§), the current iterate,

¢.., = (Q,R), the next iterate,
This means that the equations of the following subsection is to be solved for (Q, R).

3.4.1. Newton-Kantorovich
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The method defined by (2) and (3) amounts to solve for (Q,R) at each step &,

R+GR = R+Q'Z,
(30) G+G = Q'Q ™+,
Dr(SQG) = O,

where G := Q7'Q.
3.5. Numerical Experiments

The following examples have been done with Matlab 6.5. For a given matrix W we
introduce the mesure of Departure from Unity:

_ Iww |
DU(W) := e

and for a couple of matrices (W, A) the mesure of Relative Residual:

WA -7
RelReS(W, A) = W

Example 3.3.
Data:

20 1.0 0.0 0.0
0.5 2.0 —0.5 0.0
0.0 1.0 2.0 0.0

| 05 00 05 20

Starting point:

Qo =1, Ro:=U(2).

Convergence table:
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Example 3.4.
Data:

Starting point:

Convergence table:

Example 3.5.

Example 3.3 Newton-Kantorovich
Iteration DU(Qx)  RelRes(Qg, Rg)

0 0.00E+00 0.16E —00
1 0.13E—-00 0.88F —01
2 0.19E—-01 0.10F —01
3 042E —04  0.33F — 03
4 0.23E—-06 0.25F — 06
5 0.14F —12  0.16F — 12
6 0.50E —17  0.92F — 17

1.0 0.5 0.0

Z:=105 20 05

0.0 0.5 3.0

Qo :=1, Ro:=Dr(Z).
Example 3.4 Newton-Kantorovich
Iteration DU(Qx) RelRes(Qg, Ri)

0 0.00E+00 0.15E —00
1 0.12E —-00  0.13E£ —00
2 0.13£-01 0.11F —-01
3 0188 -03 0.11E —03
4 0.37E - 07  0.25FE — 07
5 0.13E—14  0.54F — 15

343
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Data:
[ 0.5000  0.3183 0.0000 —0.1061
0.3183  0.5000 0.3183  0.0000
Z := gallery(’prolate’,5) :== |  0.0000  0.3183 0.5000  0.3183
—0.1061  0.0000 0.3183  0.5000
| —0.0000 —0.1061 0.0000  0.3183
Starting point:
Qo:=1 Ro:=I
Convergence table:
Example 3.5 Newton-Kantorovich
Iteration DU(Qx)  RelRes(Qg, Rg)
0 0.00E+00 0.29FE —00
1 0.93E —-01 0.19E —00
2 0.16E—00 0.18£ —00
3 0.32E—-00  0.29FE — 00
4 0.17TE—-00 0.11E —00
5 0.61E—-00 0.32FE —00
6 0.40E —-00 0.15FE —00
7 0.15bE—-00 0.38E —01
8 0.25E—-01 0.77FE — 02
9 0.89E —03  0.27FE —03
10 0.62E —05  0.20E — 05
11 0.19E —-09  0.48FE —10
12 0.13£E—-15 0.10E — 15

4. The (L + 1)U factorization

4.1. Defining the nonlinear operator F

~0.0000 |

—0.1061
0.0000
0.3183
0.5000
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Following Theorem 2.2, there exist L, in Ker(Uc) and Uy, in Ran(Uc), such that
(31) (Lo +)Uu-Z = O,

Note that if L is such that LU = Z and if the diagonal entries of L are not one then
there exists an inversible diagonal matrix D such that L., := LD has unit diagonal entries
and Uy, := D71U is still upper triangular.

In order to help the reader to fix and clarify notations, we refer to the following table:

Role Symbol
Strictly lower triangular matrix L

(32) Increment of a strictly lower traingular matrix E
Upper triangular matrix u
Increment of an upper triangular matrix F

Some of these symbols may carry subscripts or upperscripts like in Uy, E,, Lg, Uor F.

We consider the spaces
B, := Ker(Uc)xRan(Ug), B, :=C"*",

Equation (31) is equivalent to:
(33) LU + U —Zos = O.

Let F : B, — B, be the nonlinear operator defined by
(34) FIL,U] = LU+U-Z

The problem of finding a (L + 1)U factorization of Z reduces to
(35) Find [Le, U] € B, such that F(Lw,Us) = O.

4.2. A Lipschitz Constant and the Invertibility of the Fréchet

Derivative
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The Fréchet derivative of F at [L, U] is given by
F'(L,U)(E,F) = EU + LF.

A~

Hence, for [L, U], [L, U], [E,F] € B,
(F'(L,U) — F(L,U))(E,F) = E(U—U) + (L— L)F
and
I(F(L, V) = F'(L,U)(E, F)|| < IEIIJU = U]l + [IFIIIL =TIl < [IE, F)[Ill(L — L,u = V).
So we may set

(36) (=1

To determine a sufficient condition for the Fréchet derivative F'(L,U) to be nonsingular,

we study the kernel of F'(L,U), where [L, U] may be either ¢, or ¢_ . The equation
(37) F'(L,U)[E,F] = O

translates into the following equation:

(38) EU+LF+F = O.

Theorem 4.1. If Z is invertible, then F'(p_ ) is invertible.

Proof. From (38) we get

(39) GU,+F = O,

where

G:= (Lo +)'E.

It is clear G is a strictly lower triangular matrix as E is. And, since F and U, are upper

triangular, G = 0. Consequently, E = 0 and F = 0. This completes the proof.

4.3. Finding Constants m, and c,
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Suppose that Ly = O, and Uy = Ur(Z) are the initial points. For given matrices

N € C"*" we are led to solve
(40) F+EU, = N.

Because F and Ug are upper triangular matrices, equation (40) is equivalent to

J
(41) > E(i, k)Uo(k, §) = N(i, j),
k=1

where j < i € [2,n]. This implies that, for j € [1,n — 1],

1
Uo(J, )

(42) (i, ) = (N(i,j) -y E(z',muo(k,j)) .

So, for j € [1,n — 1],

E o (203 < (= S)WG2IIN]L

where
1 -
W(j) == —————=+ > W(k)[Uo(k,j)|
[Uo(J, )] kz_; ’
Now
n—1
IENI” = (IE .. (2,53
j=1
So
[E[l < v[INJ|,
where
n—1
V=) (n— HIW()?
j=1

From equation (40),
[IFIl < IINIF + Ul IEIl < (1 + [[Uo]l»)[IN]I.

Thus

17" (00) T (N)I| < VIENR + [IFII < v/2 + (1 + [[Uol|)2[IN].

We can set

0= V2 + (1+ [Uoflv)2
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To produce ¢, we just estimate
17" (0) ™" F (o)l < moll Flo)l| < mollZ — Uoll =: ¢,

Following Theorem 2.3,
1

2\/577@%

12 —Us(2)|| <

is a sufficient condition for convergence.
As before, some simplifications are possible if Z is a quasi-diagonal matrix and if we

take Uy := Dr(Z).
5. Performing Iterations

In order to simplify notations we will write

¢, = (L,U), the current iterate,

¢, = (L,U), the next iterate,

This means that the equations of the following subsection is to be solved for (L, U).
5.1. Newton-Kantorovich

The method defined by (2) and (3) amounts to solve for (L,U) at each step k,
(43) GU+U = (L+D)Y(LU+2),

where G := (L + )7L,
5.2. Numerical Experiments

The following examples have been done with Matlab 6.5. For a couple of matrices

(W, A) we introduce the mesure of Relative Residual:

WA —Z||
RelReS(W, A) = W

Example 5.1.



USING NEWTON-KANTOROVICH METHOD TO COMPUTE QR AND (L+I)U...

Data:
(6 5 43 2 1]
55 43 21
4 4 3 2 1
Z := gallery('frank’,6) :=
3321
2 21
Starting point:
Lo :=0, Uy :=Ur(Z).
Convergence table:
Example 5.1 Newton-Kantorovich
Iteration RelRes(L + I, Uy)
0 0.42E + 01
1 0.21E + 01
2 0.78F — 14
Example 5.2.
Data:
[ 0.00 + 1.00i 1.00 ]
0 —1.00+ 0.00¢ 1.00
Z := gallery(’smok’4) :=
0 0 —0.00—1.00¢ 1.00
i 1.00 0 0 1.00 |
Starting point:
I—O = O, UO = DF(Z)

Convergence table:

349
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Example 5.2 Newton-Kantorovich

[teration RelRes(Lx + I, Ug)

0 0.20E + 01
1 0.12E + 01
2 0.86F — 31
3 0.10E + 01
Example 5.3.
Data:
1 -1 -1 -1 -1
-1 2 0 0 0
Z := gallery('moler’,5) := | —1 3 1 1

L
o o O
—_
W
[\

Starting point:

I—O = O, UO =1

Convergence table:

Example 5.3 Newton-Kantorovich

[teration RelRes(Lx + I, U)

0 0.71E + 01
1 0.24F + 02
2 0.75F + 01
3 0.31E + 01
4 0.13F + 01
) 0.29F — 14

6. Complexity and Final Comments
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In terms of flops (elementary operations are addition and multiplication) in real arith-
metic, each iteration has a cost of the order of n®. Details are shown in the following

table :

NK

QR 43n% +20n% — 3Tn + 14
(L+I)U 34n3 + 2n? — 9n

Newton type iterations show to be an efficient scheme to compute in a few flops the
classical QR and (L+I)U factorizations when applied to a data matrix which is already
almost upper triangular. The convergence hypotheses include the invertibility of both the
data and its diagonal part. An application of these strategies is given in [1], where both

factorizations are used for spectral computation purposes.
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