Available online at http://scik.org J. Math. Comput. Sci. 3 (2013), No. 1, 332-351 ISSN: 1927-5307

USING NEWTON-KANTOROVICH METHOD TO COMPUTE QR AND (L+I)U- FACTORIZATIONS

MARIO PAUL AHUES^{1,*}, MUZAFAR FATTAH HAMA²

¹Department of Mathematics, University of Jean Monnet, 42023 SAINT-ETIENNE, France ²School of Science - Department of Mathematics, University of Sulaimani, Sulaimani, Iraq

Abstract. In this paper, we apply Newton-Kantorovich method to compute iteratively a QR or an (L + I)U factorization of a quasi-upper-triangular nonsingular matrix with no zero diagonal entries. Keywords: (L + I)U factorization; Newton method; QR factorization.

2000 AMS Subject Classification: 65F15; 65F30; 15A23

1. Introduction

The purpose of this paper is to use Newton like methods to approximate factors of a given matrix. The factorizations presented in this work are QR and (L + I)U ones, where Q is a unitary matrix, R and U upper triangular matrices, L a strictly lower triangular matrix and I denotes the identity matrix. Among Newton like methods, we consider here the exact classical version extended to a more general context in [4] and [2]. The above mentioned factorizations are important tools in numerical algorithms covering a wide spectrum of problems in applied mathematics. In particular, in the domain of eigenvalue approximations performed through the iterative computation of an upper triangular

^{*}Corresponding author

Received December 1, 2012

USING NEWTON-KANTOROVICH METHOD TO COMPUTE QR AND (L+I)U... 333 similar matrix, we find QR Francis and LR Rutishauser methods. The algorithms of the present paper are used in this particular context in [1].

2. The General Framework

Let $\mathbb{C}^{n \times n}$ (resp. $\mathbb{R}^{n \times n}$) be the complex (resp. real) algebra of square matrices of order n with complex (resp. real) entries. The identity matrix will be denoted by I and the null matrix by O .

Theorem 2.1.QR factorization

For every nonsingular matrix $Z \in \mathbb{F}^{n \times n}$ there exists a unitary matrix Q and an upper triangular matrix R such that

$$Z = QR$$

Proof. See [3].

Theorem 2.2. (L + I)U factorization

For every nonsingular matrix $Z \in \mathbb{F}^{n \times n}$ there exists a permutation matrix P, a strictly lower triangular matrix L and nonsingular upper triangular matrix U such that

$$\mathsf{Z} = (\mathsf{L} + \mathsf{I})\mathsf{U}\mathsf{P}.$$

Proof. See [3].

The purpose of this article is to show that these forms can be approximated using Newton-Kantorovich method.

We recall the basic aspects of Newton-Kantorovich method for nonlinear equations: Let \mathbb{B}_1 and \mathbb{B}_2 be real isomorphic finite-dimensional normed linear spaces, \mathcal{O} an open set of \mathbb{B}_1 . For $i, j \in \{1, 2\}$, $\mathrm{BL}(\mathbb{B}_i, \mathbb{B}_j)$ denotes the algebra of all bounded linear operators with domain \mathbb{B}_i and values in \mathbb{B}_j , and the open subset of $\mathrm{BL}(\mathbb{B}_i, \mathbb{B}_j)$ of isomorphisms from \mathbb{B}_i onto \mathbb{B}_j is denoted by $\mathrm{IS}(\mathbb{B}_i, \mathbb{B}_j)$. All the norms involved in these structures are denoted

by the single symbol $\|.\|$. Let $\mathcal{F} : \mathcal{O} \to \mathbb{B}_2$ be a Fréchet differentiable operator. The problem to be solved by iterations is

(1) Find
$$\varphi_{\infty} \in \mathcal{O}$$
 such that $\mathcal{F}(\varphi_{\infty}) = 0$.

Let $(B_k)_{k\geq 0}$ be a sequence in $\mathrm{IS}(\mathbb{B}_1, \mathbb{B}_2)$. The so-called Newton type iterations read as

(2)
$$\varphi_0 \in \mathcal{O}, \quad \varphi_{k+1} := \varphi_k - B_k^{-1} \mathcal{F}(\varphi_k).$$

The Newton-Kantorovich method corresponds to the choice

(3)
$$B_k := \mathcal{F}'(\varphi_k) \text{ for all } k \ge 0$$

Let $\mathcal{O}_r(\varphi)$ denote the open ball of \mathbb{B}_1 centered at φ with radius r > 0.

Theorem 2.3. A posteriori convergence of (2) with (3)

Suppose that $\mathcal{O}, \mathcal{F}, \varphi_0 \in \mathcal{O}, c_0 > 0, \ell > 0$ and $m_0 > 0$ satisfy

- $(2.3.1) \ \mathcal{F}'(\varphi_0) \in \mathrm{IS}(\mathbb{B}_1, \mathbb{B}_2) \ , \ \|\mathcal{F}'(\varphi_0)^{-1}\| \leq m_0, \ \mathrm{and} \ \|\mathcal{F}'(\varphi_0)^{-1}\mathcal{F}(\varphi_0)\| \leq c_0,$
- (2.3.2) $\mathcal{D}_0 := \{ \varphi \in \mathbb{B}_1 : \| \varphi \varphi_0 \| \le 2c_0 \}$ is included in \mathcal{O} ,
- (2.3.3) ℓ is a Lipschitz constant for \mathcal{F}' on \mathcal{D}_0 ,
- $(2.3.4) h_0 := m_0 \ell c_0 < 1/2.$

Then, \mathcal{F} has a unique zero $\varphi_{\infty} \in \mathcal{D}_0$, and for all $k \geq 0$,

$$\|\varphi_{k+1} - \varphi_{\infty}\| \leq \frac{m_0\ell}{1-2h_0} \|\varphi_k - \varphi_{\infty}\|^2.$$

Proof. See [4]. Some improvements on classical error bounds for Newton's method in a more general abstract framework are given in [2].

Ker will denote the kernel (or null space) of a linear operator, and Ran its range (or image space). Let \mathbb{F} denote either \mathbb{R} or \mathbb{C} . We introduce the following linear operators:

$$\begin{aligned} \mathcal{U}_{\mathbb{F}} : \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}, \quad \mathcal{U}_{\mathbb{F}}(\mathsf{M})(i,j) &:= \begin{cases} \mathsf{M}(i,j) & \text{if } i \leq j, \\ 0 & \text{otherwise}, \end{cases} \\ \mathcal{L}_{\mathbb{F}} : \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}, \quad \mathcal{L}_{\mathbb{F}}(\mathsf{M})(i,j) &:= \begin{cases} \mathsf{M}(i,j) & \text{if } j \leq i, \\ 0 & \text{otherwise}, \end{cases} \\ \mathcal{D}_{\mathbb{F}} : \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}, \quad \mathcal{D}_{\mathbb{F}}(\mathsf{M})(i,j) &:= \begin{cases} \mathsf{M}(i,j) & \text{if } i = j, \\ 0 & \text{otherwise}, \end{cases} \end{aligned}$$

for all $\mathsf{M} \in \mathbb{F}^{n \times n}$, where \mathcal{U} stands for upper, \mathcal{L} for lower and \mathcal{D} for diagonal. With these notations, for instance, $\operatorname{Ran}(\mathcal{U}_{\mathbb{F}})$ is the space of all upper triangular matrices with coefficients in \mathbb{F} and $\operatorname{Ker}(\mathcal{U}_{\mathbb{F}})$ is the space of all strictly lower triangular matrices with entries in \mathbb{F} .

For topological purposes, we shall consider the following inner product:

(4)
$$\langle (\mathsf{A}_1, \mathsf{A}_2, \dots, \mathsf{A}_m), (\widehat{\mathsf{A}}_1, \widehat{\mathsf{A}}_2, \dots, \widehat{\mathsf{A}}_m) \rangle := \sum_{i=1}^m \operatorname{tr}(\widehat{\mathsf{A}}_i^* \mathsf{A}_i)$$

for any matrices A_i , \widehat{A}_i in $\mathbb{F}^{p \times q}$ and any integers $m \ge 1$, $p \ge 1$ and $q \ge 1$. The corresponding induced norm will denoted by

$$\|(\mathsf{A}_{1},\mathsf{A}_{2},\ldots,\mathsf{A}_{m})\| := \left[\sum_{i=1}^{m} \operatorname{tr}(\mathsf{A}_{i}^{*}\mathsf{A}_{i})\right]^{1/2}.$$

We suppose that the matrix Z is invertible, with no zero diagonal entry, and such that P = I in Theorem 2.2.

3. The QR factorization

3.1. Defining the nonlinear operator \mathcal{F}

Let A, B in $\mathbb{R}^{n \times n}$ be the real part and the imaginary part of Z respectively:

$$\mathsf{A} := \Re \mathsf{Z}, \quad \mathsf{B} := \Im \mathsf{Z}.$$

We use indifferently the notations

$$Z = A + i B \in \mathbb{C}^{n \times n}$$
 or $Z = (A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n}$.

Following Theorem 2.1, there exist U_{∞} , V_{∞} in $\mathbb{R}^{n \times n}$ and X_{∞} , Y_{∞} in $\operatorname{Ran}(\mathcal{U}_{\mathbb{R}})$, such that

$$\mathsf{Q}_\infty := \mathsf{U}_\infty + \operatorname{i} \mathsf{V}_\infty, \quad \mathsf{R}_\infty := \mathsf{X}_\infty + \operatorname{i} \mathsf{Y}_\infty$$

satisfy

$$Q_{\infty}Q_{\infty}^{*}-I = 0,$$

336

and

$$\mathsf{Q}_{\infty}\mathsf{R}_{\infty}-\mathsf{Z} = \mathsf{O},$$

Note that if Q is such that QR = Z, and $QQ^* = I$, and if the diagonal entries of Q are not real then there exists a unitary diagonal matrix D such that $Q_{\infty} := QD$ has a real diagonal entries and $R_{\infty} := D^*R$ is still upper triangular.

In order to help the reader to fix and clarify notations, we refer to the following table:

	Role	Symbol
	Unitary matrix	$Q=U+\mathrm{i}V$
(7)	Increment of a unitary matrix	$E=H+\mathrm{i}K$
	Upper triangular matrix	$R=X+\mathrm{i}Y$
	Increment of an upper triangular matrix	$F=R+\operatorname{i}S$

Some of these symbols may carry subscripts or upper scripts like in $\mathsf{R}_{\infty},\,\mathsf{X}_{\scriptscriptstyle 0},\,\mathsf{Q}_{\scriptscriptstyle k},\,\widehat{\mathsf{V}}$ or $\widetilde{\mathsf{H}}.$

We consider the spaces

$$\mathbb{B}_1 := \mathbb{R}^{n \times n} \times \mathrm{Ker}(\mathcal{D}_{\mathbb{R}}) \times \mathrm{Ran}(\mathcal{U}_{\mathbb{R}}) \times \mathrm{Ran}(\mathcal{U}_{\mathbb{R}}), \quad \mathbb{B}_2 := \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n}$$

Equations (5) and (6) are equivalent to the following system:

$$(8) \qquad \qquad \mathsf{U}_{\infty}\mathsf{X}_{\infty}-\mathsf{V}_{\infty}\mathsf{Y}_{\infty}-\mathsf{A} = \mathsf{O}_{2}$$

$$(9) U_{\infty} Y_{\infty} + V_{\infty} X_{\infty} - B = 0,$$

(10)
$$\mathcal{U}_{\mathbb{R}}(\mathsf{U}_{\infty}\mathsf{U}_{\infty}^{\top}+\mathsf{V}_{\infty}\mathsf{V}_{\infty}^{\top}-\mathsf{I}) = \mathsf{O}_{\mathsf{S}}$$

(11)
$$\mathcal{U}_{\mathbb{R}}(\mathsf{V}_{\infty}\mathsf{U}_{\infty}^{\top}-\mathsf{U}_{\infty}\mathsf{V}_{\infty}^{\top}) = \mathsf{O},$$

$$\mathcal{D}_{\mathbb{R}}(\mathsf{V}_{\infty}) = \mathsf{O}.$$

Equations (8) and (9) hold in $\mathbb{R}^{n \times n}$ and equations (10) and (11) hold in $\operatorname{Ran}(\mathcal{U}_{\mathbb{R}})$. We remark that, for all M, N in $\mathbb{R}^{n \times n}$,

$$\mathcal{U}_{\mathbb{R}}(\mathsf{MN}^{\top} - \mathsf{NM}^{\top}) \in \operatorname{Ker}(\mathcal{D}_{\mathbb{R}})$$

since $\mathcal{D}_{\mathbb{R}}(MN^{\top} - NM^{\top}) = O.$

337

Let $\mathcal{F}:\mathbb{B}_{_1}\to\mathbb{B}_{_2}$ be the nonlinear operator defined by

$$(13)\mathcal{F}[\mathsf{U},\mathsf{V},\mathsf{X},\mathsf{Y}] := [\mathsf{U}\mathsf{X} - \mathsf{V}\mathsf{Y} - \mathsf{A}, \mathsf{U}\mathsf{Y} + \mathsf{V}\mathsf{X} - \mathsf{B}, \mathcal{U}_{\mathbb{R}}(\mathsf{U}\mathsf{U}^{\top} + \mathsf{V}\mathsf{V}^{\top} - \mathsf{I}) + \mathcal{L}_{\mathbb{R}}(\mathsf{V}\mathsf{U}^{\top} - \mathsf{U}\mathsf{V}^{\top})].$$

The problem of finding a QR factorization of Z reduces to

(14) Find
$$[\mathsf{U}_{\infty},\mathsf{V}_{\infty},\mathsf{X}_{\infty},\mathsf{Y}_{\infty}] \in \mathbb{B}_{1}$$
 such that $\mathcal{F}(\mathsf{U}_{\infty},\mathsf{V}_{\infty},\mathsf{X}_{\infty},\mathsf{Y}_{\infty}) = [\mathsf{0},\mathsf{0},\mathsf{0}].$

3.2. A Lipschitz Constant and the Invertibility of the Fréchet Derivative

The Fréchet derivative of \mathcal{F} at $[\mathsf{Q},\mathsf{R}]$ is given by

$$\mathcal{F}'(\mathsf{Q},\mathsf{R})(\mathsf{E},\mathsf{F}) = \left[\mathsf{E}(\mathsf{R}+\mathsf{Q}\mathsf{F}),\mathcal{U}_{\mathbb{R}}\big(\mathsf{H}\mathsf{U}^{\top}+\mathsf{U}\mathsf{H}^{\top}+\mathsf{K}\mathsf{V}^{\top}+\mathsf{V}\mathsf{K}^{\top}\big) + \mathcal{L}_{\mathbb{R}}\big(\mathsf{K}\mathsf{U}^{\top}+\mathsf{V}\mathsf{H}^{\top}-\mathsf{H}\mathsf{V}^{\top}-\mathsf{U}\mathsf{K}^{\top}\big)\right]$$

Hence, for $[Q, R], [\widehat{Q}, \widehat{R}], [E, F] \in \mathbb{B}_1$,

and

$$\begin{split} \| (\mathcal{F}'(\mathsf{Q},\mathsf{R}) - \mathcal{F}'(\widehat{\mathsf{Q}},\widehat{\mathsf{R}}))(\mathsf{E},\mathsf{F}) \| &\leq \sqrt{(\|\mathsf{E}\|\|\mathsf{R} - \widehat{\mathsf{R}}\| + \|\mathsf{F}\|\|\mathsf{Q} - \widehat{\mathsf{Q}}\|)^2 + 4((\|\mathsf{H}\|,\|\mathsf{K}\|).(\|\mathsf{U} - \widehat{\mathsf{U}}\|,\|\mathsf{V} - \widehat{\mathsf{V}}\|))^2} \\ &\leq \sqrt{\|(\mathsf{E},\mathsf{F})\|^2\|(\mathsf{Q} - \widehat{\mathsf{Q}},\mathsf{R} - \widehat{\mathsf{R}})\|^2 + 4\|(\mathsf{H},\mathsf{K})\|^2\|\mathsf{Q} - \widehat{\mathsf{Q}}\|^2} \\ &\leq \sqrt{5}\|(\mathsf{E},\mathsf{F})\|^2\|(\mathsf{Q} - \widehat{\mathsf{Q}},\mathsf{R} - \widehat{\mathsf{R}})\|. \end{split}$$

Thus we may set

(15)
$$\ell := \sqrt{5}.$$

To determine a sufficient condition for the Fréchet derivative $\mathcal{F}'(U, V, X, Y)$ to be nonsingular, we study the kernel of $\mathcal{F}'(U, V, X, Y)$, where [U, V, X, Y] may be either φ_0 or φ_{∞} . The equation

(16)
$$\mathcal{F}'(U, V, X, Y)[H, K, S, T] = [0, 0, 0]$$

translates into the following system:

$$(17) HX + US - KY - VR = 0$$

(18)
$$HY + UR + KX + VS = 0,$$

(19)
$$\mathbf{H}\mathbf{U}^{\top} + \mathbf{U}\mathbf{H}^{\top} + \mathbf{K}\mathbf{V}^{\top} + \mathbf{V}\mathbf{K}^{\top} = \mathbf{O},$$

(20)
$$\mathbf{K}\mathbf{U}^{\top} + \mathbf{V}\mathbf{H}^{\top} - \mathbf{H}\mathbf{V}^{\top} - \mathbf{U}\mathbf{K}^{\top} = \mathbf{O}_{\mathbf{Y}}$$

(21)
$$\mathcal{D}_{\mathbb{R}}(\mathsf{K}) = \mathsf{O}.$$

Theorem 3.1. If Z and $\mathcal{D}_{\mathbb{R}}(\mathsf{U}_{\infty})$ are invertible, then $\mathcal{F}'(\varphi_{\infty})$ is invertible.

Proof. Multiplying (18) by i and adding the result to (17) we get with the notations of table (7),

(22)
$$\mathbf{F} + \mathbf{G}\mathbf{R}_{\infty} = \mathbf{O}.$$

Define

$$\mathsf{G} := \mathsf{Q}^*_\infty \mathsf{E}$$

Multiplying (20) by i and adding the result to (19) we get

$$\mathsf{G}^* = -\mathsf{G},$$

because F and R_∞ are upper triangular. The elements of the strict lower triangular part of G satisfy:

For $j < i \in [\![2, n]\!]$,

$$\sum_{k=1}^{j} \mathsf{G}(i,k) \mathsf{R}_{\infty}(k,j) = 0,$$

and since the diagonal entries of R_{∞} are nonzero, $\mathsf{G}(i,j) = 0$ for $j < i \in [\![2,n]\!]$. Since $\mathsf{G}^* = -\mathsf{G}, \ \mathsf{G}(j,i) = 0 = \mathsf{G}(i,j)$ for $j < i \in [\![2,n]\!]$, and $\Re \mathsf{G}(l,l) = 0$ for $l \in [\![1,n]\!]$.

Hence G = i D, where $D \in \operatorname{Ran}(\mathcal{D}_{\mathbb{R}})$. So

$$\mathsf{E}=\mathrm{i}\,\mathsf{Q}_\infty\mathsf{D},\quad\mathsf{H}=-\mathsf{V}_\infty\mathsf{D},\quad\mathsf{K}=\mathsf{U}_\infty\mathsf{D}.$$

Since $\mathcal{D}_{\mathbb{R}}(\mathsf{K}) = \mathsf{O}, \, \mathsf{U}_{\infty}(j, j)\mathsf{D}(j, j) = 0$ for all $j \in [\![1, n]\!]$, and since the diagonal entries of U_{∞} are nonzero, $\mathsf{D} = \mathsf{O}$. But $\mathsf{D} = \mathsf{O}$ implies $\mathsf{E} = \mathsf{G} = \mathsf{F} = \mathsf{O}$. This proves that $\mathcal{F}'(\varphi_{\infty})$ is invertible. This completes the proof.

Remark 3.2. The proof of theorem 3.1 shows that the condition "for all $i \in [\![1, n]\!]$, $U_{\infty}(i, i) \neq 0$ and $V_{\infty}(i, i) = 0$ " can be relaxed to "for all $i \in [\![1, n]\!]$, $Q_{\infty}(i, i) \neq 0$ " i.e. "for all $i \in [\![1, n]\!]$, $Q_{\infty}(i, i) \neq 0$ " if and only if $V_{\infty}(i, i) = 0$."

3.3. Finding Constants $m_{\scriptscriptstyle 0}$ and $c_{\scriptscriptstyle 0}$

Suppose that $Q_0 = I$, and $R_0 = \mathcal{U}_{\mathbb{F}}(Z)$ are the initial points, so for given matrices $N \in \mathbb{C}^{n \times n}$ and $J \in \mathbb{R}^{n \times n}$, we are led to solve

$$\mathsf{F} + \mathsf{E}\mathsf{R}_0 = \mathsf{N},$$

$$(25) \mathsf{E} + \mathsf{E}^* = \mathsf{M},$$

(26)
$$\mathcal{D}_{\mathbb{R}}(\mathsf{K}) = \mathsf{O}.$$

where $\mathsf{M} := [\mathcal{U}_{\mathbb{R}}(\mathsf{J}) + \mathcal{L}_{\mathbb{R}}(\mathsf{J}^{\top}) - \mathcal{D}_{\mathbb{R}}(\mathsf{J})] + i [\mathcal{L}_{\mathbb{R}}(\mathsf{J}) - \mathcal{U}_{\mathbb{R}}(\mathsf{J}^{\top})]$. Remark that $\|\mathsf{M}\| \le \sqrt{2}\|\mathsf{J}\|$. Because F and R_0 are upper triangular, equation (24) is equivalent to

(27)
$$\sum_{k=1}^{j} \mathsf{E}(i,k) \mathsf{R}_{0}(k,j) = \mathsf{N}(i,j),$$

where $j < i \in [\![2, n]\!]$. This implies that, for $j \in [\![1, n - 1]\!]$,

(28)
$$\mathsf{E}(i,j) = \frac{1}{\mathsf{R}_0(j,j)} \left(\mathsf{N}(i,j) - \sum_{k=1}^{j-1} \mathsf{E}(i,k) \mathsf{R}_0(k,j) \right)$$

So for $j \in [\![1, n-1]\!]$,

$$\|\mathsf{E}_{_{j+1,1}}(\,:\,,j)\|_2^2 \le (n-j)\mathsf{W}(j)^2\|\mathsf{N}\|,$$

where

$$W(j) := \frac{1}{|\mathsf{R}_0(j,j)|} + \sum_{k=1}^{j-1} W(k) |\mathsf{R}_0(k,j)|,$$

and

$$\mathsf{E}_{\scriptscriptstyle p,q} := \left[\begin{array}{cccc} \mathsf{E}(p,q) & \mathsf{E}(p,q+1) & \cdots & \mathsf{E}(p,n) \\ \mathsf{E}(p+1,q) & \mathsf{E}(p+1,q+1) & \cdots & \mathsf{E}(p+1,n) \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{E}(n,q) & \mathsf{E}(n,q+1) & \cdots & \mathsf{E}(n,n) \end{array} \right] \in \mathbb{C}^{(n-p) \times (n-q)},$$

$$\mathsf{N}_{j} := \begin{bmatrix} \mathsf{N}(j+1,j) \\ \mathsf{N}(j+2,j) \\ \vdots \\ \mathsf{N}(n,j) \end{bmatrix}, \quad \mathsf{M}_{j} := \begin{bmatrix} \mathsf{M}(j+1,j) \\ \mathsf{M}(j+2,j) \\ \vdots \\ \mathsf{M}(n,j) \end{bmatrix} \in \mathbb{C}^{(n-j) \times 1},$$

and equations (25), (26) imply

(29)
$$\mathsf{E}_{1,j+1}(j,\,:\,) = \overline{\mathsf{M}_j} - \overline{\mathsf{E}_{j+1,1}(:\,,\,j)},$$

and for all $i \in [\![1, n]\!]$,

$$\mathsf{E}(i,i) = \frac{1}{2}\mathsf{M}(i,i).$$

 So

$$\sum_{i=1}^{n} |\mathsf{E}(i,i)|^{2} \leq \frac{1}{4} \|\mathsf{M}\|^{2} \leq \frac{1}{2} \|J\|^{2}.$$

Also for all $j \in \llbracket 1, n-1 \rrbracket$,

$$\begin{split} \|\mathsf{E}_{\scriptscriptstyle 1,j+1}(j,\,:\,)\|_2 &= \|\mathsf{M}_j\|_2 + \|\mathsf{E}_{_{j+1,1}}(\,:\,,j)\|_2 \\ &\leq \left(\sqrt{2} + \sqrt{(n-j)}\mathsf{W}(j)\right) \|(\mathsf{N},\mathsf{J})\| \end{split}$$

Now

$$\|\mathsf{E}\|^2 = \sum_{j=1}^{n-1} (\|\mathsf{E}_{j+1,1}(\,:\,,j)\|_2^2 + \|\mathsf{E}_{1,j+1}(j,\,:\,)\|_2^2) + \sum_{i=1}^n |\mathsf{E}(i,i)|^2,$$

 So

$$\|\mathsf{E}\| \le \nu \|(\mathsf{N},\mathsf{J})\|,$$

where

$$\nu^{2} := \frac{1}{2} + \sum_{j=1}^{n-1} \left[(n-j) \mathsf{W}(j)^{2} + \left(\sqrt{2} + \sqrt{(n-j)} \mathsf{W}(j) \right)^{2} \right].$$

From equation (24),

$$\|\mathsf{F}\| \le \|\mathsf{N}\| + \|\mathsf{R}_0\|\|\mathsf{E}\| \le (1 + \|\mathsf{R}_0\|\nu)\|(\mathsf{N},\mathsf{J})\|$$

Thus

$$\|\mathcal{F}'(\varphi_0)^{-1}(\mathsf{N},\mathsf{J})\| \le \sqrt{\|\mathsf{E}\|^2 + \|\mathsf{F}\|^2} \le \sqrt{\nu^2 + (1 + \|\mathsf{R}_0\|\nu)^2} \|(\mathsf{N},\mathsf{J})\|.$$

We can set

$$m_0 := \sqrt{\nu^2 + (1 + \|\mathbf{R}_0\|\nu)^2}.$$

To produce c_0 we just estimate

$$\|\mathcal{F}'(\varphi_0)^{-1}\mathcal{F}(\varphi_0)\| \le m_0\|\mathcal{F}(\varphi_0)\| \le m_0\|\mathsf{Z}-\mathsf{R}_0\| =: c_0.$$

Following Theorem 2.3,

$$\|\mathsf{Z} - \mathcal{U}_{\mathbb{F}}(\mathsf{Z})\| < \frac{1}{2\sqrt{5}m_0^2}$$

is a sufficient condition for convergence.

The above computations can be simplied if Z is a quasi-diagonal matrix and if we take $R_0:=\mathcal{D}_{\mathbb{F}}(Z).$

3.4. Performing Iterations

In order to simplify notations we will write

$$\begin{split} \varphi_k &:= \quad (\widetilde{\mathsf{Q}},\widetilde{\mathsf{R}}), \text{ the current iterate}, \\ \varphi_{_{k+1}} &:= \quad (\mathsf{Q},\mathsf{R}), \text{ the next iterate}, \end{split}$$

This means that the equations of the following subsection is to be solved for (Q, R).

3.4.1. Newton-Kantorovich

The method defined by (2) and (3) amounts to solve for (Q, R) at each step k,

(30)

$$R + G\widetilde{R} = \widetilde{R} + \widetilde{Q}^{-1}Z,$$

$$G + G^* = \widetilde{Q}^{-1}\widetilde{Q}^{-*} + I,$$

$$\mathcal{D}_{\mathbb{R}}(\Im\widetilde{Q}G) = 0,$$

where $\mathsf{G} := \widetilde{\mathsf{Q}}^{-1}\mathsf{Q}$.

3.5. Numerical Experiments

The following examples have been done with Matlab 6.5. For a given matrix W we introduce the mesure of *Departure from Unity*:

$$\mathrm{DU}(\mathsf{W}) := \frac{\|\mathsf{W}^*\mathsf{W} - \mathsf{I}\|}{\|\mathsf{W}\|^2}$$

and for a couple of matrices (W, Λ) the mesure of *Relative Residual*:

$$\operatorname{RelRes}(\mathsf{W},\Lambda) := \frac{\|\mathsf{W}\Lambda - \mathsf{Z}\|}{\|\mathsf{W}\|\|\Lambda\|}.$$

Example 3.3.

Data:

$$\mathsf{Z} := \left[\begin{array}{cccccc} 2.0 & 1.0 & 0.0 & 0.0 \\ 0.5 & 2.0 & -0.5 & 0.0 \\ 0.0 & 1.0 & 2.0 & 0.0 \\ -0.5 & 0.0 & 0.5 & 2.0 \end{array} \right].$$

Starting point:

$$\mathsf{Q}_0:=\mathsf{I},\quad\mathsf{R}_0:=\mathcal{U}_{\mathbb{F}}(\mathsf{Z}).$$

Convergence table:

Example 3.3	Newton-Kantorovich	
Iteration	$\mathrm{DU}(Q_k)$	$\operatorname{RelRes}(Q_k,R_k)$
0	0.00E + 00	0.16E - 00
1	0.13E - 00	0.88E - 01
2	0.19E - 01	0.10E - 01
3	0.42E - 04	0.33E - 03
4	0.23E - 06	0.25E - 06
5	0.14E - 12	0.16E - 12
6	0.50E - 17	0.92E - 17

Example 3.4.

Data:

$$\mathsf{Z} := \begin{bmatrix} 1.0 & 0.5 & 0.0 \\ 0.5 & 2.0 & 0.5 \\ 0.0 & 0.5 & 3.0 \end{bmatrix}.$$

Starting point:

$$\mathsf{Q}_0:=\mathsf{I},\quad\mathsf{R}_0:=\mathcal{D}_{\mathbb{F}}(\mathsf{Z}).$$

Convergence table:

Example 3.4	Newton-Kantorovich	
Iteration	$\mathrm{DU}(Q_k)$	$\operatorname{RelRes}(Q_k,R_k)$
0	0.00E + 00	0.15E - 00
1	0.12E - 00	0.13E - 00
2	0.13E - 01	0.11E - 01
3	0.18E - 03	0.11E - 03
4	0.37E - 07	0.25E - 07
5	0.13E - 14	0.54E - 15

Example 3.5.

Data:

$$\mathsf{Z} := \text{gallery('prolate',5)} := \begin{bmatrix} 0.5000 & 0.3183 & 0.0000 & -0.1061 & -0.0000 \\ 0.3183 & 0.5000 & 0.3183 & 0.0000 & -0.1061 \\ 0.0000 & 0.3183 & 0.5000 & 0.3183 & 0.0000 \\ -0.1061 & 0.0000 & 0.3183 & 0.5000 & 0.3183 \\ -0.0000 & -0.1061 & 0.0000 & 0.3183 & 0.5000 \end{bmatrix}$$

Starting point:

 $\mathsf{Q}_0:=\mathsf{I},\quad\mathsf{R}_0:=\mathsf{I}.$

Convergence table:

Example 3.5	Newton-Kantorovich	
Iteration	$\mathrm{DU}(Q_k)$	$\operatorname{RelRes}(Q_k,R_k)$
0	0.00E + 00	0.29E - 00
1	0.93E - 01	0.19E - 00
2	0.16E - 00	0.18E - 00
3	0.32E - 00	0.29E - 00
4	0.17E - 00	0.11E - 00
5	0.61E - 00	0.32E - 00
6	0.40E - 00	0.15E - 00
7	0.15E - 00	0.38E - 01
8	0.25E - 01	0.77E - 02
9	0.89E - 03	0.27E - 03
10	0.62E - 05	0.20E - 05
11	0.19E - 09	0.48E - 10
12	0.13E - 15	0.10E - 15

4. The (L + I)U factorization

4.1. Defining the nonlinear operator \mathcal{F}

Following Theorem 2.2, there exist L_{∞} in $\operatorname{Ker}(\mathcal{U}_{\mathbb{C}})$ and U_{∞} in $\operatorname{Ran}(\mathcal{U}_{\mathbb{C}})$, such that

$$(31) \qquad (\mathsf{L}_{\infty} + \mathsf{I})\mathsf{U}_{\infty} - \mathsf{Z} = \mathsf{O},$$

Note that if L is such that LU = Z and if the diagonal entries of L are not one then there exists an inversible diagonal matrix D such that $L_{\infty} := LD$ has unit diagonal entries and $U_{\infty} := D^{-1}U$ is still upper triangular.

In order to help the reader to fix and clarify notations, we refer to the following table:

	Role	Symbol
	Strictly lower triangular matrix	L
(32)	Increment of a strictly lower traingular matrix	E
	Upper triangular matrix	U
	Increment of an upper triangular matrix	F

Some of these symbols may carry subscripts or upperscripts like in U_{∞} , E_0 , L_k , \widehat{U} or \widetilde{F} .

We consider the spaces

$$\mathbb{B}_1 := \operatorname{Ker}(\mathcal{U}_{\mathbb{C}}) \times \operatorname{Ran}(\mathcal{U}_{\mathbb{C}}), \quad \mathbb{B}_2 := \mathbb{C}^{n \times n},$$

Equation (31) is equivalent to:

$$L_{\infty}U_{\infty} + U_{\infty} - Z_{\infty} = 0$$

Let $\mathcal{F}: \mathbb{B}_1 \to \mathbb{B}_2$ be the nonlinear operator defined by

(34)
$$\mathcal{F}[\mathsf{L},\mathsf{U}] := \mathsf{L}\mathsf{U} + \mathsf{U} - \mathsf{Z}.$$

The problem of finding a (L + I)U factorization of Z reduces to

(35) Find
$$[\mathsf{L}_{\infty},\mathsf{U}_{\infty}] \in \mathbb{B}_1$$
 such that $\mathcal{F}(\mathsf{L}_{\infty},\mathsf{U}_{\infty}) = \mathsf{O}$.

4.2. A Lipschitz Constant and the Invertibility of the Fréchet Derivative

The Fréchet derivative of \mathcal{F} at $[\mathsf{L},\mathsf{U}]$ is given by

$$\mathcal{F}'(\mathsf{L},\mathsf{U})(\mathsf{E},\mathsf{F}) = \mathsf{E}\mathsf{U} + \mathsf{L}\mathsf{F}.$$

Hence, for $[\mathsf{L},\mathsf{U}],\, [\widehat{\mathsf{L}},\widehat{\mathsf{U}}],\, [\mathsf{E},\mathsf{F}]\in\mathbb{B}_1,$

$$(\mathcal{F}'(\mathsf{L},\mathsf{U})-\mathcal{F}'(\widehat{\mathsf{L}},\widehat{\mathsf{U}}))(\mathsf{E},\mathsf{F})=\mathsf{E}(\mathsf{U}-\widehat{\mathsf{U}})+(\mathsf{L}-\widehat{\mathsf{L}})\mathsf{F}$$

and

$$\|(\mathcal{F}'(L,U) - \mathcal{F}'(\widehat{L},\widehat{U})(E,F)\| \le \|E\| \|U - \widehat{U}\| + \|F\| \|L - \widehat{L}\| \le \|(E,F)\| \|(L - \widehat{L}, U - \widehat{U})\|.$$

So we may set

$$(36) \qquad \qquad \ell := 1$$

To determine a sufficient condition for the Fréchet derivative $\mathcal{F}'(\mathsf{L},\mathsf{U})$ to be nonsingular, we study the kernel of $\mathcal{F}'(\mathsf{L},\mathsf{U})$, where $[\mathsf{L},\mathsf{U}]$ may be either φ_0 or φ_∞ . The equation

(37)
$$\mathcal{F}'(\mathsf{L},\mathsf{U})[\mathsf{E},\mathsf{F}] = \mathsf{O}$$

translates into the following equation:

$$EU + LF + F = 0.$$

Theorem 4.1. If Z is invertible, then $\mathcal{F}'(\varphi_{\infty})$ is invertible.

Proof. From (38) we get

$$\mathsf{GU}_{\infty} + \mathsf{F} = \mathsf{O},$$

where

$$\mathsf{G} := (\mathsf{L}_{\infty} + \mathsf{I})^{-1}\mathsf{E}.$$

It is clear G is a strictly lower triangular matrix as E is. And, since F and U_{∞} are upper triangular, G = 0. Consequently, E = 0 and F = 0. This completes the proof.

4.3. Finding Constants m_0 and c_0

Suppose that $L_0 = O$, and $U_0 = \mathcal{U}_{\mathbb{F}}(Z)$ are the initial points. For given matrices $N \in \mathbb{C}^{n \times n}$ we are led to solve

$$\mathsf{F} + \mathsf{EU}_0 = \mathsf{N}.$$

Because F and U_0 are upper triangular matrices, equation (40) is equivalent to

(41)
$$\sum_{k=1}^{j} \mathsf{E}(i,k) \mathsf{U}_0(k,j) = \mathsf{N}(i,j),$$

where $j < i \in [\![2, n]\!]$. This implies that, for $j \in [\![1, n - 1]\!]$,

(42)
$$\mathsf{E}(i,j) = \frac{1}{\mathsf{U}_0(j,j)} \left(\mathsf{N}(i,j) - \sum_{k=1}^{j-1} \mathsf{E}(i,k) \mathsf{U}_0(k,j) \right).$$

So, for $j \in \llbracket 1, n-1 \rrbracket$,

$$\|\mathsf{E}_{j+1,1}(:,j)\|_{2}^{2} \le (n-j)\mathsf{W}(j)^{2}\|\mathsf{N}\|,$$

where

$$W(j) := \frac{1}{|U_0(j,j)|} + \sum_{k=1}^{j-1} W(k) |U_0(k,j)|.$$

Now

$$\|\mathsf{E}\|^2 = \sum_{j=1}^{n-1} (\|\mathsf{E}_{j+1,1}(\,:\,,j)\|_2^2.$$

 So

$$\|\mathsf{E}\| \le \nu \|\mathsf{N}\|,$$

where

$$\nu^2 := \sum_{j=1}^{n-1} (n-j) \mathsf{W}(j)^2.$$

From equation (40),

$$\|\mathsf{F}\| \le \|\mathsf{N}\| + \|\mathsf{U}_0\|\|\mathsf{E}\| \le (1 + \|\mathsf{U}_0\|\nu)\|\mathsf{N}\|.$$

Thus

$$\|\mathcal{F}'(\varphi_0)^{-1}(\mathsf{N})\| \le \sqrt{\|\mathsf{E}\|^2 + \|\mathsf{F}\|^2} \le \sqrt{\nu^2 + (1 + \|\mathsf{U}_0\|\nu)^2} \|\mathsf{N}\|.$$

We can set

$$m_0 := \sqrt{\nu^2 + (1 + \|\mathbf{U}_0\|\nu)^2}.$$

To produce c_0 we just estimate

$$\|\mathcal{F}'(\varphi_0)^{-1}\mathcal{F}(\varphi_0)\| \le m_0\|\mathcal{F}(\varphi_0)\| \le m_0\|\mathsf{Z}-\mathsf{U}_0\| =: c_0.$$

Following Theorem 2.3,

$$\|\mathsf{Z} - \mathcal{U}_{\mathbb{F}}(\mathsf{Z})\| < \frac{1}{2\sqrt{5}m_0^2}$$

is a sufficient condition for convergence.

As before, some simplifications are possible if Z is a quasi-diagonal matrix and if we take $U_0:=\mathcal{D}_{\mathbb{F}}(Z).$

5. Performing Iterations

In order to simplify notations we will write

$$\begin{split} \varphi_k &:= (\widetilde{\mathsf{L}}, \widetilde{\mathsf{U}}), \text{ the current iterate}, \\ \varphi_{k+1} &:= (\mathsf{L}, \mathsf{U}), \text{ the next iterate}, \end{split}$$

This means that the equations of the following subsection is to be solved for (L, U).

5.1. Newton-Kantorovich

The method defined by (2) and (3) amounts to solve for (L, U) at each step k,

(43)
$$G\widetilde{U} + U = (\widetilde{L} + I)^{-1} (\widetilde{L}\widetilde{U} + Z),$$

where $\mathsf{G}:=(\widetilde{\mathsf{L}}+\mathsf{I})^{-1}\mathsf{L}.$

5.2. Numerical Experiments

The following examples have been done with Matlab 6.5. For a couple of matrices (W, Λ) we introduce the mesure of *Relative Residual*:

$$\operatorname{RelRes}(\mathsf{W},\Lambda) := \frac{\|\mathsf{W}\Lambda - \mathsf{Z}\|}{\|\mathsf{W}\|\|\Lambda\|}.$$

Example 5.1.

Data:

$$\mathsf{Z} := \operatorname{gallery}(\operatorname{'frank'}, 6) := \begin{bmatrix} 6 & 5 & 4 & 3 & 2 & 1 \\ 5 & 5 & 4 & 3 & 2 & 1 \\ & 4 & 4 & 3 & 2 & 1 \\ & & 3 & 3 & 2 & 1 \\ & & & 2 & 2 & 1 \\ & & & & 1 & 1 \end{bmatrix}.$$

Starting point:

$$\mathsf{L}_0 := 0, \quad \mathsf{U}_0 := \mathcal{U}_{\mathbb{F}}(\mathsf{Z}).$$

Convergence table:

Example 5.1	Newton-Kantorovich
Iteration	$\mathrm{RelRes}(L_k+I,U_k)$
0	0.42E + 01
1	0.21E + 01
2	0.78E - 14

Example 5.2.

Data:

$$\mathsf{Z} := \mathrm{gallery}(\mathrm{'smok'}, 4) := \begin{bmatrix} 0.00 + 1.00i & 1.00 & & \\ 0 & -1.00 + 0.00i & 1.00 & \\ 0 & 0 & -0.00 - 1.00i & 1.00 \\ 1.00 & 0 & 0 & 1.00 \end{bmatrix}.$$

Starting point:

$$\mathsf{L}_0 := 0, \quad \mathsf{U}_0 := \mathcal{D}_{\mathbb{F}}(\mathsf{Z}).$$

Convergence table:

Example 5.2	Newton-Kantorovich
Iteration	$\mathrm{RelRes}(L_k+I,U_k)$
0	0.20E + 01
1	0.12E + 01
2	0.86E - 31
3	0.10E + 01

Example 5.3.

Data:

$$\mathsf{Z} := \text{gallery}(\text{'moler'},5) := \begin{bmatrix} 1 & -1 & -1 & -1 \\ -1 & 2 & 0 & 0 & 0 \\ -1 & 0 & 3 & 1 & 1 \\ -1 & 0 & 1 & 4 & 2 \\ -1 & 0 & 1 & 2 & 5 \end{bmatrix}.$$

Starting point:

$$L_0 := 0, \quad U_0 := I.$$

Convergence table:

Example 5.3	Newton-Kantorovich
Iteration	$\operatorname{RelRes}(L_{k}+I,U_k)$
0	0.71E + 01
1	0.24E + 02
2	0.75E + 01
3	0.31E + 01
4	0.13E + 01
5	0.29E - 14

6. Complexity and Final Comments

In terms of flops (elementary operations are addition and multiplication) in real arithmetic, each iteration has a cost of the order of n^3 . Details are shown in the following table :

Newton type iterations show to be an efficient scheme to compute in a few flops the classical QR and (L+I)U factorizations when applied to a data matrix which is already almost upper triangular. The convergence hypotheses include the invertibility of both the data and its diagonal part. An application of these strategies is given in [1], where both factorizations are used for spectral computation purposes.

References

- M. Ahues, M. Hama and A. Largillier, Newton-Kantorovich method for Refining Schur and Gauss triangular forms, Inter. J. of pure and applied mathematics, Vol.65 (2010), No.2.
- [2] M. Ahues, Newton Methods with Hölder Derivative, Numer. Func. Anal. and Optimiz. Vol. 25, 5&6, (2004) 1-17.
- [3] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, MD, 3rd edition, (1996).
- [4] L.V. Kantorovich and V.I. Krylov, Approximate Methods of Higher Analysis, Wiley (Interscience), New York, (1955).