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1. Introduction

The purpose of this paper is to use Newton like methods to approximate factors of a

given matrix. The factorizations presented in this work are QR and (L + I)U ones, where

Q is a unitary matrix, R and U upper triangular matrices, L a strictly lower triangular

matrix and I denotes the identity matrix. Among Newton like methods, we consider

here the exact classical version extended to a more general context in [4] and [2]. The

above mentioned factorizations are important tools in numerical algorithms covering a

wide spectrum of problems in applied mathematics. In particular, in the domain of eigen-

value approximations performed through the iterative computation of an upper triangular
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similar matrix, we find QR Francis and LR Rutishauser methods. The algorithms of the

present paper are used in this particular context in [1].

2. The General Framework

Let Cn×n (resp. Rn×n) be the complex (resp. real) algebra of square matrices of order

n with complex (resp. real) entries. The identity matrix will be denoted by I and the null

matrix by O.

Theorem 2.1.QR factorization

For every nonsingular matrix Z ∈ Fn×n there exists a unitary matrix Q and an upper

triangular matrix R such that

Z = QR.

Proof. See [3].

Theorem 2.2.(L + I)U factorization

For every nonsingular matrix Z ∈ Fn×n there exists a permutation matrix P, a strictly

lower triangular matrix L and nonsingular upper triangular matrix U such that

Z = (L + I)UP.

Proof. See [3].

The purpose of this article is to show that these forms can be approximated using

Newton-Kantorovich method.

We recall the basic aspects of Newton-Kantorovich method for nonlinear equations: Let

B1 and B2 be real isomorphic finite-dimensional normed linear spaces, O an open set of

B1 . For i, j ∈ {1, 2}, BL(B
i
,B

j
) denotes the algebra of all bounded linear operators with

domain B
i

and values in B
j
, and the open subset of BL(B

i
,B

j
) of isomorphisms from B

i

onto B
j

is denoted by IS(B
i
,B

j
). All the norms involved in these structures are denoted
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by the single symbol ‖.‖. Let F : O → B2 be a Fréchet differentiable operator. The

problem to be solved by iterations is

Find ϕ∞ ∈ O such that F(ϕ∞) = 0.(1)

Let (B
k
)k≥0 be a sequence in IS(B1 ,B2). The so-called Newton type iterations read as

ϕ0 ∈ O, ϕ
k+1

:= ϕ
k
−B−1

k
F(ϕ

k
).(2)

The Newton-Kantorovich method corresponds to the choice

B
k

:= F ′(ϕ
k
) for all k ≥ 0.(3)

Let Or(ϕ) denote the open ball of B1 centered at ϕ with radius r > 0.

Theorem 2.3.A posteriori convergence of (2) with (3)

Suppose that O, F , ϕ0 ∈ O, c0 > 0, ` > 0 and m0 > 0 satisfy

(2.3.1) F ′(ϕ0) ∈ IS(B1 ,B2) , ‖F ′(ϕ0)
−1‖ ≤ m0 , and ‖F ′(ϕ0)

−1F(ϕ0)‖ ≤ c0 ,

(2.3.2) D0 := {ϕ ∈ B1 : ‖ϕ− ϕ0‖ ≤ 2c0} is included in O,

(2.3.3) ` is a Lipschitz constant for F ′ on D0,

(2.3.4) h0 := m0`c0 < 1/2.

Then, F has a unique zero ϕ∞ ∈ D0, and for all k ≥ 0,

‖ϕ
k+1
− ϕ∞‖ ≤

m0`

1− 2h0

‖ϕ
k
− ϕ∞‖2.

Proof. See [4]. Some improvements on classical error bounds for Newton’s method in a

more general abstract framework are given in [2].

Ker will denote the kernel (or null space) of a linear operator, and Ran its range (or

image space). Let F denote either R or C. We introduce the following linear operators:

UF : Fn×n → Fn×n, UF(M)(i, j) :=

 M(i, j) if i ≤ j,

0 otherwise,

LF : Fn×n → Fn×n, LF(M)(i, j) :=

 M(i, j) if j ≤ i,

0 otherwise,

DF : Fn×n → Fn×n, DF(M)(i, j) :=

 M(i, j) if i = j,

0 otherwise,
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for all M ∈ Fn×n, where U stands for upper, L for lower and D for diagonal. With

these notations, for instance, Ran(UF) is the space of all upper triangular matrices with

coefficients in F and Ker(UF) is the space of all strictly lower triangular matrices with

entries in F.

For topological purposes, we shall consider the following inner product:

〈(A1 ,A2 , . . . ,Am) , (Â1 , Â2 , . . . , Âm)〉 :=
m∑
i=1

tr(Â∗
i
A

i
)(4)

for any matrices A
i
, Â

i
in Fp×q and any integers m ≥ 1, p ≥ 1 and q ≥ 1. The corre-

sponding induced norm will denoted by

‖(A1 ,A2 , . . . ,Am)‖ :=

[
m∑
i=1

tr(A∗
i
A

i
)

]1/2
.

We suppose that the matrix Z is invertible, with no zero diagonal entry, and such that

P = I in Theorem 2.2.

3. The QR factorization

3.1. Defining the nonlinear operator F

Let A, B in Rn×n be the real part and the imaginary part of Z respectively:

A := <Z, B := =Z.

We use indifferently the notations

Z = A + iB ∈ Cn×n or Z = (A,B) ∈ Rn×n×Rn×n.

Following Theorem 2.1, there exist U∞, V∞ in Rn×n and X∞, Y∞ in Ran(UR), such that

Q∞ := U∞ + iV∞, R∞ := X∞ + iY∞

satisfy

Q∞Q
∗
∞ − I = O,(5)
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and

Q∞R∞ − Z = O,(6)

Note that if Q is such that QR = Z, and QQ∗ = I, and if the diagonal entries of Q are

not real then there exists a unitary diagonal matrix D such that Q∞ := QD has a real

diagonal entries and R∞ := D∗R is still upper triangular.

In order to help the reader to fix and clarify notations, we refer to the following table:

Role Symbol

Unitary matrix Q = U + iV

Increment of a unitary matrix E = H + iK

Upper triangular matrix R = X + iY

Increment of an upper triangular matrix F = R + i S

(7)

Some of these symbols may carry subscripts or upperscripts like in R∞ , X0 , Qk
, V̂ or H̃.

We consider the spaces

B1 := Rn×n×Ker(DR)×Ran(UR)×Ran(UR), B2 := Rn×n×Rn×n×Rn×n,

Equations (5) and (6) are equivalent to the following system:

U∞X∞ − V∞Y∞ − A = O,(8)

U∞Y∞ + V∞X∞ − B = O,(9)

UR(U∞U
>
∞ + V∞V

>
∞ − I) = O,(10)

UR(V∞U
>
∞ − U∞V

>
∞) = O,(11)

DR(V∞) = O.(12)

Equations (8) and (9) hold in Rn×n and equations (10) and (11) hold in Ran(UR). We

remark that, for all M, N in Rn×n,

UR(MN> − NM>) ∈ Ker(DR)

since DR(MN> − NM>) = O.
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Let F : B1 → B2 be the nonlinear operator defined by

F [U,V,X,Y] := [UX−VY−A,UY+VX−B,UR(UU>+VV>−I)+LR(VU>−UV>)].(13)

The problem of finding a QR factorization of Z reduces to

Find [U∞,V∞,X∞,Y∞] ∈ B1 such that F(U∞,V∞,X∞,Y∞) = [O,O,O].(14)

3.2. A Lipschitz Constant and the Invertibility of the Fréchet

Derivative

The Fréchet derivative of F at [Q,R] is given by

F ′(Q,R)(E,F) =
[
E(R+QF),UR

(
HU>+UH>+KV>+VK>

)
+LR

(
KU>+VH>−HV>−UK>

)]
Hence, for [Q,R], [Q̂, R̂], [E,F] ∈ B1,

(F ′(Q,R)−F ′(Q̂, R̂))(E,F) =
[
E(R−R̂)+(Q−Q̂)F,

UR
(
H(U−Û)>+(U−Û)H>+K(V−V̂)>+(V−V̂)K>

)
+

LR
(
K(U−Û)>+(V−V̂)H>−H(V−V̂)>−(U−Û)K>

)]
,

and

‖(F ′(Q,R)−F ′(Q̂, R̂))(E,F)‖≤
√

(‖E‖‖R−R̂‖+‖F‖‖Q−Q̂‖)2+4((‖H‖, ‖K‖).(‖U−Û‖, ‖V−V̂‖))2

≤
√
‖(E,F)‖2‖(Q− Q̂,R− R̂)‖2 + 4‖(H,K)‖2‖Q− Q̂‖2

≤
√

5‖(E,F)‖2‖(Q− Q̂,R− R̂)‖.

Thus we may set

` :=
√

5.(15)

To determine a sufficient condition for the Fréchet derivative F ′(U,V,X,Y) to be nonsin-

gular, we study the kernel of F ′(U,V,X,Y), where [U,V,X,Y] may be either ϕ0 or ϕ∞ .

The equation

F ′(U,V,X,Y)[H,K, S,T] = [O,O,O](16)
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translates into the following system:

HX + US− KY − VR = O,(17)

HY + UR + KX + VS = O,(18)

HU> + UH> + KV> + VK> = O,(19)

KU> + VH> − HV> − UK> = O,(20)

DR(K) = O.(21)

Theorem 3.1.If Z and DR(U∞) are invertible, then F ′(ϕ∞) is invertible.

Proof. Multiplying (18) by i and adding the result to (17) we get with the notations of

table (7),

F + GR∞ = O.(22)

Define

G := Q∗∞E.

Multiplying (20) by i and adding the result to (19) we get

G∗ = −G,(23)

because F and R∞ are upper triangular. The elements of the strict lower triangular part

of G satisfy:

For j < i ∈ [[2, n]],
j∑

k=1

G(i, k)R∞(k, j) = 0,

and since the diagonal entries of R∞ are nonzero, G(i, j) = 0 for j < i ∈ [[2, n]]. Since

G∗ = −G, G(j, i) = 0 = G(i, j) for j < i ∈ [[2, n]], and <G(l, l) = 0 for l ∈ [[1, n]].

Hence G = iD, where D ∈ Ran(DR). So

E = iQ∞D, H = −V∞D, K = U∞D.

Since DR(K) = O, U∞(j, j)D(j, j) = 0 for all j ∈ [[1, n]], and since the diagonal entries of

U∞ are nonzero, D = O. But D = O implies E = G = F = O. This proves that F ′(ϕ∞) is

invertible. This completes the proof.
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Remark 3.2. The proof of theorem 3.1 shows that the condition “for all i ∈ [[1, n]],

U∞(i, i) 6= 0 and V∞(i, i) = 0” can be relaxed to “for all i ∈ [[1, n]], Q∞(i, i) 6= 0” i.e. “for

all i ∈ [[1, n]], Q∞(i, i) 6= 0 if and only if V∞(i, i) = 0.”

3.3. Finding Constants m
0

and c
0

Suppose that Q0 = I, and R0 = UF(Z) are the initial points, so for given matrices

N ∈ Cn×n and J ∈ Rn×n, we are led to solve

F + ER0 = N,(24)

E + E∗ = M,(25)

DR(K) = O.(26)

where M := [UR(J) +LR(J>)−DR(J)] + i [LR(J)−UR(J>)]. Remark that ‖M‖ ≤
√

2‖J‖.

Because F and R0 are upper triangular, equation (24) is equivalent to

j∑
k=1

E(i, k)R0(k, j) = N(i, j),(27)

where j < i ∈ [[2, n]]. This implies that, for j ∈ [[1, n− 1]],

E(i, j) =
1

R0(j, j)

(
N(i, j)−

j−1∑
k=1

E(i, k)R0(k, j)

)
(28)

So for j ∈ [[1, n− 1]],

‖E
j+1,1

( : , j)‖22 ≤ (n− j)W(j)2‖N‖,

where

W(j) :=
1

|R0(j, j)|
+

j−1∑
k=1

W(k)|R0(k, j)|,
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and

Ep,q :=


E(p, q) E(p, q + 1) · · · E(p, n)

E(p+ 1, q) E(p+ 1, q + 1) · · · E(p+ 1, n)
...

...
. . .

...

E(n, q) E(n, q + 1) · · · E(n, n)

 ∈ C(n−p)×(n−q),

Nj :=


N(j + 1, j)

N(j + 2, j)
...

N(n, j)

 , Mj :=


M(j + 1, j)

M(j + 2, j)
...

M(n, j)

 ∈ C(n−j)×1,

and equations (25), (26) imply

E1,j+1(j, : ) = Mj − Ej+1,1( : , j),(29)

and for all i ∈ [[1, n]],

E(i, i) =
1

2
M(i, i).

So
n∑

i=1

|E(i, i)|2 ≤ 1

4
‖M‖2 ≤ 1

2
‖J‖2.

Also for all j ∈ [[1, n− 1]],

‖E
1,j+1

(j, : )‖2 = ‖Mj‖2 + ‖E
j+1,1

( : , j)‖2

≤
(√

2 +
√

(n− j)W(j)
)
‖(N, J)‖

Now

‖E‖2 =
n−1∑
j=1

(‖E
j+1,1

( : , j)‖22 + ‖E
1,j+1

(j, : )‖22) +
n∑

i=1

|E(i, i)|2,

So

‖E‖ ≤ ν‖(N, J)‖,

where

ν2 :=
1

2
+

n−1∑
j=1

[
(n− j)W(j)2 +

(√
2 +

√
(n− j)W(j)

)2]
.
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From equation (24),

‖F‖ ≤ ‖N‖+ ‖R0‖‖E‖ ≤ (1 + ‖R0‖ν)‖(N, J)‖.

Thus

‖F ′(ϕ0)
−1(N, J)‖ ≤

√
‖E‖2 + ‖F‖2 ≤

√
ν2 + (1 + ‖R0‖ν)2‖(N, J)‖.

We can set

m0 :=
√
ν2 + (1 + ‖R0‖ν)2.

To produce c0 we just estimate

‖F ′(ϕ0)
−1F(ϕ0)‖ ≤ m0‖F(ϕ0)‖ ≤ m0‖Z− R0‖ =: c0 .

Following Theorem 2.3,

‖Z− UF(Z)‖ < 1

2
√

5m2
0

is a sufficient condition for convergence.

The above computations can be simplied if Z is a quasi-diagonal matrix and if we take

R0 := DF(Z).

3.4. Performing Iterations

In order to simplify notations we will write

ϕ
k

:= (Q̃, R̃), the current iterate,

ϕ
k+1

:= (Q,R), the next iterate,

This means that the equations of the following subsection is to be solved for (Q,R).

3.4.1. Newton-Kantorovich
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The method defined by (2) and (3) amounts to solve for (Q,R) at each step k,

R + GR̃ = R̃ + Q̃−1Z,

G + G∗ = Q̃−1Q̃−∗ + I,

DR(=Q̃G) = O,

(30)

where G := Q̃−1Q.

3.5. Numerical Experiments

The following examples have been done with Matlab 6.5. For a given matrix W we

introduce the mesure of Departure from Unity:

DU(W) :=
‖W∗W − I‖
‖W‖2

and for a couple of matrices (W,Λ) the mesure of Relative Residual:

RelRes(W,Λ) :=
‖WΛ− Z‖
‖W‖‖Λ‖

.

Example 3.3.

Data:

Z :=


2.0 1.0 0.0 0.0

0.5 2.0 −0.5 0.0

0.0 1.0 2.0 0.0

−0.5 0.0 0.5 2.0

 .

Starting point:

Q0 := I, R0 := UF(Z).

Convergence table:
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Example 3.3 Newton-Kantorovich

Iteration DU(Qk) RelRes(Qk,Rk)

0 0.00E + 00 0.16E − 00

1 0.13E − 00 0.88E − 01

2 0.19E − 01 0.10E − 01

3 0.42E − 04 0.33E − 03

4 0.23E − 06 0.25E − 06

5 0.14E − 12 0.16E − 12

6 0.50E − 17 0.92E − 17

Example 3.4.

Data:

Z :=


1.0 0.5 0.0

0.5 2.0 0.5

0.0 0.5 3.0

 .

Starting point:

Q0 := I, R0 := DF(Z).

Convergence table:

Example 3.4 Newton-Kantorovich

Iteration DU(Qk) RelRes(Qk,Rk)

0 0.00E + 00 0.15E − 00

1 0.12E − 00 0.13E − 00

2 0.13E − 01 0.11E − 01

3 0.18E − 03 0.11E − 03

4 0.37E − 07 0.25E − 07

5 0.13E − 14 0.54E − 15

Example 3.5.
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Data:

Z := gallery(’prolate’,5) :=



0.5000 0.3183 0.0000 −0.1061 −0.0000

0.3183 0.5000 0.3183 0.0000 −0.1061

0.0000 0.3183 0.5000 0.3183 0.0000

−0.1061 0.0000 0.3183 0.5000 0.3183

−0.0000 −0.1061 0.0000 0.3183 0.5000


.

Starting point:

Q0 := I, R0 := I.

Convergence table:

Example 3.5 Newton-Kantorovich

Iteration DU(Qk) RelRes(Qk,Rk)

0 0.00E + 00 0.29E − 00

1 0.93E − 01 0.19E − 00

2 0.16E − 00 0.18E − 00

3 0.32E − 00 0.29E − 00

4 0.17E − 00 0.11E − 00

5 0.61E − 00 0.32E − 00

6 0.40E − 00 0.15E − 00

7 0.15E − 00 0.38E − 01

8 0.25E − 01 0.77E − 02

9 0.89E − 03 0.27E − 03

10 0.62E − 05 0.20E − 05

11 0.19E − 09 0.48E − 10

12 0.13E − 15 0.10E − 15

4. The (L + I)U factorization

4.1. Defining the nonlinear operator F
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Following Theorem 2.2, there exist L∞ in Ker(UC) and U∞ in Ran(UC), such that

(L∞ + I)U∞ − Z = O,(31)

Note that if L is such that LU = Z and if the diagonal entries of L are not one then

there exists an inversible diagonal matrix D such that L∞ := LD has unit diagonal entries

and U∞ := D−1U is still upper triangular.

In order to help the reader to fix and clarify notations, we refer to the following table:

Role Symbol

Strictly lower triangular matrix L

Increment of a strictly lower traingular matrix E

Upper triangular matrix U

Increment of an upper triangular matrix F

(32)

Some of these symbols may carry subscripts or upperscripts like in U∞, E0 , Lk, Û or F̃.

We consider the spaces

B1 := Ker(UC)×Ran(UC), B2 := Cn×n,

Equation (31) is equivalent to:

L∞U∞ + U∞ − Z∞ = O.(33)

Let F : B1 → B2 be the nonlinear operator defined by

F [L,U] := LU + U− Z.(34)

The problem of finding a (L + I)U factorization of Z reduces to

Find [L∞,U∞] ∈ B1 such that F(L∞,U∞) = O.(35)

4.2. A Lipschitz Constant and the Invertibility of the Fréchet

Derivative
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The Fréchet derivative of F at [L,U] is given by

F ′(L,U)(E,F) = EU + LF.

Hence, for [L,U], [L̂, Û], [E,F] ∈ B1,

(F ′(L,U)−F ′(L̂, Û))(E,F) = E(U− Û) + (L− L̂)F

and

‖(F ′(L,U)−F ′(L̂, Û)(E,F)‖ ≤ ‖E‖‖U− Û‖+ ‖F‖‖L− L̂‖ ≤ ‖(E,F)‖‖(L− L̂,U− Û)‖.

So we may set

` := 1.(36)

To determine a sufficient condition for the Fréchet derivative F ′(L,U) to be nonsingular,

we study the kernel of F ′(L,U), where [L,U] may be either ϕ0 or ϕ∞ . The equation

F ′(L,U)[E,F] = O(37)

translates into the following equation:

EU + LF + F = O.(38)

Theorem 4.1. If Z is invertible, then F ′(ϕ∞) is invertible.

Proof. From (38) we get

GU∞ + F = O,(39)

where

G := (L∞ + I)−1E.

It is clear G is a strictly lower triangular matrix as E is. And, since F and U∞ are upper

triangular, G = 0. Consequently, E = 0 and F = 0. This completes the proof.

4.3. Finding Constants m
0

and c
0
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Suppose that L0 = O, and U0 = UF(Z) are the initial points. For given matrices

N ∈ Cn×n we are led to solve

F + EU0 = N.(40)

Because F and U0 are upper triangular matrices, equation (40) is equivalent to

j∑
k=1

E(i, k)U0(k, j) = N(i, j),(41)

where j < i ∈ [[2, n]]. This implies that, for j ∈ [[1, n− 1]],

E(i, j) =
1

U0(j, j)

(
N(i, j)−

j−1∑
k=1

E(i, k)U0(k, j)

)
.(42)

So, for j ∈ [[1, n− 1]],

‖E
j+1,1

( : , j)‖22 ≤ (n− j)W(j)2‖N‖,

where

W(j) :=
1

|U0(j, j)|
+

j−1∑
k=1

W(k)|U0(k, j)|.

Now

‖E‖2 =
n−1∑
j=1

(‖E
j+1,1

( : , j)‖22.

So

‖E‖ ≤ ν‖N‖,

where

ν2 :=
n−1∑
j=1

(n− j)W(j)2.

From equation (40),

‖F‖ ≤ ‖N‖+ ‖U0‖‖E‖ ≤ (1 + ‖U0‖ν)‖N‖.

Thus

‖F ′(ϕ0)
−1(N)‖ ≤

√
‖E‖2 + ‖F‖2 ≤

√
ν2 + (1 + ‖U0‖ν)2‖N‖.

We can set

m0 :=
√
ν2 + (1 + ‖U0‖ν)2.
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To produce c0 we just estimate

‖F ′(ϕ0)
−1F(ϕ0)‖ ≤ m0‖F(ϕ0)‖ ≤ m0‖Z− U0‖ =: c0 .

Following Theorem 2.3,

‖Z− UF(Z)‖ < 1

2
√

5m2
0

is a sufficient condition for convergence.

As before, some simplifications are possible if Z is a quasi-diagonal matrix and if we

take U0 := DF(Z).

5. Performing Iterations

In order to simplify notations we will write

ϕ
k

:= (L̃, Ũ), the current iterate,

ϕ
k+1

:= (L,U), the next iterate,

This means that the equations of the following subsection is to be solved for (L,U).

5.1. Newton-Kantorovich

The method defined by (2) and (3) amounts to solve for (L,U) at each step k,

GŨ + U = (L̃ + I)−1(L̃Ũ + Z),(43)

where G := (L̃ + I)−1L.

5.2. Numerical Experiments

The following examples have been done with Matlab 6.5. For a couple of matrices

(W,Λ) we introduce the mesure of Relative Residual:

RelRes(W,Λ) :=
‖WΛ− Z‖
‖W‖‖Λ‖

.

Example 5.1.
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Data:

Z := gallery(’frank’,6) :=



6 5 4 3 2 1

5 5 4 3 2 1

4 4 3 2 1

3 3 2 1

2 2 1

1 1


.

Starting point:

L0 := 0, U0 := UF(Z).

Convergence table:

Example 5.1 Newton-Kantorovich

Iteration RelRes(Lk + I,Uk)

0 0.42E + 01

1 0.21E + 01

2 0.78E − 14

Example 5.2.

Data:

Z := gallery(’smok’,4) :=


0.00 + 1.00i 1.00

0 −1.00 + 0.00i 1.00

0 0 −0.00− 1.00i 1.00

1.00 0 0 1.00

 .

Starting point:

L0 := 0, U0 := DF(Z).

Convergence table:
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Example 5.2 Newton-Kantorovich

Iteration RelRes(Lk + I,Uk)

0 0.20E + 01

1 0.12E + 01

2 0.86E − 31

3 0.10E + 01

Example 5.3.

Data:

Z := gallery(’moler’,5) :=



1 −1 −1 −1 −1

−1 2 0 0 0

−1 0 3 1 1

−1 0 1 4 2

−1 0 1 2 5


.

Starting point:

L0 := O, U0 := I.

Convergence table:

Example 5.3 Newton-Kantorovich

Iteration RelRes(Lk + I,Uk)

0 0.71E + 01

1 0.24E + 02

2 0.75E + 01

3 0.31E + 01

4 0.13E + 01

5 0.29E − 14

6. Complexity and Final Comments
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In terms of flops (elementary operations are addition and multiplication) in real arith-

metic, each iteration has a cost of the order of n3. Details are shown in the following

table :

NK

QR 43n3 + 20n2 − 37n+ 14

(L+I)U 34n3 + 2n2 − 9n

Newton type iterations show to be an efficient scheme to compute in a few flops the

classical QR and (L+I)U factorizations when applied to a data matrix which is already

almost upper triangular. The convergence hypotheses include the invertibility of both the

data and its diagonal part. An application of these strategies is given in [1], where both

factorizations are used for spectral computation purposes.
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