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Abstract. Non-linear time series prediction is highly significant because most of the practical situations deals with

time series which are non-linear in nature. This study suggests a new time series prediction CEEMDAN-SVD-

LSTM model amalgamating Complete Ensemble EMD with Adaptive Noise, Singular Value Decomposition and

Long Short Term Memory network. Non-linear and non-stationary data can be analysed by deploying the above

model. CEEMDAN stage, SVD stage and LSTM stage are the main parts of the model. The break down of the data

into some IMF components plus a residue is carried out by CEEMDAN in the first stage. Each IMF component

and residue so obtained is de-noised by SVD in the second stage. Third stage deployed LSTM to predict all the

de-noised IMF components. The foretold values of the actual data is then obtained by adding all the predicted

IMF components and residue. We compared the model with other models such as LSTM model, EMD-LSTM

model, EEMD-LSTM model, CEEMDAN-LSTM model and EEMD-SVD-LSTM model. The results show that

the suggested CEEMDAN-SVD-LSTM model works better than other models in terms of efficiency in predicting

future values.
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1. INTRODUCTION

Non-linear time series prediction is highly significant in the modern age. ARIMA model

is a good tool that can be applied to model linear and stationary time series as in [1], [2] and

[3]. But ARIMA cannot be applied to model non-linear characteristics as it takes in to account

only linearly dependent variables and thus has limited applications, [4]. Badr et al. used Holt’s

linear trend, BATS and TBATS models to forecast internet web traffic, [5]. A vast collection

of non-linear prophecy models are developed by various researchers. Many models by making

use of Artificial intelligence like Genetic Algorithm, [6], [7], Artificial Neural Network, [8],

[9], [10], etc. are proposed. A hybrid prediction model to forecast Carbon monoxide ema-

nations by employing Imperialistic Competitive Algorithm and Artificial Neural Network was

constructed by Mahmoudzadeh,[11]. Some models use Adaptive Neuro-Fuzzy Inference Sys-

tem for predictions as in [12] for constructing a divination model of carbon monoxide ejection,

in [13] to predict the coefficient of heat transmission in distilled water pool boiling, in [14] to

predict daily carbon monoxide concentration in the atmosphere, etc. Rosadi et al. proposed a

non-linear autoregressive network with exogenous inputs (NARX) model to compare learning

algorithms for seasonal time series forecasting, [15]. Other forecasting approaches to assimilate

Empirical mode decomposition (EMD) that helps to examine the non-linear and non-stationary

data are available in the literature, [16], [17], [18] etc. EMD is established by Huang et al.,

[19]. But mode mixing is the major shortcoming of EMD, which can be minimized by utilizing

models incorporating Ensemble Empirical mode decomposition (EEMD). EEMD is put forth

by Wu and Huang, [20]. A few prediction models incorporating EEMD were proposed by var-

ious researchers like Jiang et al. [21], Bao et al. [22], Xie et al. [23] etc. Sameer Poongadan

and Lineesh MC proposed a model incorporating EEMD and SVD to predict Carbon monoxide

levels in the atmosphere in the Indian region [24]. CEEMDAN is superior to EMD and EEMD

in eliminating mode mixing and reducing computational cost. CEEMDAN has fewer number

of sifting iterations in comparison with EEMD. The core of EMD, EEMD and CEEMDAN is

to fragment the series into some Intrinsic Mode Functions (IMFs). IMF proposed by Huang et

al., [19], is a function having the conditions: (a) in the graph of the series, either there are equal
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numbers of zero crossings and extrema or their difference is one, (b) the envelopes defined by

the local extrema are at an equal distance from the axis.

Herein we propose a new time series prophecy technique encompassing CEEMDAN, SVD

and LSTM. The series is broken down in to some IMF components plus a residue using CEEM-

DAN followed by denoising using SVD. The components are converted into Hankel matrices

prior to denoising. A matrix with equal elements on the diagonals perpendicular to the main

diagonal is called Hankel matrix[25].

A c×d Hankel matrix is of the form

P =



q1 q2 q3 . . . qd

q2 q3 q4 . . . qd+1

q3 q4 q5 . . . qd+2

. . . .

. . . .

. . . .

qc qc+1 qc+2 . . . qn


where c+d−1 = n. Prediction is carried out by using LSTM network.

2. METHODOLOGY

2.1. Singular Value Decomposition (SVD). The SVD of a c× d real matrix P can be ex-

pressed as:

P = L D RT

where Lc×r and Rd×r are orthogonal matrices. The columns of L and R are called left and right

singular vectors respectively, [25]. The singular values are the diagonal entries of the r-diagonal

matrix D given by:

D =

 S 0

0 0


where S = diag(σ1, σ2, . . . ) with components such that σ1 ≥ σ2 ≥ . . . > 0.

The orthonormal eigenvectors of PP∗ and P∗P are respectively referred as left and right singular

vectors of P.
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2.2. Empirical Mode Decomposition (EMD). In 1998, Huang et al. developed EMD to

interpret a time series [19]. EMD is applicable to non-linear and non-stationary data. The EMD

aims to fragment the data into a finite number of IMF components.

The following steps gives the design of EMD:

Step 1: Detect every local maximum and local minimum in the data xn.

Step 2: By a cubic spline, build the envelope lM of local maxima and the envelope lm of local

minima.

Step 3: Calculate the mean value a1n of lM and lm,

i.e;

a1n = (lM + lm)/2

Step 4: Calculate i1n = xn−a1n

Step 5: If i1n meet all the characteristics of an IMF, fix i1n as the first IMF c1n , and replace the

original data by the residue r1n = xn− i1n . Otherwise, the original data xn can be replaced by

i1n .

Step 6: Replicate steps 1 to 5.

The process terminates if one of the ensuing situations met:

(i) the residue is not so much as a fixed value or turns a monotone function there by making

extraction of more IMF components impossible.

(ii) the current and previous sifting steps are same in number of zero crossings and extrema.

The process enables us to express the actual series xt as summation of n modes and a residue:

xt =
n

∑
j=1

c jt + rnt

where c jt denotes the IMF components and rnt is the last residue which is a constant or a trend.

2.3. Ensemble Empirical Mode Decomposition (EEMD). The signal analysis method

EEMD designed by Wu and Huang in 2009 [20] is accompanied with some noise. The method

intents to minimize mode mixing, which is accounted as the major short coming of EMD. Mode
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mixing is the appearance of vibrations of very unmatching magnitude in a mode, or the appear-

ance of very matching vibrations in disparate modes.

The following steps gives the design of EEMD:

Step 1: With the actual data xn, add separate realizations of white noise w j
n ( j = 1, 2, . . .,N)

to produce new data x j
n = xn +w j

n.

Step 2: Break down each x j
n ( j = 1, 2, . . .,N) into their modes IMF j

k , where k = 1, 2, . . .,K,

using EMD.

Step 3: Obtain the k-th mode IMFk of xn by averaging IMF j
k (for j = 1, 2, . . .,N):

IMFk =
1
N

N

∑
j=1

IMF j
k

2.4. Complete Ensemble Empirical Mode Decomposition With Adaptive Noise (CEEM-

DAN). CEEMDAN, developed by Torres et al., in 2011, can be deployed to interpret non-linear

and non-stationary data [26]. CEEMDAN is superior to EMD and EEMD in eliminating mode

mixing and reducing computational cost. The number of sifting iterations of CEEMDAN is less

than that of EEMD. The design of CEEMDAN is to add adaptive white noise in every level

of fragmentation and to calculate only residual signal to obtain each modal component with a

minimal reformation error.

The following steps gives the design of CEEMDAN:

If xn is the data, define Er(xn) as the r-th mode of xn procured by EMD. Let w j be white noise.

Step 1. Fragment N realizations xn + ε0w j
n, j = 1, ...,N, by EMD to find their first modes and

calculate

ĨMF1 =
1
N

N

∑
j=1

IMF i
1 = IMF1

Step 2. At stage 1 (m = 1) compute the first residue as

r1 = xn− ĨMF1

Step 3. Fragment realizations r1 + ε1E1(w
j
n), j = 1, ...,N, to obtain their first EMD modes and

compute the second mode:

ĨMF2 =
1
N

N

∑
j=1

E1(r1 + ε1E1(w j
n))
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Step 4. For m = 2, ...,M compute the m-th residue

rm = rm−1− ĨMFm

Step 5. Fragment realizations rm + εmEm(w
j
n), j = 1, ...,N, up to their first EMD mode and

compute the (m+1)-th mode:

ĨMFm+1 =
1
N

N

∑
i=1

E1(rm + εmEm(w j
n))

Step 6. Go to step 4 for next m

Steps 4 to 6 are carried out till the acquired residue can’t be further fragmented (the residue

does not possess at least two extrema). Then the terminal residue is:

R = xn−
M

∑
m=1

ĨMFm

Therefore, the actual signal xn can be written as:

xn =
M

∑
m=1

ĨMFm +R

2.5. SVD based Time series De-noising. SVD can be used to split a time series into clean

part and noise part [27]. Consider a signal, which is a mixture of clean signal and a white noise:

i.e., xn = xns +wnw

where xn, xns and wnw respectively denote the given signal, clean signal and white noise. We

can represent the series xn, n = 1,2, ..., j, in Hankel matrix as:

Q =



x1 x2 . . . xk

x2 x3 . . . xk+1

. . .

. . .

. . .

xl xl+1 . . . x j


Since xn = xns +wnw , the Hankel representation will be of the form

Q = Qs +Qw
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where Q, Qs and Qw are respectively the Hankel matrix representations of given signal, clean

signal and the white noise. The SVD decomposes Hankel matrix Q as:

Q = L D RT

where L and R are orthogonal matrices and D is a diagonal matrix with singular values as its

diagonal elements.

The uncoupling of the data matrix into signal and noise parts is effected by applying SVD.

Since the matrix is spanned by the set of singular vectors, the singular values close to zero

correspond to the noise part of the data.

The uncoupling of basis into clean and noisy subspaces can be viewed as:

Q = L D RT =
(

L1 L2

) D1 0

0 D2

 RT
1

RT
2


then

Q = L1 D1 RT
1 +L2 D2 RT

2

where D1 and D2 respectively offer the singular values representing clean and noise subspaces.

Thus we have

Qs = L1 D1 RT
1

and

Qw = L2 D2 RT
2

A threshold value has to be determined in D so that the singular values lower than the thresh-

old value is regarded as the noise subspace singular values and can so be served as zero. This

value is obtained by delineating the singular values against their index, marked by the juncture

point at which slope of the curve deviates strongly.

2.6. Long Short Term Memory (LSTM) network. The LSTM network is a deep learning

design possessing time-depending targets and inputs. It can efficiently analyse and predict time

series as it has the proficiency to solve long-term dependent problems. The memory cell is the

key component of the LSTM network. The basic ideas of the LSTM network are depicted in

[28].
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2.7. CEEMDAN-SVD-LSTM Prediction Model. Herein we propose a new time series fore-

casting approach encompassing CEEMDAN, SVD and LSTM network. The model is composed

of three parts which are CEEMDAN stage, SVD stage and LSTM stage. The first stage employs

CEEMDAN to decompose the data into a limited number of IMF components and a residue. To

de-noise the components SVD is applied in the second stage. The components are converted

into Hankel matrices prior to denoising. In the third stage, LSTM forecasts every de-noised

IMF component. All the forecast series are added to produce the prediction of the actual series.

The step-by-step diagram of the CEEMDAN-SVD-LSTM Prediction Model is illustrated in the

Figure 1. For programming and curve plotting we used the software Matlab 9.10.0.

FIGURE 1. Step-by-step diagram of CEEMDAN-SVD-LSTM Prediction Model
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3. EXPERIMENT SETUP

3.1. Data. The popular non-linear data Wolf’s Sunspot Numbers from the year 1700 to 1988

is used for analysis of the approach. There are 289 data points. The time series data plot is

given in Figure 2.

FIGURE 2. Sunspot data

3.2. Segregation of IMF Components. In the CEEMDAN stage, the series is broken down

into eight IMF components (IMF1, IMF2, . . . , IMF8) plus a residue using CEEMDAN. Figure

3 shows the delineation of all the IMF components drawn out by CEEMDAN. They are given

in the order of their separation in terms of the frequency from the highest to the lowest. The last

component indicates the trend of the data.
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FIGURE 3. The Extricated IMF components of Sunspot data by CEEMDAN

3.3. De-noising the IMF Components by SVD. All the IMF components (IMF1, IMF2, . .

. , IMF8) and residue are transformed into Hankel matrices in the second stage, SVD is then

applied separately to each component to de-noise the components. The series corresponding to

that portion of SVD with non-zero singular values will be the noise reduced portion of the data

(sum of the products of the non-zero singular values, left and right singular vectors).

3.4. Forecasting by LSTM. In the LSTM stage each component that is produced as a conse-

quence of SVD, is foretold by LSTM network. As training data we have taken the first 90 % of

the data points of the corresponding series and considered the last 10% as testing data in LSTM

network. The foretold values of the original data are created by adding all the foretold series of

the IMF components and residue series. The Figure 4 gives CEEMDAN-SVD modes and their

LSTM-based forecasts.
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FIGURE 4. Actual and predicted CEEMDAN-SVD modes by LSTM

3.5. Comparison. Five other models namely LSTM model, EMD-LSTM model, EEMD-

LSTM model, CEEMDAN-LSTM model and EEMD-SVD-LSTM model are used for com-

parison. In the LSTM model, LSTM is used directly to the data to foretell the series. In the

EMD-LSTM model, EMD is carried out first to the data and divided the same into five IMFs

plus a residue. LSTM is then used to foretell each IMF and residue and obtained the predicted

values of the original data by adding all the foretold series. In the EEMD-LSTM model, the

series is fragmented into eight IMF components plus a residue by EEMD, all components in-

cluding residue are foretold by LSTM and added them to procure the predicted values of the

original data. CEEMDAN-LSTM model produced eight IMF components and a residue by ap-

plying CEEMDAN to the series, foretold each of the components and residue by LSTM and
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then added them to produce the foretold series of the actual series. EEMD-SVD-LSTM model

generated eight IMF components and residue by EEMD followed by denoising of each compo-

nent and residue by SVD. Then LSTM foretold each of the components and residue. Adding

them we obtained the foretold series of the original series. Figures 5 through 8 respectively

illustrates EMD, EEMD, CEEMDAN and EEMD-SVD modes with forecasts by LSTM.

FIGURE 5. Actual and predicted EMD modes by LSTM
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FIGURE 6. Actual and predicted EEMD modes by LSTM
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FIGURE 7. Actual and predicted CEEMDAN modes by LSTM
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FIGURE 8. Actual and predicted EEMD-SVD modes by LSTM



16 SAMEER POONGADAN, M.C. LINEESH

3.6. Performance measures. The validity of prediction models are quantified using various

performance measures. Herein Root Mean Squared Error (RMSE) and Mean Absolute Error

(MAE) are deployed to ascertain the prediction validity. RMSE and MAE are stated as:

RMSE =

√
1
m

m

∑
i=1

(yi− ŷi)2

MAE =
1
m

m

∑
i=1
|yi− ŷi|

4. RESULTS AND DISCUSSION

A hybrid CEEMDAN-SVD-LSTM model is proposed in this study to forecast the non-linear

sunspot data. The result obtained is compared with five other techniques like LSTM, EMD-

LSTM, EEMD-LSTM, CEEMDAN-LSTM and EEMD-SVD-LSTM. The comparison of the

suggested model with other models in terms of performance measures is depicted in Table

1. The plots of the values of Observed and Predicted Sunspot data and the errors by LSTM,

EMD-LSTM, EEMD-LSTM, CEEMDAN-LSTM, EEMD-SVD-LSTM and CEEMDAN-SVD-

LSTM models are displayed in the Figure 9.

FIGURE 9. Observed versus Predicted Sunspot data and the Errors by

LSTM, EMD-LSTM, EEMD-LSTM, CEEMDAN-LSTM, EEMD-SVD-LSTM

and CEEMDAN-SVD-LSTM models
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TABLE 1. Comparison of the proposed model with other models

Sl. No. Model RMSE MAE

1 LSTM 27.5912 19.8306

2 EMD-LSTM 25.9507 20.6009

3 EEMD-LSTM 12.8960 9.9113

4 CEEMDAN-LSTM 12.4363 9.2752

5 EEMD-SVD-LSTM 10.9183 7.9438

6 CEEMDAN-SVD-LSTM 8.867 7.2171

5. CONCLUSION

Time series forecasting finds wide applications in different fields. The non-linear time se-

ries prediction is of utmost significance in the current era as it can be utilized for planning

and designing future in various sectors. This study introduces a hybrid non-linear time series

prediction CEEMDAN-SVD-LSTM model which encompasses CEEMDAN, SVD and LSTM

Network to prophesy non-linear time series data. The comparison of results obtained using

proposed CEEMDAN-SVD-LSTM model with prophecy models like LSTM, EMD-LSTM,

EEMD-LSTM, CEEMDAN-LSTM and EEMD-SVD-LSTM models show that it surpasses the

others. The drawbacks of the above model includes the appearance of residue noise in CEEM-

DAN modes and the presence of factitious modes.
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