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1. INTRODUCTION 

 Recently, start-ups in the food delivery industry have experienced a boom. One of the 

reasons for this growth is a series of lockdowns due to covid-19. Almost two-thirds of the world's 

logistics costs go into transportation planning. The vehicle routing problem is used to solve 

delivery decisions such as the sequence of orders, choice of vehicles, delivery routes, and exact 

time of delivery, and so on. The main objective here is to minimize the total duration of routes, 

the total distance travelled, the number of vehicles used, and to address some of the 

accompanying challenges including rush hour, no rush hour, vehicle capacity, and refrigeration 
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[1]. The metric spaces and distance functions defined on these concepts are continuously 

evolving, where distance is usually defined as the difference between two points, that is, mod (x - 

y) such that the distance between the same points is zero. However, if the distance function is 

max (x, y), then the distance between the same points is not zero.  

 In addressing the aforementioned issues, this work is organized as follows. In Main section, 

a metric space is considered with non-zero distance between the same points. The Hardy-Rogers 

contraction principle was modified to consider three self-maps under different contractions, such 

as Banach, Kannan, Reich, and modified Hardy-Rogers. The existence of coincidence points and 

the uniqueness of the point of coincidence are further proved such that if the self-maps are 

weakly compatible, then there is a unique common fixed point. This theorem is applied to 

examples for verification. 

 

2. PRELIMINARIES 

Definition 2.1 [2] Let (M, 𝑑) be a metric space and A, B : M → M be two single valued maps. 

The maps A and B have coincidence point 𝑥 if A𝑥 = B𝑥 = w for 𝑤 ∈ M, and 𝑤 is called a point of 

coincidence of A and B. If 𝑤 = 𝑥, then 𝑥 is called a common fixed point of A and B.  

Definition 2.2 [3] In 2021, Joshi et al. introduced the M𝑣
b - metric space. 

 For a non-empty set M with a real number s ≥ 1 and a map m𝑣
b: M x M  →  ℝ+ satisfying 

   1) m𝑣
b (x, y) = m𝑣

b (x, x) = m𝑣
b (y, y) <=> x = y, 

   2) m𝑣 x,y
b  ≤ m𝑣

b (x, y)  where m𝑣 x,y
b  = min{m𝑣

b (x, x), m𝑣
b (y, y)},  

        and M𝑣 x,y
b  = max{m𝑣

b (x, x), m𝑣
b (y, y)}. 

   3) m𝑣
b (x, y) = m𝑣

b (y, x) 

   4) [m𝑣
b (x, y)− m𝑣 x,y

b ] ≤ s { [m𝑣
b (x,z1)− m𝑣 x,𝑧1

b  ] + [m𝑣
b (z1, z2)− m𝑣 𝑧1,𝑧2

b ] +.......+    

       [m𝑣
b (zv, y)− m𝑣 𝑧𝑣,y

b ] }− ∑ m𝑣
b 𝑣

𝑗=1 (z j, z j). 

   where x, z1, z2, ... zv, y are distinct and belong to M, the pair (M, m𝑣
b) is a M𝑣

b - metric space. 

Definition 2.3 [3]  

 i) A sequence {yn} in (M, m𝑣
b) is m𝑣

b-convergent to y ∈ M iff  

            lim
n→∞

(m𝑣
b(yn, y) − m𝑣 yn,y

b )  = 0 

 ii) A sequence {yn} in (M, m𝑣
b) is m𝑣

b- Cauchy Sequence  
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       iff lim
n,m→∞

(m𝑣
b(yn,  ym) − m𝑣 yn,ym

b )  and  lim
n,m→∞

(M𝑣 yn,ym
b −  m𝑣 yn,ym

b )                      

  exists and are finite. 

 iii) If each m𝑣
b - Cauchy sequence {yn} in (M, m𝑣

b) converges to y ∈ M such that  

   lim
n,m→∞

(m𝑣
b (yn,  ym)   −  m𝑣 yn,ym

b  ) = 0  and  lim
n,m→∞

(M𝑣 yn,ym
b  −  m𝑣 yn,ym

b ) = 0.  

Lemma 2.4 [3] Let (M, m𝑣
b) be an  M𝑣

b - metric space with coefficient s ≥ 1 and   

self map ℬ: M→  M satisfies m𝑣
b (ℬx, ℬy) ≤  𝜇  (m𝑣

b (x, y) with 0 < µ < 
1

2s
  and x, y 𝜖 M 

Consider the sequence {yn} defined by yn+1 =  ℬyn. If yn → y as n → ∞, then ℬyn → ℬy as n →

∞. 

Theorem 2.5 [3] Let (M, m𝑣
b) be an  M𝑣

b - complete metric space with coefficient s ≥ 1 and 

self-map ℬ: M → M satisfies m𝑣
b (ℬx, ℬy) ≤  𝜇 [m𝑣

b (x,    ℬx) + m𝑣
b (y,  ℬy)] with µ < 

1

2s
   

and x, y  𝜖 M. Then, ℬ has a unique fixed point y* such that m𝑣
b (y*, y*) = 0 and the sequence of 

iterates { ℬ𝑛y0} ⊆ M converges to y* ∈ M. 

Definition 2.6 [2] Let (M, 𝑑) be a metric space and A, B: M → M be two single valued maps. 

The maps A and B are weakly compatible if they commute at their coincidence points, that is  

Ax = Bx implies that ABx = BAx. 

Definition 2.7 [4] Let f: X → X be a self-map and (X, d) be a metric space. 

1) The mapping f is called Banach-type contraction  

     if for all x, y in X, and 𝛼 𝜖 [0, 1) such that 𝛼 < 1 and 

   d (fx, fy) ≤ 𝛼 d (x, y). 

 2) The mapping f is called Kannan-type contraction 

     if for all x, y in X, and 𝛽, 𝛾 𝜖 [0, 1) such that 𝛽 + 𝛾 < 1 and  

  d (fx, fy) ≤ 𝛽 d (x, fx) +  𝛾 d (y, fy) 

3) The mapping f is called Reich-type contraction 

     if for all x, y in X, and 𝛼, 𝛽, 𝛾 𝜖 [0, 1) such that 𝛼 + 𝛽 + 𝛾 < 1 and 

    d (fx, fy) ≤ 𝛼 d (x, y) + 𝛽 d (x, fx) + 𝛾 d (y, fy). 

4) The mapping f is called Hardy-Rogers-type contraction 

    if for all x, y in X and 𝛼, 𝛽, 𝛾, 𝛿, 𝜂 𝜖 [0, 1) such that 𝛼 + 𝛽 + 𝛾 + 𝛿 + 𝜂 < 1 and 

     d (fx, fy) ≤ 𝛼 d (x, y) + 𝛽 d (x, fx) + 𝛾 d (y, fy) + 𝛿 d (x, fy) + 𝜂 d (y, fx). 

Examples 2.8: 
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i) If W = [0, 1], and a map is defined as m𝑣
b(x, y) = |x − y|. 

   By simple calculation, it can be shown that the map is an M𝑣
b −metric space for any v and s, 

    it is also a metric space. 

ii) If W = [0, 1] and the map is defined as m𝑣
b(x, y) = |x − y| + max {|x|, |y|}. 

     It is clear that the map is a M𝑣
b −metric space for any v and s. 

     This is not a metric space because m𝑣
b(x, x) =  |x| and m𝑣

b (x, x) ≠ 0. 

iii) Every metric space is M𝑣
b −metric space,  

      but not every M𝑣
b −metric space is a metric space. 

iv) If W = [0, 1] and a map is defined as m𝑣
b(x, y) = |x − y| + |x|. 

 It is not an M𝑣
b −metric space. It does not satisfy the symmetry condition 

     m𝑣
b(x, y) =  |x − y| + |x| ≠ m𝑣

b(y, x) = |y − x| + |y|. 

v) Detailed information can be found in the literature [1-8] for the reference. 

 

3. MAIN RESULTS 

3.1 Definition. We are introducing a modified Hardy -Rogers contraction principle for three 

self-maps in M𝑣
b −complete metric space as  

m𝑣
𝑏 (Px, Qy) ≤ 𝛼m𝑣

𝑏 (Rx, Ry) + 𝛽m𝑣
𝑏 (Px, Rx) + 𝛾m𝑣

𝑏 (Qy, Ry) + 𝛿m𝑣
𝑏 (Rx, Qx) + 𝜂m𝑣

𝑏 (Py, Ry). 

whereas the Hardy-Rogers contraction principle is given in [2] as 

m𝑣
𝑏 (Px, Qy) ≤ 𝛼m𝑣

𝑏 (Rx, Ry) + 𝛽m𝑣
𝑏 (Px, Rx) + 𝛾m𝑣

𝑏 (Qy, Ry) + 𝛿m𝑣
𝑏 (Rx, Qy) + 𝜂m𝑣

𝑏 (Px, Ry). 

3.2 Theorem:   

 Let (U, m𝑣
𝑏) be an  M𝑣

b − complete metric space with a real number s ≥ 1 and 𝜈 ∈ ℕ. 

Suppose P, Q, R : U → U are the self-mappings satisfying a modified Hardy -Rogers contraction 

principle. 

m𝑣
𝑏 (Px, Qy)≤ 𝛼m𝑣

𝑏 (Rx, Ry) + 𝛽m𝑣
𝑏 (Px, Rx) + 𝛾m𝑣

𝑏 (Qy, Ry) + 𝛿m𝑣
𝑏 (Rx, Qx) + 𝜂m𝑣

𝑏 (Py, Ry). 

for all x, y 𝜖 U where 𝛼, 𝛽, 𝛾, 𝛿, 𝜂 𝜖 [0, 1) such that (𝛼 + 𝛽 + 𝛾 + 𝛿 + 𝜂) < 1/s. 

If P (U) ⊆ R (U), Q (U) ⊆ R (U), and either P (U) union Q (U) or R (U) is a complete 

subspace of U, then P, Q, R have a unique point of coincidence in U. Moreover, if (P, R) and (Q, 

R) are weakly compatible, then P, Q, and R have a unique common fixed point.  

Proof 

Let x0 be an arbitrary point in U. x1 ∈ U exists such that y0 = Px0 = Rx1 because P (U) ⊆ R (U) 

and x2 ∈ U exists such that y1 = Qx1 = Rx2 because Q (U) ⊆ R (U). 

 In this way we collect the sequence {yn} in U where 
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   y2n = Px2n = Rx2n+1  and y2n+1 = Qx2n+1 = Rx2n+2 for all n ≥ 0. 

For y2n, y2n+1. 

m𝑣
𝑏 (y2n, y2n+1) = m𝑣

𝑏 (Px2n, Qx2n+1) 

               ≤  𝛼m𝑣
𝑏 (Rx2n, Rx2n+1) + 𝛽m𝑣

𝑏 (Px2n, Rx2n) + 𝛾m𝑣
𝑏 (Qx2n+1, Rx2n+1)  

           + 𝛿m𝑣
𝑏 (Rx2n, Qx2n) + 𝜂m𝑣

𝑏 (Px2n+1, Rx2n+1) 

m𝑣
𝑏 (y2n, y2n+1) ≤ 𝛼m𝑣

𝑏 (y2n-1, y2n) + 𝛽m𝑣
𝑏 (y2n, y2n-1) + 𝛾m𝑣

𝑏 (y2n+1, y2n) + 𝛿m𝑣
𝑏 (y2n-1, y2n) + 

          𝜂m𝑣
𝑏 (y2n+1, y2n) 

(1 − 𝛾 − 𝜂) m𝑣
𝑏 (y2n, y2n+1) ≤ (𝛼 + 𝛽 + 𝛿) m𝑣

𝑏 (y2n-1, y2n) 

             m𝑣
𝑏 (y2n, y2n+1) ≤ 𝜁m𝑣

𝑏 (y2n-1, y2n)              where 𝜁 =
(𝛼+𝛽+𝛿)

(1−γ−η)
< 1 

Using the same process we can show for different values of yn, ym  

    m𝑣
𝑏 (yn, ym) ≤ 𝜁 m𝑣

𝑏 (yn-2, ym) ≤ 𝜁𝜁 m𝑣 
𝑏 (yn-4, ym) 

Depending on whether n is even or odd this reduces either to 

      𝜁(n/2) m𝑣
𝑏 (y0, ym) or  𝜁(n-1)/2 m𝑣

𝑏 (y1, ym) 

Again for m (even or odd) it further reduces to 

   𝜁(n+m)/2 m𝑣
𝑏 (y0, y0) or 𝜁(n-1+m)/2 m𝑣

𝑏 (y1, y0)  

         or 𝜁(n+m-1)/2 m𝑣
𝑏 (y0, y1) or 𝜁(n-1+m-1)/2 m𝑣

𝑏 (y1, y1)  where (𝜁 < 1) 

If Limit n, m→ ∞ is applied then we get lim
n,m→∞

m𝑣
b (yn, ym) → 0, lim

n→∞
  m𝑣

b (yn, yn) → 0                    

 lim
n,m→∞

m𝑣
b (yn, ym) − m𝑣ynym

b → 0,   lim
n,m→∞

 M𝑣yn,ym
b → 0, lim

n,m→∞
M𝑣yn,ym

b − m𝑣ynym
b → 0 

This implies that {yn} in U is a m𝑣
𝑏 −Cauchy Sequence. 

Given that (U, m𝑣
𝑏) is an M𝑣

b −complete metric space and {yn} is a Cauchy sequence  

then there exists a limit in U. Let the limit be l. 

Given that R (U) is a complete subspace of U and P (U) ⊆ R (U).  

There exists l ∈ R(U) such that limit y2n+1 = limit Rx2n+2 = l  

we can always find x such that Rx = l. To prove Px = l. It is clear from definition that 

[m𝑣
b (Px, l) −  m𝑣 Px,𝑙

b ] ≤ 0, and  [m𝑣
b (Px, l) −  m𝑣 Px,𝑙

b ] ≥ 0. Thus [m𝑣
b (Px, l) −  m𝑣 Px,𝑙

b ] = 0 

Hence we obtain Px = l and l = Rx = Px. x is the coincidence point of (P, R). 

For Q (U) ⊆ R (U), we can show that l = Qx = Rx. x is the coincidence point of (Q, R). 

Now, we obtain l = Rx = Px = Qx. x is the coincidence point of P, Q, and R. 

Similarly, the proof follows if P (U) union Q (U) is a complete subspace of U. 
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Coincidence points exist in P, Q, R, and the point of coincidence is l. 

Let there be another point of coincidence say l', l ≠ l', and l' = Rx' = Px' = Qx'. 

m𝑣
b(l, l') = m𝑣

b (Px, Qx') 

   ≤ αm𝑣 
b (Rx, Rx') + βm𝑣

b (Px, Rx) + γm𝑣
b (Qx', Rx') + δm𝑣

b (Rx, Qx) + ηm𝑣
b (Px', Rx') 

    ≤ αm𝑣 
b (l, l') + βm𝑣 

b  (l, l) + γm𝑣
b (l', l') + δm𝑣

b  (l, l) + ηm𝑣
b  (l', l')   

   ≤ αm𝑣
b (l, l') + βm𝑣

b  (l, l') + γm𝑣
b (l, l') + δm𝑣

b  (l, l') + ηm𝑣
b  (l, l') 

    ≤{α + β + γ + δ + η} m𝑣
b  (l, l') where  (𝛼 + 𝛽 + 𝛾 + 𝛿 + 𝜂 <  1/𝑠 < 1) 

      < m𝑣
b (l', l')  This is a contradiction. 

Hence, l = l' and l is a unique point of coincidence of P, Q, and R. 

Given that (P, R) and (Q, R) are weakly compatible, that is, 

   Pl = PRx = RPx = Rl, and let f1 = Pl, then => f1 = Pl = PRx = RPx = Rl   

   Ql = QRx = RQx = Rl, and let f2 = Ql, then => f2 = Ql = QRx = RQx = Rl   

We get Rl = Pl = Ql = f1 = f2. From the uniqueness proof for the point of coincidence, we obtain 

 f1 = f2 = l and Rl = Pl = Ql = l, where l is the common fixed point for P, Q, and R. 

Hence the proof of the theorem is complete. 

 

4. COROLLARIES 

4.1 Corollary Banach-type Contraction: 

Let (U, m𝑣
𝑏) be an M𝑣

b −complete metric space with a real number s ≥ 1 and 𝜈 ∈ ℕ. 

Suppose P, Q, R : U → U are the self-mappings satisfying the Banach-type contraction principle 

    m𝑣
𝑏 (Px, Qy)  ≤  𝛼m𝑣

𝑏 (Rx, Ry) 

for all x, y 𝜖 U where 𝛼 𝜖 [0, 1), such that 𝛼 < 1/s. 

If P (U) ⊆ R (U), Q (U) ⊆ R (U), and either P (U) union Q (U) or R (U) is a complete 

subspace of U, then P, Q, R have a unique point of coincidence in U. Moreover, if (P, R) and (Q, 

R) are weakly compatible, then P, Q, and R have a unique common fixed point. 

Proof: Substituting 𝛽 = 𝛾 = 𝛿 = 𝜂 = 0 in Theorem 3.2, we obtain the proof of this corollary. 

4.2 Corollary Kannan-type Contraction: 

Let (U, m𝑣
𝑏) be an M𝑣

b −complete metric space with a real number s ≥ 1 and 𝜈 ∈ ℕ.  

Suppose P, Q, R : U → U are the self-mappings satisfying a Kannan-type contraction principle. 

      m𝑣
𝑏 (Px, Qy) ≤ 𝛽m𝑣

𝑏 (Px, Rx) + 𝛾m𝑣
𝑏 (Qy, Ry).  

for all x, y 𝜖 U where 𝛽, 𝛾 𝜖 [0, 1) such that 𝛽 + 𝛾 < 1/s. 

If P (U) ⊆ R (U), Q (U) ⊆ R (U), and either P (U) union Q (U) or R (U) is a complete 



7 

COMMON FIXED POINT THEOREMS IN M𝑣
b − COMPLETE METRIC SPACE 

subspace of U, then P, Q, R have a unique point of coincidence in U. Moreover, if (P, R) and (Q, 

R) are weakly compatible, then P, Q, and R have a unique common fixed point. 

Proof: Substituting 𝛼 = 𝛿 = 𝜂 = 0 in Theorem 3.2, we obtain the proof of this corollary. 

4.3 Corollary Reich-type Contraction: 

Let (U, m𝑣
𝑏) be an M𝑣

b −complete metric space with a real number s ≥ 1 and 𝜈 ∈ ℕ. 

Suppose P, Q, R : U → U are the self-mappings satisfying a Reich-type contraction principle. 

     m𝑣
𝑏 (Px, Qy) ≤ 𝛼m𝑣

𝑏 (Rx, Ry) + 𝛽m𝑣
𝑏 (Px, Rx) + 𝛾m𝑣 

𝑏 (Qy, Ry).  

for all x, y 𝜖 U where 𝛼, 𝛽, 𝛾 𝜖 [0, 1) such that  𝛼 + 𝛽 + 𝛾 < 1/s. 

If P (U) ⊆ R (U), Q (U) ⊆ R (U), and either P (U) union Q (U) or R (U) is a complete 

subspace of U, then P, Q, R have a unique point of coincidence in U. Moreover, if (P, R) and (Q, 

R) are weakly compatible, then P, Q, and R have a unique common fixed point. 

Proof: Substituting  𝛿 = 𝜂 = 0 in Theorem 3.2, we obtain the proof of this corollary. 

 

5. EXAMPLES 

5.1 problem to verify the Theorem 3.2 

 Let U = [0, 1] and the map m𝑣
b : U  → U be a M𝑣

b-complete metric space with 

 m𝑣
b (x, y) = (max{x, y})2 for s = 1 and v = 2 (it is a M𝑣

b-complete metric space for any s and v). 

 In addition, m𝑣
b (x, x) = x2 (note m𝑣

b (x, x) ≠ 0 distance function between same point is not 

zero) 

Given P, Q, and R are self-maps defined on U with Px = x/8, Qx = x/4, and Rx = x/2.  

Solution:  

P(U) = [0,1/8]; Q(U) = [0, 1/4]; R(U) = [0, 1/2] implies P(U) and Q(U) ⊆ R(U). 

PRx = Px/2 = x/16 and RPx = Rx/8 = x/16 

QRx = Qx/2 = x/8 and RQx = Rx/4 = x/8 imply that (P, R) and (Q, R) are weakly compatible. 

For some x < y   {x/8 < y/8 < y/4 }, 

m𝑣
b (Px, Qy)≤ αm𝑣

b (Rx, Ry) + βm𝑣
b (Px, Rx) + γm𝑣

b (Qy, Ry) + δm𝑣
b (Rx, Qx) + ηm𝑣

b (Py, Ry). 

m𝑣
b (x/8,y/4)≤ αm𝑣

b  (x/2,y/2) + βm𝑣
b (x/8,x/2) + γm𝑣

b (y/4,y/2) + δm𝑣
b (x/2,x/4) + ηm𝑣

b (y/8, 

y/2) 

       (y/4)2 ≤ α (y/2)2 + β (x/2)2 + γ (y/2)2 + δ (x/2)2 + η (y/2)2 ≤ (𝛼 + 𝛾 + 𝜂) y2/4   

It is true for  𝛼 = 𝛾 = 𝜂 =
1

4
      𝑎𝑛𝑑      𝛽 = 𝛿 = 0 

Next, for x (same value x = y ) 
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m𝑣
b (Px, Qx)≤ αm𝑣

b (Rx, Rx) + βm𝑣
b (Px, Rx) + γm𝑣

b (Qx, Rx) + δm𝑣
b (Rx, Qx) + ηm𝑣

b (Px, Rx). 

m𝑣
b (x/8, x/4)≤ αm𝑣 

b (x/2,x/2) + βm𝑣
b (x/8,x/2) + γm𝑣

b (x/4,x/2) + δm𝑣
b (x/2,x/4) + ηm𝑣

b (x/8, x/2) 

    (x/4)2 ≤ α (x/2)2 + β (x/2)2 + γ (x/2)2 + δ (x/2)2 + η (x/2)2 ≤ (𝛼 + 𝛽 + 𝛾 + 𝛿 + 𝜂) x2/4  

It is true for 1 > (𝛼 + 𝛽 + 𝛾 + 𝛿 + 𝜂) >
1

4
 and in particular for 𝛼 = 𝛾 = 𝜂 =

1

4
  𝑎𝑛𝑑   𝛽 = 𝛿 = 0 

This example satisfies all the properties of Theorem 3.2. 

P, Q, and R have one common and unique fixed point “0”. 

 

5.2 Problem 

Verify the Theorem 3.2. 

Let X = {a, b, c, d}and define the map m𝑣
b: X × X→ ℝ2.  

  i) m𝑣
b (x, y) = (0, 0) for x = y. 

 ii) m𝑣
b (x, y) = m𝑣

b (y, x) 

iii) m𝑣
b (a, b) = (3, 6) 

iv) m𝑣
b (a, c) = m𝑣

b (b, c) = (1, 2) 

 v) m𝑣
b (a, d) = m𝑣

b (b, d) = m𝑣
b (c, d) = (2, 4). 

And self-maps P, Q, R : X  → X such that 

1) P (x) = Px = c    for all x  

2) Q (x) = Qx = c   for x ≠ d, and Q (x) = Qx = a for x = d, 

3) R (x) = Rx = x   for all x 

Solution: The map m𝑣
b: X × X → ℝ2 is an M𝑣

b  complete metric space for s = 1 and v = 2 and 

it's mapping is expressed in the Table 1. 

 

m𝑣
b a b c d 

a (0, 0) (3, 6) (1, 2) (2, 4) 

b (3, 6) (0, 0) (1, 2) (2, 4) 

c (1, 2) (1, 2) (0, 0) (2, 4) 

d (2, 4) (2, 4) (2, 4) (0, 0) 

Table 1.The mapping m𝑣
b   
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Three self maps are given below as  

 

  X            X         X        X         X         X 

    P           Q          R     

 

P (X) = c; Q (X) = {a, c}, and R (X) = {a, b, c, d} implies P (X), Q (X) ⊆ R (X). 

for all x ∈ X, PRx = Px = c, and RPx = Rc = c implies that (P, R) is weakly compatible. 

for all x ∈ X, x ≠ d, QRx = Qx = c, and RQx = Rc = c. 

for all x = d, QRd = Qd = a, and RQd = Ra = a implies that (Q, R) is weakly compatible. 

m𝑣
b (Px, Qy) ≤ αm𝑣

b (Rx, Ry) + βm𝑣
b (Px, Rx) + γm𝑣

b (Qy, Ry) + δm𝑣
b (Rx, Qx) + ηm𝑣

b (Py, Ry). 

This inequality is true if 𝛼 = 𝛽 = 𝛾 = 𝜂 =
1  

5
  𝑎𝑛𝑑  𝛿 = 0. The inequality can be verified for all 

possible values of x and y. Some of the values of x and y are given in the Table 2 and Table 3, for 

the reference. All the properties of Theorem 3.2 are satisfied. And it is clear that the common 

fixed point of P, Q, R is “c”. 

 

(x, y) (Px, Qy) (Rx, Ry) (Px, Rx) (Qy, Ry) (Rx, Qx) (Py, Ry) 

(a, b) (c, c) (a, b) (c, a) (c, b) (a, c) (c, b) 

(a, c) (c, c) (a, c) (c, a) (c, c) (a, c) (c, c) 

(a, d) (c, a) (a, d) (c, a) (a, d) (a, c) (c, d) 

(b, c) (c, c) (b, c) (c, b) (c, c) (b, c) (c, c) 

(b, d) (c, a) (b, d) (c, b) (a, d) (b, c) (c, d) 

(c, d) (c, a) (c, d) (c, c) (a, d) (c, c) (c, d) 

(d, d) (c, a) (d, d) (c, d) (a, d) (d, a) (c, d) 

Table 2. Different values of x and y. 

 

 

 

a 

b 

c 

d 

 

 

 

a 

b 

c 

d 

 

a 

b 

c 

d 

 

a 

b 

c 

d 

 

a 

b 

c 

d 

 

a 

b 

c 

d 
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(x, y) m𝑣
b (Px, Qy) m𝑣

b (Rx, Ry) m𝑣
b (Px, Rx) m𝑣

b (Qy, Ry) m𝑣
b (Rx, Qx) m𝑣

b (Py, Ry) 

(a, b) (0, 0) (3, 6) (1, 2) (1, 2) (1, 2) (1, 2) 

(a, c) (0, 0) (1, 2) (1, 2) (0, 0) (1, 2) (0, 0) 

(a, d) (1, 2) (2, 4) (1, 2) (2, 4) (1, 2) (2, 4) 

(b, c) (0, 0) (1, 2) (1, 2) (0, 0) (1, 2) (0, 0) 

(b, d) (1, 2) (2, 4) (1, 2) (2, 4) (1, 2) (2, 4) 

(c, d) (1, 2) (2, 4) (0, 0) (2, 4) (0, 0) (2, 4) 

(d, d) (1, 2) (0, 0) (2, 4) (2, 4) (2, 4) (2, 4) 

Table 3. For (x, y) corresponding m𝑣
b  map values(ignored obvious cases such as (Px, Qy) = (c, c)) 

Note: 

In Example 5.2, if Qd = d then Theorem 3.2, cannot be applied because the inequality 

m𝑣
b (Px, Qy) ≤ αm𝑣

b (Rx, Ry) + βm𝑣
b (Px, Rx) + γm𝑣

b (Qy, Ry) + δm𝑣
b (Rx, Qx) + ηm𝑣

b (Py, Ry). 

is not true for all cases, even though a common fixed point exists. 
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