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Abstract. In this article vector borne disease transmission model with treatment is analyzed via fractional-order.

We analyzed, the global stability of equilibria of the proposed model under certain parametric conditions. A

numerical simulations of this model is also conducted to investigate the effect of certain major parameters on the

disease spread.
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1. INTRODUCTION

Over recent days, the compartmental model has played a crucial role in the advancement

of mathematical epidemiology, to capture disease dynamics in each compartment and to carry

out effective medicine [1]. In this row, let us discuss few properties of Vector-borne diseases

transmission as we propose to study in this paper. Vector-borne diseases are infectious diseases

spread by arthropods such as mosquitoes, biting flies, ticks, etc. to humans and animals. Some

∗Corresponding author

E-mail address: drkkmaths@gmail.com

†Research Scholar, ‡Assistant Professor

Received June 15, 2022
1



2 R. RAMYA, K. KRISHNAN

of the well-known vector-borne diseases include Western dengue fever, Nile virus, malaria,

viral encephalitis, and so on, transmitted by pathogens such as worms, bacteria, and viruses.

When bearing these pathogens from an infected host, they are transmitted to the human host.

In areas with hot weather, such as tropics and sub-saharan deserts, vector-borne diseases are

more common. Diseases are some of the most relevant cause of global health illnesses and a lot

of them are killer diseases. Based on the above evidence, the management of these diseases is

crucial. It is therefore important to understand the complex behaviors of the diseases to achieve

a thorough treatment of the infected hosts [2–17].

Real-life problems can also be modeled through ordinary and partial differential equations

that do not depend on past history. However, the model investigated under classical derivatives

and integrals suffer by the restriction for the use of various degrees of freedom. After noticing

some limitations imposed by models with local classical derivatives, many authors converted

to fractional calculus, a comparatively new and widely used field of mathematical analysis

in which nonlocal differential operators possessing memory effects are used to model natural

and physical phenomena showing anomalous behavior and nonlocal dynamics [18–24]. The

use of fractional derivatives in the COVID-19 model under study is considered since memory

effects significantly impact the evolution of an epidemiological process related to humans, and

memory effects play a significant role in disease transmission. Furthermore, memory effects

are appropriate to include in epidemiological investigations of real dynamical processes since

such systems rely on memory strength, governed by order of fractional derivative [25, 26].

Since our ultimate goal is to examine the dynamic behavior of fractional-order vector-

borne disease model, we can have a briefing on the impact of memory effect. Most infectious

diseases are caused by infection, and some of them take a period of time to spread infection.

This reveals that memory effect in epidemic models are worthwhile to observe their complicated

dynamics with fractional-order system [27–29].

The rest of this paper is organized as follows. In Section 2, we present the description of the

fractional-order system. In Section 3, we recall some preliminaries, then we compute equilibria

and basic reproduction number and also we discuss the global stability of two equilibria. In

Section 4, we present some numerical simulations of proposed system (1). Eventually, we end
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with a conclusion in Section 5. We have discussed the future scope in Section 6. In next section,

we brief on the nonlinear fractional-order vector borne system (1).

2. MODEL DESCRIPTION

The motivation of present work is from the article of Abdullah et al. [30], which deals with

the dynamics of vector-borne diseases with vertical transmission and treatment. Let N1(t) and

N2(t), denote the total population sizes of humans and vectors at time t respectively. The to-

tal human population N1(t) is partitioned into four different classes: the susceptible human

population is denoted by S(t), the infectious human population is denoted by I(t), the human

population under treatment is denoted by T (t), and the recovered human population is denoted

by R(t). Thus, N1(t) = S(t)+ I(t)+T (t)+R(t). The vector population N2(t) is divided into

two classes: the susceptible vector population is denoted by V (t) and the infected vector pop-

ulation is denoted by W (t). Thus, N2(t) = V (t)+W (t). All six classes are mutually disjoint.

The modified Abdullah et al. [30] model is governed by system of nonlinear fractional-order

differential equation as follows,

Dα
t S(t) =α1−β1S(t)I(t)−β2S(t)W (t)−µ1S(t),

Dα
t I(t) =β1S(t)I(t)+β2S(t)W (t)− (θ +η +d1 +µ1)I(t),

Dα
t T (t) =θ I(t)− (γ +d1 +µ1)T (t),

Dα
t R(t) =ηI(t)+ γT (t)−µ1R(t),

Dα
t V (t) =α2−β3V (t)I(t)−µ2V (t),

Dα
t W (t) =β3V (t)I(t)− (d2 +µ2)W (t).

(1)

The fractional derivative of model (1) is in the sense of Caputo. Here α ∈ (0,1] is the order

of the fractional derivative and Dα
t denotes

dα

dtα
. The classical version of the proposed system

(1) is retained when α = 1. The description of parameters used in system (1) is provided in

Table 1. The system (1), with the initial conditions

S(0) = S2, I(0) = I2,T (0) = T2,R(0) = R2,V (0) =V2 and W (0) =W2.(2)
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Furthermore, we assume that

S(t)> 0, I(t)≥ 0,T (t)≥ 0,R(t)≥ 0,V (t)≥ 0,W (t)≥ 0, f or all t > 0.(3)

TABLE 1. Parameters description

Parameters Description Values as Units

taken in [30] [30]

α1 The recruitment rate of human population 50 day−1

α2 The recruitment rate of vector population 100 day−1

θ The rate constant at which the infectious human are treated 0.4 day−1

η The natural recovery rate 0.0001 day−1

γ The rate at which treated humans recover 0.004 day−1

µ1 Natural death rate of a human population 0.00039 day−1

µ2 Natural death rate of a vector population 0.1 day−1

d1 The death rate of human due to disease 0.01 day−1

d2 The death rate of vector population due to disease 0.21 day−1

β1 The rate of direct transmission of the disease 0.0000001 day−1

β2 The rate of vector mediated transmission of the disease 0.00000012 day−1

β3 The rate at which Susceptible mosquitoes become 0.0000991 day−1

infected by biting infected human

3. MODEL ANALYSIS

The nonlinear fractional-order vector borne disease model (1) is studied in this section for

its analytical properties.

3.1. Preliminaries. In this section, we recall some basic definitions of fractional-order

derivatives. Consider the system

Dαx(t) = f (x),α ∈ (0,1],x ∈ Rn,(4)

where Dα is the Caputo fractional derivative which is given in the following definition.

Definition 1. [21] The Caputo fractional derivative of order α of a function f (t) ∈

Cn([t1,∞),R) is defined as

Dα
t f (t) =

1
Γ(n−α)

∫ t

t1

f (n)(ξ )
(t−ξ )α+1−n dξ ,
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where t ≥ t1, Γ(.) is the Gamma function, and n is the positive integer such that α ∈ (n−1,n).

When α ∈ (0,1), one has

Dα
t f (t) =

1
Γ(1−α)

∫ t

t1

f
′
(ξ )

(t−ξ )α
dξ .

3.2. The basic reproduction number and equilibrium points. The biological meaning of

the basic reproduction number (R0) is defined as the average number of secondary infections

caused by a single infectious individual during the course of its infectious period. A disease

dies out if R0 < 1 and spreads if R0 > 1.

The basic reproduction number for the nonlinear system (1) has been derived using the

method of the next-generation matrix [31].

R0 =
α1β1µ2m+α1α2β2β3

µ1µ2km
.

The given non-linear dynamical system (1) possesses two equilibrium points which are

described below.

i) The disease free equilibrium point is E0(S0,0,0,0,V0,0) = E0

(
α1

µ1
,0,0,0,

α2

µ2
,0
)

,

ii) The endemic equilibrium point is E1(S1, I1,T1,R1,V1,W1),

where,

S1 =
α1− kI1

µ1
, I1 =

lT1

θ
,T1 =

θ I1

l
,R1 =

(lη + γθ)I1

µ1l
,

V1 =
mW1

β3I1
and W1 =

α2β3I1

β3(d2 +µ2)I1 +µ2m
.

Where,

k = θ +d1 +µ1 +η , m = d2 +µ2 and l = γ +d1 +µ1.

In the following section, by constructing a Lyapunov functional, we can actually obtain

globally asymptotic stability of the system (1) under certain conditions.

3.3. Global behavior at equilibrium points. To establish global stability, we construct suit-

able Lyapunov functionals and use LaSalle’s invariance principle theory.
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Lemma 1. [32] let y(t) ∈ R+ be derivable and continuous function. Then, for any time t ≥ t0,

t0Dα

[
y(t)− y∗− y∗ln

y(t)
y∗

]
≤
(

1− y∗

y(t)

)
t0Dαy(t),(5)

∀α ∈ (0,1), y∗ ∈ R+.

Note that for α = 1, the inequalities in (5) becomes equalities.

Let us denote [
y(t)− y∗− y∗ln

y(t)
y∗

]
= g
(

y(t)
y∗

)
in upcoming results.

In this section, we analyze the global stability of the system (1) at the equilibrium points.

To establish global stability, we construct suitable Lyapunov functionals and use the theory of

LaSalle’s invariance principle. We define a function g : R+ −→R+∪{0} as g(u) = u−1− lnu.

Note that g(u)≥ 0, for any u > 0 and attains a global minimum 0 at u = 1.

Theorem 3.3.1. If R0 < 1, the disease free equilibrium E0 of the system (1) is globally asymp-

totically stable.

Proof. Let (S(t), I(t),T (t),R(t),V (t),W (t)) be any positive solution of the system (1), define a

Lyapunov functional W1(t) as follows,

W1(t) = I(t)+P1W (t).(6)

where, P1 =
β1α1

mµ1
.

Differentiating W1(t) along the solution of system (1), we obtain

dW1(t)
dt

≤ β1I(t)S(t)+β2W (t)S(t)− (θ +η +d1 +µ1)I(t)

+P1

(
β3V (t)I(t)− (d2 +µ2)W (t)

)
.

(7)

dW1(t)
dt

≤−(θ +η +d1 +µ1)I(t)+P1

(
β3V (t)I(t)− (d2 +µ2)W (t)

)
+β1I(t)S(t)+β2W (t)S(t).

(8)
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By using the values of P1 we have,

dW1(t)
dt

≤−kI(t)+
β1α1

mµ1

(
β3V (t)I(t)− (d2 +µ2)W (t)

)
+β1

α1

µ1
I(t)+β2

α1

µ1
S(t).

(9)

dW1(t)
dt

≤ (R0−1)kI(t).(10)

It follows from Eq.(14) that dW1(t)
dt ≤ 0 with equality holding at S(t) = S0, I(t) = T (t) = R(t) =

0,V (t) =V0,W (t) = 0. By the LaSalle invariance principle, the disease free equilibrium of the

model (1) is globally asymptotically stable. �

Theorem 3.3.2. Let R0 > 1, if endemic equilibrium E1 of the system (1) exist, then it is is

globally asymptotically stable, provided that k >
β2α2

µ2
+

β1α1

µ1
and m >

β2α1

µ1
.

Proof. Let us consider a Lyapunov functional W2(t) as follows,

W2(t) =g
(

I(t)
I1

)
+g
(

W (t)
W1

)
.(11)

Differentiating the Eq. (11), with respect to time yields

dW2(t)
dt

≤
(

1− I1

I(t)

)(
β1S(t)I(t)+β2S(t)W (t)− (θ +η +d1 +µ1)I(t)

)
+

(
1− W1

W (t)

)(
β3V (t)I(t)− (d2 +µ2)W (t)

)
+β1I(t)S(t)−β1I(t)S(t)+β2W (t)S(t)−β2W (t)S(t).

(12)

dW2(t)
dt

≤−kI(t)− I1

I(t)
β1I(t)S(t)− I1

I(t)
β2I(t)S(t)

+ I1K +β3V (t)I(t)−mW (t)− W1

W (t)
β3V (t)I(t)+mW1

+β1S(t)I(t)+β2S(t)W (t).

(13)

dW2(t)
dt

≤
(
− k+

β2α2

µ2
+

β1α1

µ1

)
I(t)+

(
−m+

β2α1

µ1

)
W (t).(14)

It follows from Eq.(14) that by the LaSalle invariance principle, the endemic equilibrium of

the model (1) is globally asymptotically stable. �
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4. NUMERICAL SIMULATION AND DISCUSSION

Here, we numerically solve the system of nonlinear fractional-order vector borne disease

transmission model to observe the dynamics of the system (1). A nonlinear fractional-order

vector borne disease transmission model (1) has been solved numerically by adopting predictor-

corrector algorithm [33–35]. The solution trajectories are plotted in following figures. Using

the values from Table 1 we can demonstrate how the dynamics of the system depends on the

parameter values using MATLAB(R2015).

Fig.(1) has been plotted using the values from Table 1. Here, Fig.(1), depicts the graphical

representation of the system (1) when R0 < 1. It can be observed that the disease dies out after

some time and only the susceptible human population and the susceptible vector population

attains a constant value, hereby, indicating that when R0 < 1, the disease cannot persist for

longer duration of time, biologically. Fig.(2) has been plotted using the values from Table 1.

except for β1 = 0.0000004, β2 = 0.00001, β3 = 0.0191, θ = 0.6 and η = 0.01. Also Fig.(2),

depicts the graphical representation of the system (1) when R0 > 1. It can be observed that the

infected human population and the infected vector population approaches a constant value. This

biologically means that the infected population exist as R0 > 1.

It can be seen from Fig.(1)-Fig.(2), that fractional-order solution is the trace of its integer

order. The findings indicate that the order of the fractional derivative has a significant impact

on the dynamic process. In addition, the results show that the memory effect is zero for α = 1.

In case of fractional-order system memory effect is indirectly proportional to the value of α .
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FIGURE 1. The above figure denotes graph trajectories of

S(t), I(t),T (t),R(t),V (t) and W (t) versus time t of system (1) choosing

the initial conditions as S(0) = 20, I(0) = 15,T (0) = 10,R(0) = 5,V (0) = 600

and W (0) = 100. Where R0 = 0.8913 < 1.
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FIGURE 2. The above figure denotes graph trajectories of

S(t), I(t),T (t),R(t),V (t) and W (t) versus time t of system (1) choosing

the initial conditions as S(0) = 20, I(0) = 15,T (0) = 10,R(0) = 5,V (0) = 600

and W (0) = 100. Where R0 = 3.6787 > 1.

5. CONCLUSION

This paper has been concerned with modeling the fractional-order vector borne disease trans-

mission with treatment. Fractional-order system provides better dynamics than the classical sys-

tem. We have shown through the mathematical analysis of the model that the basic reproduction

number R0 acts as a threshold parameter. The disease dies out when the basic reproduction num-

ber of diseases is less than unity and persists when the basic reproduction number of the disease
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is greater than unity.

The main contribution of the study have been enlisted below:

(1) We compute basic reproduction number R0, disease free and endemic equilibrium point.

(2) We have analyzed global stability of the equilibria.

(3) Numerical simulation has been performed to observe the dynamics of all six compart-

ments.

From the model analysis, we observed that the disease could be controlled by maintaining the

value of R0 less than unity. It can be achieved only by proper treatment.

6. FUTURE SCOPE

In this section, we discuss the limitation of the current study, to full fill the constraints we

need some support from various research departments. Some challenges of the research have

enlisted below:

i. An appropriate data will surely full fill one of the constrains, but such data collection

requires enormous investment.

ii. The current vector-borne model can also be extended to a delayed fractional-order

vector-borne model to capture its dynamics.

iii. The discussed vector-borne disease model can also be studied for its stochastic version

to capture its dynamics.

The effectiveness of this study therefore depends on how well the above-mentioned problems

were responded to. We may conclude that this research needs people from different back-

grounds to fulfill the intended function.
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