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Abstract. In this paper we define c-prime, 3-prime, equiprime and weakly prime ideal of nLA-ring which we will

study relation of c-prime, 3-prime, weakly prime ideal and prime ideal.
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1. INTRODUCTION

M.A. Kazim and MD. Naseeruddin [3] asserted that, in every LA-semigroups G a medial law

hold

(ab)(cd) = (ac)(bd), ∀a,b,c,d ∈ G.

Q. Mushtaq and M. Khan [5] asserted that, in every LA-semigroups G with left identity

(ab)(cd) = (db)(ca), ∀a,b,c,d ∈ G.

Further M. Khan, Faisal, and V. Amjid [4], asserted that, if a LA-semigroup G with left identity

the following law holds

a(bc) = b(ac), ∀a,b,c ∈ G.
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M. Sarwar (Kamran) [7] defined LA-group as the following; a groupoid G is called a left

almost group, abbreviated as LA-group, if (i) there exists e ∈ G such that ea = a for all a ∈ G,

(ii) for every a∈G there exists a′ ∈G such that, a′a= e, (iii) (ab)c= (cb)a for every a,b,c∈G.

Let 〈G, ·〉 be an LA-group and S be a non-empty subset of G and S is itself and LA-group

under the binary operation induced by G, the S is called an LA-subgroup of G, then S is called

an LA-subgroup of 〈G, ·〉.

S.M. Yusuf in [9] introduces the concept of a left almost ring (LA-ring). That is, a non-empty

set R with two binary operations “+” and “·” is called a left almost ring, if 〈R,+〉 is an LA-

group, 〈R, ·〉 is an LA-semigroup and distributive laws of “·” over “+” holds. T. Shah and I.

Rehman [9, p.211] asserted that a commutative ring 〈R,+, ·〉, we can always obtain an LA-ring

〈R,⊕, ·〉 by defining, for a,b,c ∈ R, a⊕ b = b− a and a · b is same as in the ring. We can not

assume the addition to be commutative in an LA-ring. An LA-ring 〈R,+, ·〉 is said to be LA-

integral domain if a ·b = 0, a,b ∈ R, then a = 0 or b = 0. Let 〈R,+, ·〉 be an LA-ring and S be a

non-empty subset of R and S is itself and LA-ring under the binary operation induced by R, the

S is called an LA-subring of R, then S is called an LA-subring of 〈R,+, ·〉. If S is an LA-subring

of an LA-ring 〈R,+, ·〉, then S is called a left ideal of R if RS ⊆ S. Right and two-sided ideals

are defined in the usual manner.

By [6] a near-ring is a non-empty set N together with two binary operations “+” and “·” such

that 〈N,+〉 is a group (not necessarily abelian), 〈N, ·〉 is a semigroup and one sided distributive

(left or right) of “·” over “+” holds.

In [1] an ideal I of N is called c-prime if a,b∈N and ab∈ I implies a∈ I or b∈ I. N is called

c-prime near ring if {0} is a c-prime ideal of R.

In [2] an ideal I of N is called equiprime if a ∈ N\I and x,y ∈ N with anx− any ∈ I for all

n ∈ N implies x− y ∈ I.

An ideal I of N is called 3-prime if a,b ∈ N and anb ∈ I for all n ∈ N implies a ∈ I or b ∈ I.

The notions of c-ideal, 3-prime ideal and prime ideal coincide in near rings.

In [8] A proper ideal I of an naer ring N to be weakly prime if 0 6= AB ⊆ I implies either

A⊆ I or B⊆ I for any ideals A,B of N.

The following implications are well known in near rings:
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(1) equiprime⇒ 3-prime ideal⇒ prime ideal;

(2) c-prime ideal⇒ 3-prime ideal⇒ prime ideal;

(3) prime ideal⇒ weakly prime ideal.

2. NEAR LEFT ALMOST RINGS

T. Shah, F. Rehman and M. Raees [10] introduces the concept of a near left almost ring

(nLA-ring).

Definition 2.1. [10]. A non-empty set N with two binary operation “+” and “·” is called a near

left almost ring (or simply an nLA-ring) if and only if

(1) 〈N,+〉 is an LA-group.

(2) 〈N, ·〉 is an LA-semigroup.

(3) Left distributive property of · over + holds, that is a(b+c) = ab+ac for all a,b,c ∈ N.

Definition 2.2. [10]. An nLA-ring 〈N,+, ·〉 with left identity 1, such that 1a = a for all a ∈ N,

is called an nLA-ring with left identity.

Definition 2.3. [10]. A nonempty subset S of an nLA-ring N is said to be an nLA-subring if

and only if S is itself an nLA-ring under the same binary operations as in N.

Theorem 2.1. [10, p.1106]. A non-empty subset S of an nLA-ring 〈N,+〉 is an nLA-subring if

and only if a−b ∈ S and ab ∈ S for all a,b ∈ S.

Definition 2.4. [10]. An nLA-subring I of an nLA-ring N is called a left ideal of N if NI ⊆ I,

and I is called a right ideal if for all n,m ∈ N and i ∈ I such that (i+n)m−nm ∈ I, and is called

two sided ideal or simply ideal if it is both left and right ideal.

Definition 2.5. [10]. An ideal P of a near ring N is said to be prime if IJ ⊆ P then I ⊆ P or

J ⊆ P for all I,J ideal of N.

3. MAIN RESULTS

In this section we define c-prime, 3-prime and equiprime of nLA-ring and study relations of

c-prime, 3-prime and equiprime ideal.



4 THITI GAKETEM

Definition 3.1. An ideal I of an nLA-ring N is called c-prime if a,b ∈ N and ab ∈ I implies

a ∈ I or b ∈ I.

N is called c-prime nearring if {0} is a c-prime ideal of N.

Definition 3.2. An ideal I of an nLA-ring N is called 3-prime if a,b ∈ N and arb ∈ I for all

r ∈ N implies a ∈ I or b ∈ I.

Definition 3.3. An ideal I of N is called equiprime if a ∈ N\I and x,y ∈ N with anx−any ∈ I

for all n ∈ N implies x− y ∈ I.

The following lemmas and theorem we will study relation of c-prime, 3-prime, equiprime

and prime ideals.

Lemma 3.1. Every equiprime ideal is a 3-prime ideal

Proof. Let I be an equiprime ideal of N. Suppose aNb ⊆ I, where a,b ∈ N. Since I is an

equiprime ideal there exists n ∈ N such that anb−an0 /∈ I. Then a−b ∈ I so a ∈ I or b ∈ I. �

Lemma 3.2. Every c-prime ideal is a 3-prime ideal

Proof. Suppose that I is a c-prime ideal of nLA-ring N, let a,b ∈ N and anb ∈ I for all n ∈ N.

Since I is a c-prime ideal we have a ∈ I and b ∈ I. Then I is a 3-prime ideal of N. �

Lemma 3.3. Every 3-prime ideal is a prime ideal

Proof. Suppose that I is a 3-prime ideal of nLA-ring N, let a,b ∈ I and ab ∈ I. Since I is a

3-prime ideal we have a ∈ I and b ∈ I. Then I is a prime ideal of N. �

Lemma 3.4. Every equiprime ideal is a prime ideal

Proof. Suppose that I is an equiprime ideal of nLA-ring N. By Lemma 3.1 and Lemma 3.3 we

have I is a prime ideal. �

Lemma 3.5. Every c-prime ideal is a prime ideal

Proof. Suppose that I is a c-prime ideal of nLA-ring N, let a,b ∈ I and ab ∈ I. Since I is a

c-prime ideal we have a ∈ I and b ∈ I. Then I is a prime ideal of N. �
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In [11]. studied if I is a prime ideal in nLA-ring N if and only if N/I is an nLA-integral

domain. The following theorems are application by lemmas 3.3, 3.4 and 3.5

Theorem 3.6. Let N be an nLA-ring. Then I is a 3-prime ideal in N if and only if N/I is an

nLA-integral domain.

Proof. (⇒) Let I is a 3-prime ideal in N. By Lemma 3.3 then I is a prime ideal. Thus N/I is an

nLA-integral domain.

(⇐) Assume that N/I is an nLA-integral domain with arb ∈ I for all r ∈ N. Then I+arb = I

so (I + a)r(I + b) = I. Since N/I is an nLA-integral domain we have I + a = I or I + b = I.

Then a ∈ I or b ∈ I. Thus I is a 3-prime ideal of N. �

Theorem 3.7. Let N be an nLA-ring. Then I is a equiprime ideal in N if and only if N/I is an

nLA-integral domain.

Proof. (⇒) Let I is a equiprime ideal in N. By Lemma 3.4 then I is a prime ideal. Thus N/I is

an nLA-integral domain.

(⇐) Assume that N/I is an nLA-integral domain then there exists n ∈ N with anx−any ∈ I

for all a,b ∈ N\I and x,y ∈ N. Thus I +(anx−any) = I so I +an(x− y) = I. Since N/I is an

nLA-integral domain we have I +anx = I or I +any = I. Then x− y ∈ I Thus I is a equiprime

ideal of N. �

Theorem 3.8. Let N be an nLA-ring. Then I is a c-prime ideal in N if and only if N/I is an

nLA-integral domain.

Proof. (⇒) Let I is a c-prime ideal in N. By Lemma 3.5 then I is a prime ideal. Thus N/I is an

nLA-integral domain.

(⇐) Assume that N/I is an nLA-integral domain with ab∈ I for all a,b∈N. Then I+ab = I

so (I+a)(I+b) = I. Since N/I is an nLA-integral domain we have I+a = I or I+b = I. Then

a ∈ I or b ∈ I. Thus I is a c-prime ideal of N. �

4. WEAKLY PRIME

In this section we define weakly prime and study application of c-prime, 3-prime, equiprime

and prime ideal in weakly prime ideal.
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Definition 4.1. A proper ideal I of an nLA-ring N to be weakly prime if 0 6= AB ⊆ I implies

either A⊆ I or B⊆ I for any ideals A,B of N.

Clearly every prime ideal is weakly prime and {0} is always weakly prime ideal of N. The

following theorem we will study properties

Theorem 4.1. If I is weakly prime but not prime, then I2 = 0.

Proof. Assume that I2 6= 0. We show that I is a prime ideal. Let A and B be an ideal of N such

that AB ⊆ I. If AB 6= 0, then A ⊆ I or B ⊆ I. If AB = 0. since I2 6= 0 there exists p0,q0 ∈ P

such that 〈p0〉〈q0〉 6= 0. Then (A+ 〈p0〉)(B+ 〈q0〉) 6= 0. Suppose that (A+ 〈p0〉)(B+ 〈q0〉)* p.

Then there exists a ∈ A,b ∈ B and p′0 ∈ 〈p0〉;q′0 ∈ 〈q0〉 such that (a+ 〈p′0〉)(b+ 〈q′0〉) /∈ I which

implies a(b+ q′0) /∈ I, but a(b+ q′0) = a(b+ q′0)− ab ∈ I since AB = 0, a contradiction. So

0 6= (A+ 〈p0〉)(B+ 〈q0〉)⊆ I which implies A⊆ I and B⊆ I. �

Corollary 4.2. Let N be an-nLA-ring and I is an ideal of N. If I2 6= 0 then I is a prime ideal if

and only if I is a weakly prime.

The following theorem we will study relation of c-prime, 3-prime, equiprime and weakly

prime ideals.

Theorem 4.3. Every c-prime ideal is a weakly prime ideal

Proof. Suppose that I is a c-prime ideal of nLA-ring N. By Lemma 3.2 we have I is a prime

ideal. Since every prime ideal is weakly prime ideal we have I is a weakly prime ideal of N. �

Theorem 4.4. Every 3-prime ideal is a weakly prime ideal

Proof. Suppose that I is a 3-prime ideal of nLA-ring N. By Lemma 3.3 we have I is a prime

ideal. Since every prime ideal is weakly prime ideal we have I is a weakly prime ideal of N. �

Theorem 4.5. Every equiprime ideal is a weakly prime ideal

Proof. Suppose that I is an equiprime idealof nLA-ring N. By Lemma 3.4 we have I is a prime

ideal. Since every prime ideal is weakly prime ideal we have I is a weakly prime ideal of N. �
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