Available online at http://scik.org J. Math. Comput. Sci. 3 (2013), No. 2, 379-388 ISSN: 1927-5307 # APPLICATION OF SELBERG TYPE INEQUALITIES IN HILBERT C*-MODULES NORDINE BOUNADER*, ABDELLATIF CHAHBI, AND SAMIR KABBAJ Department of Mathematics, University of Ibn Tofail, Kenitra, Morocco **Abstract.** In this paper we prove some applications (inequality in [3], inequality in [9] and inequality in [12]) of Selberg and refinement type inequalities in Hilbert C*-modules. **Keywords**: Seleberg inequality; Hilbert C*-module; C*-algebra. 2010 Subject Classification: Primary 46L08; Secondary 41A17; 46L05 ## 1. Introduction The Selberg inequality in [8]. Let y_1, \ldots, y_n , be non-zero vectors in a Hilbert space X with inner product \langle , \rangle . Then, for all $x \in X$, $$\sum_{j=1}^{n} \frac{\left| \langle y_j, x \rangle \right|^2}{\sum_{k=1}^{n} \left| \langle y_j, y_k \rangle \right|} \le ||x||^2 \tag{1.1}$$ In [9]the Selberg inequality is refined as follows: If $\langle y, y_i \rangle = 0$ for given $\{y_i\}$, then $$|\langle y, x \rangle|^2 + \sum_{j=1}^n \frac{|\langle x, y_j \rangle|^2}{\sum_{k=1}^n |\langle y_j, y_k \rangle|} ||y||^2 \le ||x||^2 ||y||^2$$ (1.2) holds for all x. *Corresponding author Received December 10, 2012 In [3] Dragomir obtained the following reverse of the triangle inequality by using an argument based on the Selberg inequality in Hilbert space. **Theorem 1.1.** [Dragomir] Let (X, \langle, \rangle) be a complex inner product Hilbert space and x_1, \ldots, x_n , y_1, \ldots, y_m be a non zero vectors in X such that there exist the nonnegative real numbers $\rho_j, \mu_j, j \in \{1, \ldots, m\}$ with $$Re \langle x_i, y_j \rangle \ge \rho_j ||x_i|| ||y_j|| , Im \langle x_i, y_j \rangle \ge \mu_j ||x_i|| ||y_j||$$ (1.3) for each $i \in \{1, ..., n\}$ and $j \in \{1, ..., m\}$. Then $$\left(\sum_{j=1}^{m} \frac{(\rho_j^2 + \mu_j^2) \|y_j\|^2}{\sum_{k=1}^{m} |\langle y_j, y_k \rangle|}\right)^{\frac{1}{2}} \sum_{i=1}^{n} \|x_i\| \le \left\|\sum_{i=1}^{n} x_i\right\|.$$ (1.4) In [9] M.Fujii and R.Nakamoto by refinement of seleberg inequality, give a simple Proof to an extension of Diaz-Metcalf inequality due to Fujii-Yamada. **Theorem 1.2.** [Fujii,Nakamoto] Let (X, \langle, \rangle) be a complexe Hilbert space and z_1, \dots, z_n be non zero vectors in X, $x_1, \dots, x_m \in X$ such that there exist the nonnegative real numbers a_k , $k \in \{1, \dots, n\}$ with $$0 \le a_k \|x_i\| \le Re \langle z_k, x_i \rangle \tag{1.5}$$ for all $i \in \{1, \dots, m\}$ and $k \in \{1, \dots, n\}$. If $\langle y, z_i \rangle = 0$ for all i, then $$|\langle x_1 + \dots + x_m, y \rangle|^2 + (\sum_{k=1}^n \frac{a_k^2}{c_k})(||x_1|| + \dots + ||x_m||)^2 ||y||^2 \le ||x_1 + \dots + x_m||^2 ||y||^2$$ (1.6) where $c_k = \sum_{j=1}^n |\langle z_j, z_k \rangle|$. In [12] C.-S. Lin obtain by refinement of seleberg inequality the following inequality. **Theorem 1.3.** [Lin] Let $x, y \in X$ and $\langle y, z_i \rangle = 0$ for given non-zero vectors $z_i \in X$ and i = 1, 2, ..., n. Then, for any $k \in \{1, 2, ..., n\}$, $$|\langle y, x \rangle|^{2} + ||y||^{2} [||z_{k}||^{-2} \left| \langle z_{k}, x \rangle - \left\langle \sum_{i=1}^{n} \frac{\langle z_{i}, x \rangle}{\sum_{j=1}^{n} ||\langle z_{i}, z_{j} \rangle||} z_{i}, z_{k} \right\rangle \right|^{2} + \sum_{i=1}^{n} \frac{|\langle z_{i}, x \rangle|^{2}}{\sum_{j=1}^{n} |\langle z_{i}, z_{j} \rangle|}]$$ $$\leq ||x||^{2} ||y||^{2}.$$ And he obtain generalized and sharpened Cauchy-Schwarz inequality and Bessels inequality **Theorem 1.4.** [Lin] Let $x, y \in X$, and z_i be unit vectors with $\langle y, z_i \rangle = 0$, $z_i \in X$, i = 1, 2, ..., n. Then $$|\langle y, x \rangle|^2 + ||y||^2 [|\langle z_k, u_n \rangle|^2 + \sum_{i=1}^n |\langle z_i, u_{i-1} \rangle|^2] \le ||x||^2 ||y||^2$$ or $$|\langle y, x \rangle| \le |u_n - \langle z_k, u_n \rangle ||y||$$ for $k \in \{1, 2, ..., n\}$, where $u_0 = x$ and $u_i = u_{i-1} - \langle z_i, u_{i-1} \rangle z_i$, i = 1, 2, ..., n. In particular, if z_i is unit orthogonal vectors, then $$|\langle y, x \rangle|^2 + ||y||^2 \sum_{i=1}^n |\langle z_i, x \rangle|^2 \le |x|^2 ||y||^2$$ or $$|\langle y, x \rangle| \le |x - \langle z_k, x \rangle z_k| ||y||$$ In [1] we give an extension of Selberg and refinement inequality in Hilbert C^* - module The goal of this paper is to show some applications of Selberg and refinement inequality in Hilbert C^* -module via ([3], [9], [12]). ## 2. Preliminaries in Hilbert C^* -modules In this section we briefly recall the definitions and examples of Hilbert C^* -modules. For information about Hilbert C^* -module, we refer to ([6,7,11]). Our reference for C^* -algebras is([2]). Let A be a C^* -algebra (not necessarily unitary) and X be a complex linear space. **Definition 2.1.** A pre-Hilbert A-module is a right A-module X equipped with a sesquilinear map $\langle .,. \rangle : X \times X \to A$ satisfying - (1) $\langle x, x \rangle \ge 0; \langle x, x \rangle = 0$ if and only if x = 0 for all x in X, - (2) $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta (\langle x, z) \rangle$ for all x, y, z in X, α, β in \mathbb{C} , - (3) $\langle x, y \rangle = \langle y, x \rangle^*$ for all x, y in X, - (4) $\langle x, y.a \rangle = \langle x, y \rangle$ a for all x, y in X, a in A. The map $\langle .,. \rangle$ is called an A-valued inner product of X, and for $x \in X$, we define $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$ is a norm on X, where the latter norm denotes that in the C^* -algebra A. This norm makes X into a right normed module over A. A pre-Hilbert module X is called a Hilbert A-module if it is complete with respect to its norm. Two typical examples of Hilbert C^* -modules are as follows: - (I) Every Hilbert space is a Hilbert C^* -module. - (II) Every C^* algebra A is a Hilbert A -module via $\langle a, b \rangle = a^*b(a, b \in A)$. Notice that the inner product structure of a C^* -algebra is essentially more complicated than complex numbers. One may define an A-valued norm |.| by $|x| = \langle x, x \rangle^{\frac{1}{2}}$. Clearly, ||x|| = |||x||| for each $x \in X$. It is known that |.| does not satisfy the triangle inequality in general. ### 3.MAIN RESULT We start our work by presenting some applications of the Selbergs inequality for Hilbert C^* -modules. **Lemma 3.1.** Let A be a C^* - alegebra, $a \in A$ and $\lambda \in \mathbb{R}^+$. If $0 \le a \le \lambda$, then $$a^2 \le \lambda^2. \tag{3.1}$$ **Theorem 3.2.** Let X be a Hilbert A module, x_1, \ldots, x_n and y_1, \ldots, y_m be a non zero vectors in X such that there exist the nonnegative real numbers $\rho_j, \mu_j, j \in \{1, \ldots, m\}$ with $$Re \langle x_i, y_j \rangle \ge \rho_j \|x_i\| \|y_j\|$$, $Im \langle x_i, y_j \rangle \ge \mu_j \|x_i\| \|y_j\|$ (3.2) and $$\left| \left\langle y_j, \sum_{i=1}^n x_i \right\rangle \right|^2 \ge \left| \left\langle \sum_{i=1}^n x_i, y_j \right\rangle \right|^2 \tag{3.3}$$ for each $i \in \{1, ..., n\}$ and $j \in \{1, ..., m\}$. Then $$\left(\sum_{j=1}^{m} \frac{(\rho_j^2 + \mu_j^2) \|y_j\|^2}{\sum_{k=1}^{m} \|\langle y_j, y_k \rangle\|}\right)^{\frac{1}{2}} \sum_{i=1}^{n} |x_i| \le \left|\sum_{i=1}^{n} x_i\right|.$$ (3.4) **Proof.** Using Selberg inequality, we have $$\sum_{j=1}^{m} \frac{\left| \langle y_j, \sum_{i=1}^{n} x_i \rangle \right|^2}{\sum_{k=1}^{m} \left\| \langle y_j, y_k \rangle \right\|} \le \left| \sum_{i=1}^{n} x_i \right|^2.$$ (3.5) Since $$\frac{1}{2} \left| \left\langle \sum_{i=1}^{n} x_i, y_j \right\rangle \right|^2 + \frac{1}{2} \left| \left\langle y_j, \sum_{i=1}^{n} x_i \right\rangle \right|^2 = \left(\sum_{i=1}^{n} \operatorname{Re} \left\langle y_j, x_i \right\rangle \right)^2 + \left(\sum_{i=1}^{n} \operatorname{Im} \left\langle y_j, x_i \right\rangle \right)^2.$$ Then by (3.2),(3.3) and Lemma (3.1) we obtain $$\left| \left\langle y_{j}, \sum_{i=1}^{n} x_{i} \right\rangle \right|^{2} \geq \rho_{j}^{2} \|y_{j}\|^{2} \left(\sum_{i=1}^{n} \|x_{i}\| \right)^{2} + \mu_{j}^{2} \|y_{j}\|^{2} \left(\sum_{i=1}^{n} \|x_{i}\| \right)^{2}$$ $$= (\rho_{j}^{2} + \mu_{j}^{2}) \|y_{j}\|^{2} \left(\sum_{i=1}^{n} \|x_{i}\| \right)^{2}.$$ (3.6) For any $j \in \{1, ..., m\}$. Therefore by 3.5 we get $$\left(\sum_{j=1}^{m} \frac{(\rho_{j}^{2} + \mu_{j}^{2}) \|y_{j}\|^{2}}{\sum_{k=1}^{m} \|\langle y_{j}, y_{k} \rangle\|}\right) \left(\sum_{j=1}^{n} \|x_{i}\|\right)^{2} \leq \left|\sum_{j=1}^{n} x_{i}\right|^{2}$$ and $$\left(\sum_{j=1}^{m} \frac{(\rho_{j}^{2} + \mu_{j}^{2}) \|y_{j}\|^{2}}{\sum_{k=1}^{m} \|\langle y_{j}, y_{k} \rangle\|}\right) \left(\sum_{i=1}^{n} |x_{i}|\right)^{2} \leq \left|\sum_{i=1}^{n} x_{i}\right|^{2}.$$ We pass to root square and the result follows. Remark 3.3. If only the first condition of 3.2 and the condition 3.3 is available, then $$\left(\sum_{j=1}^{m} \frac{\rho_{j}^{2} \|y_{j}\|^{2}}{\sum_{k=1}^{m} \|\langle y_{j}, y_{k} \rangle\|}\right)^{\frac{1}{2}} \sum_{i=1}^{n} |x_{i}| \leq \left|\sum_{i=1}^{n} x_{i}\right|.$$ (3.7) **Remark 3.4.** If in Theorem (3.2) y_1, \ldots, y_m be a sequence of unit vectors, then $$\left(\sum_{j=1}^{m} (\rho_j^2 + \mu_j^2)\right)^{\frac{1}{2}} \sum_{i=1}^{n} |x_i| \le \left| \sum_{i=1}^{n} x_i \right|. \tag{3.8}$$ This inequalitie is a type of Diaz-Metcalf inequality in C^* -module. **Remark 3.5.** If we have $\langle y_j, \sum_{i=1}^n x_i \rangle$ in commutator Z(A) for all $j = 1, \ldots, m$ the condition (3.3) is verified. **Theorem 3.6.** Let X be a Hilbert A - module, let z_1, \dots, z_n be non zero vectors in X and $x_1, \dots, x_m \in X$ such that $$0 \le a_k \|x_i\| \le Re \langle z_k, x_i \rangle, \ 0 \le b_k \|x_i\| \le Im \langle z_k, x_i \rangle \tag{3.9}$$ and $$\left| \left\langle z_k, \sum_{i=1}^m x_i \right\rangle \right|^2 \ge \left| \left\langle \sum_{i=1}^m x_i, z_k \right\rangle \right|^2 \tag{3.10}$$ for all $i \in 1, \dots, m, k \in 1, \dots, n$. If $\langle y, z_i \rangle = 0$ for all i, then $$|\langle x_1 + \dots + x_m, y \rangle|^2 + (\sum_{k=1}^n \frac{a_k^2 + b_k^2}{c_k})(|x_1| + \dots + |x_m|)^2 ||y||^2 \le |x_1 + \dots + |x_m|^2 ||y||^2. \quad (3.11)$$ where $c_k = \sum_{j=1}^n \|\langle z_j, z_k \rangle\|$. **Proof.** Put $x = x_1 + \cdots + x_n$. Then by using (3.9), (3.10) and the refinement of Selberg inequality we have $$||y||^{2} \{|x|^{2} - \sum_{k=1}^{n} \frac{a_{k}^{2} + b_{k}^{2}}{c_{k}} (||x_{1}|| + \dots + ||x_{m}||)^{2} \}$$ $$\geq ||y||^{2} \{|x|^{2} - \sum_{k=1}^{n} \frac{\operatorname{Re}\langle x, z_{k} \rangle^{2} + \operatorname{Im}\langle x, z_{k} \rangle^{2}}{c_{k}}$$ $$= ||y||^{2} \{|x|^{2} - \frac{1}{2} \sum_{k=1}^{n} \frac{|\langle x, z_{k} \rangle|^{2}}{c_{k}} - \frac{1}{2} \sum_{k=1}^{n} \frac{\langle z_{k}, x \rangle^{2}}{c_{k}} \},$$ $$\geq ||y||^{2} \{|x|^{2} - \sum_{k=1}^{n} \frac{|\langle x, z_{k} \rangle|^{2}}{c_{k}} \},$$ $$\geq |\langle y, x \rangle|^{2}$$ as desired. **Remark 3.7.** If in Theorem 3.2 z_1, \ldots, z_n be a sequence of unit vectors, then $$|(x_1 + \dots + x_m, y)|^2 + (\sum_{j=1}^m (a_j^2 + b_j^2))(\sum_{i=1}^n |x_i|)^2 ||y||^2 \le \left|\sum_{i=1}^n x_i\right|^2 ||y||^2.$$ (3.12) This inequalitie is a type of extension of Diaz-Metcalf inequality in C^* -module. **Remark 3.8** If we have $\langle z_k, \sum_{i=1}^m x_i \rangle$ in commutator Z(A) for all $k = 1, \ldots, n$ the condition (3.10) is verified. **Theorem 3.9.** Let $x, y \in X$ and $\langle y, z_i \rangle = 0$ for given non-zero vectors $z_i \in X, i = 1, 2, ..., n$. Then, for any $k \in \{1, 2, ..., n\}$ $$|\langle y, x \rangle|^{2} + ||y||^{2} [||z_{k}||^{-2} \left| \langle z_{k}, x \rangle - \left\langle \sum_{i=1}^{n} \frac{\langle z_{i}, x \rangle}{\sum_{j=1}^{n} ||\langle z_{i}, z_{j} \rangle||} z_{i}, z_{k} \right\rangle \right|^{2} + \sum_{i=1}^{n} \frac{|\langle z_{i}, x \rangle|^{2}}{\sum_{j=1}^{n} ||\langle z_{i}, z_{j} \rangle||}]$$ $$\leq |x|^{2} ||y||^{2}.$$ **Proof.** Let $u = x - \sum_{i=1}^n \frac{\langle z_i, x \rangle}{\sum_{j=1}^n ||\langle z_i, z_j \rangle||} z_i$. Then by Proof of Theorem (3.2) in [1] we get $$|u|^2 \le |x|^2 - \sum_{i=1}^n \frac{|\langle z_i, x \rangle|^2}{\sum_{j=1}^n ||\langle z_i, z_j \rangle||}.$$ Then $\langle y, u \rangle = \langle y, x \rangle$ as $\langle z_i, y \rangle = 0, i = 1, 2, ..., n$, and so by refinement of Seleberg inequality in [1] we get $$|\langle y, x \rangle|^{2} + ||z_{k}||^{-2} ||y||^{2} |\langle z_{k}, u \rangle|^{2} \leq ||u|^{2} ||x||^{2} - \sum_{i=1}^{n} \frac{|\langle z_{i}, x \rangle|^{2}}{\sum_{j=1}^{n} ||\langle z_{i}, z_{j} \rangle||}]$$ thus the desired inequality thus follows. We should obtain generalized and sharpened Cauchy-Schwarz inequality and Bessels inequality in C^* - module as follows. **Theorem 3.10.** Let $x, y \in X$, and z_i be unit vectors with $\langle y, z_i \rangle = 0$, $z_i \in X, i = 1, 2, ..., n$. Then $$|\langle y, x \rangle|^2 + ||y||^2 [|\langle z_k, u_n \rangle|^2 + \sum_{i=1}^n |\langle z_i, u_{i-1} \rangle|^2]$$ $\leq |x|^2 ||y||^2$ or $|\langle y, x \rangle| \leq |u_n - z_k \langle z_k, u_n \rangle| ||y||$ for $k \in \{1,2,\ldots,n\}$, where $u_0 = x$ and $u_i = u_{i-1} - z_i \langle z_i,u_{i-1} \rangle$, $i=1,2,\ldots,n$. In particular, if z_i are unit orthogonal vectors, then $$|\langle y, x \rangle|^2 + ||y||^2 \sum_{i=1}^n |\langle z_i, x \rangle|^2 \le |x|^2 ||y||^2$$ (3.13) or $$|\langle y, x \rangle| \le |x - z_k \langle z_k, x \rangle| \|y\|. \tag{3.14}$$ **Proof.** By a simple calcul we get $$u_n = x - \sum_{i=1}^n z_i \langle z_i, u_{i-1} \rangle.$$ Due to the definition of u_i and $\langle z_i, z_i \rangle = 1$, we have $$|u_i|^2 = |u_{i-1}|^2 - |\langle z_i, u_{i-1} \rangle|^2$$. Setting $i = 1, 2, \dots, n$ in above yields $$|u_n|^2 = |x|^2 - \sum_{i=1}^n |\langle z_i, u_{i-1} \rangle|^2.$$ Now we have $\langle y, z_k \rangle = 0$ for $k \in \{1, 2, ..., n\}$, by applying the refinement of Seleberg inequality in [1], we obtain $$|\langle y, u_n \rangle|^2 + ||y||^2 |\langle z_k, u_n \rangle|^2 \le |u_n|^2 ||y||^2$$ and $$|u_n|^2 ||y||^2 = ||y||^2 [|x|^2 - \sum_{i=1}^n |\langle z_i, u_{i-1} \rangle|^2]$$ but $|\langle y, u_n \rangle|^2 = |\langle y, x \rangle|^2$ because $\langle y, z_i \rangle = 0$ then the first inequality holds. For the second, we have $$|u_n - z_k \langle z_k, u_n \rangle|^2 = |x|^2 - [|\langle z_k, u_n \rangle|^2 + \sum_{i=1}^n |\langle z_i, u_{i-1} \rangle|^2]$$ and we pass to square root we get the discred result. Now if $\{z_i\}_i$, is a set of unit orthogonal vectors then $$\langle z_k, u_n \rangle = \left\langle z_k, x - \sum_{i=1}^n z_i \langle z_i, u_{i-1} \rangle \right\rangle$$ $$= \left\langle z_k, x \rangle - \langle z_k, u_{k-1} \rangle \right\rangle$$ $$= \left\langle z_k, x \rangle - \left\langle z_k, x - \sum_{i=1}^{k-1} z_i \langle z_i, u_{i-1} \rangle \right\rangle$$ $$= 0.$$ Also, $\langle z_i, u_{i-1} \rangle = \langle z_i, x \rangle$, i = 1, 2, ..., n by a similar comptation, we have the particular case, this complet the Proof of Theorem. **Remark 3.11.** If y is a non-zero vector orthogonal to vector x in (3.13) we obtain the Bessel inequality in Hilbert C^* -module. If x is orthogonal to z_k in (3.14) we get the Cauchy-Shwartz inequality in Hilbert C^* module. #### References - N.BOUNADER AND A.CHAHBI, Seleberg Type Inequalities in Hilbert C.-Modules .Int. Journal of Math. Analysis, Vol. 7, 2013, no. 8, 385 - 391. - [2] F. R. DAVIDSON, C^* -algebra by exemple. Fields Ins. Monog; 1996. - [3] S. DRAGOMIR, Reverese of the triangle inequality via Selbergs and Boas-Bellmans inequalities,4 August, 2005. - [4] S. S. DRAGOMIR, On the Boas-Bellman Inequality in inner product spaces. arXiv:math[math.CA], 9 Jul 2003, Aletheia University. - [5] S. S. Dragomir, M. Khosravi and M. S. Moslehian, Bessel type inequality in Hilbert C*-modules. arXiv[math.FA] 25 May 2009. - [6] M. Frank, Self-duality and C^* reflexivity of Hilbert C^* -modules. Anal. Anwendungen 9 (1990), 165-176. - [7] M. Frank, Geometrical aspets of Hilbert C*-modules. 3 (1999), 215-243. - [8] M. Fujii, Selberg inequalty. (1991), 70-76. - [9] M. FUJII AND R. NAKAMOTO Simultaneous extensions of Selberg inequality and Heinz-Kato-Furuta Inequality. Nihonkai Math. J. Vol. 9 (1998), 219-225. - [10] I. Kaplansky, Modules over operateur algebras. Amer. J. Math. 75, 839-858, 1953. - [11] E. C. LANCE, Hilbert C^* -modules. LMS Lecture Note series 210, CUP, 1995. - [12] C.-S. Lin, Heinz's inequality and Bernstein's inequality. Proceedings of the American Mathematical Society, Volume 125, Number 8, August 1997. - [13] A. ROUKBI, Dragomir's, Buzano's and Kerupa's Inequalities in Hilbert C*-modules.Facta Universitatis (NIS)Ser. Math. Inform. Vol. 27, (2012).