

Available online at http://scik.org

J. Math. Comput. Sci. 3 (2013), No. 2, 379-388

ISSN: 1927-5307

APPLICATION OF SELBERG TYPE INEQUALITIES IN HILBERT C*-MODULES

NORDINE BOUNADER*, ABDELLATIF CHAHBI, AND SAMIR KABBAJ

Department of Mathematics, University of Ibn Tofail, Kenitra, Morocco

Abstract. In this paper we prove some applications (inequality in [3], inequality in [9] and inequality in [12]) of Selberg and refinement type inequalities in Hilbert C*-modules.

Keywords: Seleberg inequality; Hilbert C*-module; C*-algebra.

2010 Subject Classification: Primary 46L08; Secondary 41A17; 46L05

1. Introduction

The Selberg inequality in [8]. Let y_1, \ldots, y_n , be non-zero vectors in a Hilbert space X with inner product \langle , \rangle . Then, for all $x \in X$,

$$\sum_{j=1}^{n} \frac{\left| \langle y_j, x \rangle \right|^2}{\sum_{k=1}^{n} \left| \langle y_j, y_k \rangle \right|} \le ||x||^2 \tag{1.1}$$

In [9]the Selberg inequality is refined as follows: If $\langle y, y_i \rangle = 0$ for given $\{y_i\}$, then

$$|\langle y, x \rangle|^2 + \sum_{j=1}^n \frac{|\langle x, y_j \rangle|^2}{\sum_{k=1}^n |\langle y_j, y_k \rangle|} ||y||^2 \le ||x||^2 ||y||^2$$
 (1.2)

holds for all x.

*Corresponding author

Received December 10, 2012

In [3] Dragomir obtained the following reverse of the triangle inequality by using an argument based on the Selberg inequality in Hilbert space.

Theorem 1.1. [Dragomir] Let (X, \langle, \rangle) be a complex inner product Hilbert space and x_1, \ldots, x_n , y_1, \ldots, y_m be a non zero vectors in X such that there exist the nonnegative real numbers $\rho_j, \mu_j, j \in \{1, \ldots, m\}$ with

$$Re \langle x_i, y_j \rangle \ge \rho_j ||x_i|| ||y_j|| , Im \langle x_i, y_j \rangle \ge \mu_j ||x_i|| ||y_j||$$
 (1.3)

for each $i \in \{1, ..., n\}$ and $j \in \{1, ..., m\}$. Then

$$\left(\sum_{j=1}^{m} \frac{(\rho_j^2 + \mu_j^2) \|y_j\|^2}{\sum_{k=1}^{m} |\langle y_j, y_k \rangle|}\right)^{\frac{1}{2}} \sum_{i=1}^{n} \|x_i\| \le \left\|\sum_{i=1}^{n} x_i\right\|.$$
(1.4)

In [9] M.Fujii and R.Nakamoto by refinement of seleberg inequality, give a simple Proof to an extension of Diaz-Metcalf inequality due to Fujii-Yamada.

Theorem 1.2. [Fujii,Nakamoto] Let (X, \langle, \rangle) be a complexe Hilbert space and z_1, \dots, z_n be non zero vectors in X, $x_1, \dots, x_m \in X$ such that there exist the nonnegative real numbers a_k , $k \in \{1, \dots, n\}$ with

$$0 \le a_k \|x_i\| \le Re \langle z_k, x_i \rangle \tag{1.5}$$

for all $i \in \{1, \dots, m\}$ and $k \in \{1, \dots, n\}$. If $\langle y, z_i \rangle = 0$ for all i, then

$$|\langle x_1 + \dots + x_m, y \rangle|^2 + (\sum_{k=1}^n \frac{a_k^2}{c_k})(||x_1|| + \dots + ||x_m||)^2 ||y||^2 \le ||x_1 + \dots + x_m||^2 ||y||^2$$
 (1.6)

where $c_k = \sum_{j=1}^n |\langle z_j, z_k \rangle|$.

In [12] C.-S. Lin obtain by refinement of seleberg inequality the following inequality.

Theorem 1.3. [Lin] Let $x, y \in X$ and $\langle y, z_i \rangle = 0$ for given non-zero vectors $z_i \in X$ and i = 1, 2, ..., n. Then, for any $k \in \{1, 2, ..., n\}$,

$$|\langle y, x \rangle|^{2} + ||y||^{2} [||z_{k}||^{-2} \left| \langle z_{k}, x \rangle - \left\langle \sum_{i=1}^{n} \frac{\langle z_{i}, x \rangle}{\sum_{j=1}^{n} ||\langle z_{i}, z_{j} \rangle||} z_{i}, z_{k} \right\rangle \right|^{2} + \sum_{i=1}^{n} \frac{|\langle z_{i}, x \rangle|^{2}}{\sum_{j=1}^{n} |\langle z_{i}, z_{j} \rangle|}]$$

$$\leq ||x||^{2} ||y||^{2}.$$

And he obtain generalized and sharpened Cauchy-Schwarz inequality and Bessels inequality

Theorem 1.4. [Lin] Let $x, y \in X$, and z_i be unit vectors with $\langle y, z_i \rangle = 0$, $z_i \in X$, i = 1, 2, ..., n. Then

$$|\langle y, x \rangle|^2 + ||y||^2 [|\langle z_k, u_n \rangle|^2 + \sum_{i=1}^n |\langle z_i, u_{i-1} \rangle|^2] \le ||x||^2 ||y||^2$$

or

$$|\langle y, x \rangle| \le |u_n - \langle z_k, u_n \rangle ||y||$$

for $k \in \{1, 2, ..., n\}$, where $u_0 = x$ and $u_i = u_{i-1} - \langle z_i, u_{i-1} \rangle z_i$, i = 1, 2, ..., n. In particular, if z_i is unit orthogonal vectors, then

$$|\langle y, x \rangle|^2 + ||y||^2 \sum_{i=1}^n |\langle z_i, x \rangle|^2 \le |x|^2 ||y||^2$$

or
$$|\langle y, x \rangle| \le |x - \langle z_k, x \rangle z_k| ||y||$$

In [1] we give an extension of Selberg and refinement inequality in Hilbert C^* - module

The goal of this paper is to show some applications of Selberg and refinement inequality in Hilbert C^* -module via ([3], [9], [12]).

2. Preliminaries in Hilbert C^* -modules

In this section we briefly recall the definitions and examples of Hilbert C^* -modules. For information about Hilbert C^* -module, we refer to ([6,7,11]). Our reference for C^* -algebras is([2]).

Let A be a C^* -algebra (not necessarily unitary) and X be a complex linear space.

Definition 2.1. A pre-Hilbert A-module is a right A-module X equipped with a sesquilinear map $\langle .,. \rangle : X \times X \to A$ satisfying

- (1) $\langle x, x \rangle \ge 0; \langle x, x \rangle = 0$ if and only if x = 0 for all x in X,
- (2) $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta (\langle x, z) \rangle$ for all x, y, z in X, α, β in \mathbb{C} ,

- (3) $\langle x, y \rangle = \langle y, x \rangle^*$ for all x, y in X,
- (4) $\langle x, y.a \rangle = \langle x, y \rangle$ a for all x, y in X, a in A.

The map $\langle .,. \rangle$ is called an A-valued inner product of X, and for $x \in X$, we define $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$ is a norm on X, where the latter norm denotes that in the

 C^* -algebra A. This norm makes X into a right normed module over A. A pre-Hilbert module X is called a Hilbert A-module if it is complete with respect to its norm.

Two typical examples of Hilbert C^* -modules are as follows:

- (I) Every Hilbert space is a Hilbert C^* -module.
- (II) Every C^* algebra A is a Hilbert A -module via $\langle a, b \rangle = a^*b(a, b \in A)$.

Notice that the inner product structure of a C^* -algebra is essentially more complicated than complex numbers. One may define an A-valued norm |.| by $|x| = \langle x, x \rangle^{\frac{1}{2}}$. Clearly, ||x|| = |||x||| for each $x \in X$. It is known that |.| does not satisfy the triangle inequality in general.

3.MAIN RESULT

We start our work by presenting some applications of the Selbergs inequality for Hilbert C^* -modules.

Lemma 3.1. Let A be a C^* - alegebra, $a \in A$ and $\lambda \in \mathbb{R}^+$. If $0 \le a \le \lambda$, then

$$a^2 \le \lambda^2. \tag{3.1}$$

Theorem 3.2. Let X be a Hilbert A module, x_1, \ldots, x_n and y_1, \ldots, y_m be a non zero vectors in X such that there exist the nonnegative real numbers $\rho_j, \mu_j, j \in \{1, \ldots, m\}$ with

$$Re \langle x_i, y_j \rangle \ge \rho_j \|x_i\| \|y_j\|$$
, $Im \langle x_i, y_j \rangle \ge \mu_j \|x_i\| \|y_j\|$ (3.2)

and

$$\left| \left\langle y_j, \sum_{i=1}^n x_i \right\rangle \right|^2 \ge \left| \left\langle \sum_{i=1}^n x_i, y_j \right\rangle \right|^2 \tag{3.3}$$

for each $i \in \{1, ..., n\}$ and $j \in \{1, ..., m\}$. Then

$$\left(\sum_{j=1}^{m} \frac{(\rho_j^2 + \mu_j^2) \|y_j\|^2}{\sum_{k=1}^{m} \|\langle y_j, y_k \rangle\|}\right)^{\frac{1}{2}} \sum_{i=1}^{n} |x_i| \le \left|\sum_{i=1}^{n} x_i\right|.$$
(3.4)

Proof. Using Selberg inequality, we have

$$\sum_{j=1}^{m} \frac{\left| \langle y_j, \sum_{i=1}^{n} x_i \rangle \right|^2}{\sum_{k=1}^{m} \left\| \langle y_j, y_k \rangle \right\|} \le \left| \sum_{i=1}^{n} x_i \right|^2.$$
 (3.5)

Since

$$\frac{1}{2} \left| \left\langle \sum_{i=1}^{n} x_i, y_j \right\rangle \right|^2 + \frac{1}{2} \left| \left\langle y_j, \sum_{i=1}^{n} x_i \right\rangle \right|^2 = \left(\sum_{i=1}^{n} \operatorname{Re} \left\langle y_j, x_i \right\rangle \right)^2 + \left(\sum_{i=1}^{n} \operatorname{Im} \left\langle y_j, x_i \right\rangle \right)^2.$$

Then by (3.2),(3.3) and Lemma (3.1) we obtain

$$\left| \left\langle y_{j}, \sum_{i=1}^{n} x_{i} \right\rangle \right|^{2} \geq \rho_{j}^{2} \|y_{j}\|^{2} \left(\sum_{i=1}^{n} \|x_{i}\| \right)^{2} + \mu_{j}^{2} \|y_{j}\|^{2} \left(\sum_{i=1}^{n} \|x_{i}\| \right)^{2}$$

$$= (\rho_{j}^{2} + \mu_{j}^{2}) \|y_{j}\|^{2} \left(\sum_{i=1}^{n} \|x_{i}\| \right)^{2}.$$
(3.6)

For any $j \in \{1, ..., m\}$. Therefore by 3.5 we get

$$\left(\sum_{j=1}^{m} \frac{(\rho_{j}^{2} + \mu_{j}^{2}) \|y_{j}\|^{2}}{\sum_{k=1}^{m} \|\langle y_{j}, y_{k} \rangle\|}\right) \left(\sum_{j=1}^{n} \|x_{i}\|\right)^{2} \leq \left|\sum_{j=1}^{n} x_{i}\right|^{2}$$

and

$$\left(\sum_{j=1}^{m} \frac{(\rho_{j}^{2} + \mu_{j}^{2}) \|y_{j}\|^{2}}{\sum_{k=1}^{m} \|\langle y_{j}, y_{k} \rangle\|}\right) \left(\sum_{i=1}^{n} |x_{i}|\right)^{2} \leq \left|\sum_{i=1}^{n} x_{i}\right|^{2}.$$

We pass to root square and the result follows.

Remark 3.3. If only the first condition of 3.2 and the condition 3.3 is available, then

$$\left(\sum_{j=1}^{m} \frac{\rho_{j}^{2} \|y_{j}\|^{2}}{\sum_{k=1}^{m} \|\langle y_{j}, y_{k} \rangle\|}\right)^{\frac{1}{2}} \sum_{i=1}^{n} |x_{i}| \leq \left|\sum_{i=1}^{n} x_{i}\right|.$$
(3.7)

Remark 3.4. If in Theorem (3.2) y_1, \ldots, y_m be a sequence of unit vectors, then

$$\left(\sum_{j=1}^{m} (\rho_j^2 + \mu_j^2)\right)^{\frac{1}{2}} \sum_{i=1}^{n} |x_i| \le \left| \sum_{i=1}^{n} x_i \right|. \tag{3.8}$$

This inequalitie is a type of Diaz-Metcalf inequality in C^* -module.

Remark 3.5. If we have $\langle y_j, \sum_{i=1}^n x_i \rangle$ in commutator Z(A) for all $j = 1, \ldots, m$ the condition (3.3) is verified.

Theorem 3.6. Let X be a Hilbert A - module, let z_1, \dots, z_n be non zero vectors in X and $x_1, \dots, x_m \in X$ such that

$$0 \le a_k \|x_i\| \le Re \langle z_k, x_i \rangle, \ 0 \le b_k \|x_i\| \le Im \langle z_k, x_i \rangle \tag{3.9}$$

and

$$\left| \left\langle z_k, \sum_{i=1}^m x_i \right\rangle \right|^2 \ge \left| \left\langle \sum_{i=1}^m x_i, z_k \right\rangle \right|^2 \tag{3.10}$$

for all $i \in 1, \dots, m, k \in 1, \dots, n$. If $\langle y, z_i \rangle = 0$ for all i, then

$$|\langle x_1 + \dots + x_m, y \rangle|^2 + (\sum_{k=1}^n \frac{a_k^2 + b_k^2}{c_k})(|x_1| + \dots + |x_m|)^2 ||y||^2 \le |x_1 + \dots + |x_m|^2 ||y||^2. \quad (3.11)$$

where $c_k = \sum_{j=1}^n \|\langle z_j, z_k \rangle\|$.

Proof. Put $x = x_1 + \cdots + x_n$. Then by using (3.9), (3.10) and the refinement of Selberg inequality we have

$$||y||^{2} \{|x|^{2} - \sum_{k=1}^{n} \frac{a_{k}^{2} + b_{k}^{2}}{c_{k}} (||x_{1}|| + \dots + ||x_{m}||)^{2} \}$$

$$\geq ||y||^{2} \{|x|^{2} - \sum_{k=1}^{n} \frac{\operatorname{Re}\langle x, z_{k} \rangle^{2} + \operatorname{Im}\langle x, z_{k} \rangle^{2}}{c_{k}}$$

$$= ||y||^{2} \{|x|^{2} - \frac{1}{2} \sum_{k=1}^{n} \frac{|\langle x, z_{k} \rangle|^{2}}{c_{k}} - \frac{1}{2} \sum_{k=1}^{n} \frac{\langle z_{k}, x \rangle^{2}}{c_{k}} \},$$

$$\geq ||y||^{2} \{|x|^{2} - \sum_{k=1}^{n} \frac{|\langle x, z_{k} \rangle|^{2}}{c_{k}} \},$$

$$\geq |\langle y, x \rangle|^{2}$$

as desired.

Remark 3.7. If in Theorem 3.2 z_1, \ldots, z_n be a sequence of unit vectors, then

$$|(x_1 + \dots + x_m, y)|^2 + (\sum_{j=1}^m (a_j^2 + b_j^2))(\sum_{i=1}^n |x_i|)^2 ||y||^2 \le \left|\sum_{i=1}^n x_i\right|^2 ||y||^2.$$
 (3.12)

This inequalitie is a type of extension of Diaz-Metcalf inequality in C^* -module.

Remark 3.8 If we have $\langle z_k, \sum_{i=1}^m x_i \rangle$ in commutator Z(A) for all $k = 1, \ldots, n$ the condition (3.10) is verified.

Theorem 3.9. Let $x, y \in X$ and $\langle y, z_i \rangle = 0$ for given non-zero vectors $z_i \in X, i = 1, 2, ..., n$. Then, for any $k \in \{1, 2, ..., n\}$

$$|\langle y, x \rangle|^{2} + ||y||^{2} [||z_{k}||^{-2} \left| \langle z_{k}, x \rangle - \left\langle \sum_{i=1}^{n} \frac{\langle z_{i}, x \rangle}{\sum_{j=1}^{n} ||\langle z_{i}, z_{j} \rangle||} z_{i}, z_{k} \right\rangle \right|^{2} + \sum_{i=1}^{n} \frac{|\langle z_{i}, x \rangle|^{2}}{\sum_{j=1}^{n} ||\langle z_{i}, z_{j} \rangle||}]$$

$$\leq |x|^{2} ||y||^{2}.$$

Proof. Let $u = x - \sum_{i=1}^n \frac{\langle z_i, x \rangle}{\sum_{j=1}^n ||\langle z_i, z_j \rangle||} z_i$. Then by Proof of Theorem (3.2) in [1] we get

$$|u|^2 \le |x|^2 - \sum_{i=1}^n \frac{|\langle z_i, x \rangle|^2}{\sum_{j=1}^n ||\langle z_i, z_j \rangle||}.$$

Then $\langle y, u \rangle = \langle y, x \rangle$ as $\langle z_i, y \rangle = 0, i = 1, 2, ..., n$, and so by refinement of Seleberg inequality in [1] we get

$$|\langle y, x \rangle|^{2} + ||z_{k}||^{-2} ||y||^{2} |\langle z_{k}, u \rangle|^{2} \leq ||u|^{2} ||x||^{2} - \sum_{i=1}^{n} \frac{|\langle z_{i}, x \rangle|^{2}}{\sum_{j=1}^{n} ||\langle z_{i}, z_{j} \rangle||}]$$

thus the desired inequality thus follows.

We should obtain generalized and sharpened Cauchy-Schwarz inequality and Bessels inequality in C^* - module as follows.

Theorem 3.10. Let $x, y \in X$, and z_i be unit vectors with $\langle y, z_i \rangle = 0$, $z_i \in X, i = 1, 2, ..., n$. Then

$$|\langle y, x \rangle|^2 + ||y||^2 [|\langle z_k, u_n \rangle|^2 + \sum_{i=1}^n |\langle z_i, u_{i-1} \rangle|^2]$$

 $\leq |x|^2 ||y||^2$
or $|\langle y, x \rangle| \leq |u_n - z_k \langle z_k, u_n \rangle| ||y||$

for $k \in \{1,2,\ldots,n\}$, where $u_0 = x$ and $u_i = u_{i-1} - z_i \langle z_i,u_{i-1} \rangle$, $i=1,2,\ldots,n$.

In particular, if z_i are unit orthogonal vectors, then

$$|\langle y, x \rangle|^2 + ||y||^2 \sum_{i=1}^n |\langle z_i, x \rangle|^2 \le |x|^2 ||y||^2$$
 (3.13)

or

$$|\langle y, x \rangle| \le |x - z_k \langle z_k, x \rangle| \|y\|. \tag{3.14}$$

Proof. By a simple calcul we get

$$u_n = x - \sum_{i=1}^n z_i \langle z_i, u_{i-1} \rangle.$$

Due to the definition of u_i and $\langle z_i, z_i \rangle = 1$, we have

$$|u_i|^2 = |u_{i-1}|^2 - |\langle z_i, u_{i-1} \rangle|^2$$
.

Setting $i = 1, 2, \dots, n$ in above yields

$$|u_n|^2 = |x|^2 - \sum_{i=1}^n |\langle z_i, u_{i-1} \rangle|^2.$$

Now we have $\langle y, z_k \rangle = 0$ for $k \in \{1, 2, ..., n\}$, by applying the refinement of Seleberg inequality in [1], we obtain

$$|\langle y, u_n \rangle|^2 + ||y||^2 |\langle z_k, u_n \rangle|^2 \le |u_n|^2 ||y||^2$$

and

$$|u_n|^2 ||y||^2 = ||y||^2 [|x|^2 - \sum_{i=1}^n |\langle z_i, u_{i-1} \rangle|^2]$$

but $|\langle y, u_n \rangle|^2 = |\langle y, x \rangle|^2$ because $\langle y, z_i \rangle = 0$ then the first inequality holds.

For the second, we have

$$|u_n - z_k \langle z_k, u_n \rangle|^2 = |x|^2 - [|\langle z_k, u_n \rangle|^2 + \sum_{i=1}^n |\langle z_i, u_{i-1} \rangle|^2]$$

and we pass to square root we get the discred result.

Now if $\{z_i\}_i$, is a set of unit orthogonal vectors then

$$\langle z_k, u_n \rangle = \left\langle z_k, x - \sum_{i=1}^n z_i \langle z_i, u_{i-1} \rangle \right\rangle$$

$$= \left\langle z_k, x \rangle - \langle z_k, u_{k-1} \rangle \right\rangle$$

$$= \left\langle z_k, x \rangle - \left\langle z_k, x - \sum_{i=1}^{k-1} z_i \langle z_i, u_{i-1} \rangle \right\rangle$$

$$= 0.$$

Also, $\langle z_i, u_{i-1} \rangle = \langle z_i, x \rangle$, i = 1, 2, ..., n by a similar comptation, we have the particular case, this complet the Proof of Theorem.

Remark 3.11. If y is a non-zero vector orthogonal to vector x in (3.13) we obtain the Bessel inequality in Hilbert C^* -module.

If x is orthogonal to z_k in (3.14) we get the Cauchy-Shwartz inequality in Hilbert C^* module.

References

- N.BOUNADER AND A.CHAHBI, Seleberg Type Inequalities in Hilbert C.-Modules .Int. Journal of Math. Analysis, Vol. 7, 2013, no. 8, 385 - 391.
- [2] F. R. DAVIDSON, C^* -algebra by exemple. Fields Ins. Monog; 1996.
- [3] S. DRAGOMIR, Reverese of the triangle inequality via Selbergs and Boas-Bellmans inequalities,4 August, 2005.
- [4] S. S. DRAGOMIR, On the Boas-Bellman Inequality in inner product spaces. arXiv:math[math.CA], 9 Jul 2003, Aletheia University.
- [5] S. S. Dragomir, M. Khosravi and M. S. Moslehian, Bessel type inequality in Hilbert C*-modules. arXiv[math.FA] 25 May 2009.
- [6] M. Frank, Self-duality and C^* reflexivity of Hilbert C^* -modules. Anal. Anwendungen 9 (1990), 165-176.
- [7] M. Frank, Geometrical aspets of Hilbert C*-modules. 3 (1999), 215-243.
- [8] M. Fujii, Selberg inequalty. (1991), 70-76.
- [9] M. FUJII AND R. NAKAMOTO Simultaneous extensions of Selberg inequality and Heinz-Kato-Furuta Inequality. Nihonkai Math. J. Vol. 9 (1998), 219-225.

- [10] I. Kaplansky, Modules over operateur algebras. Amer. J. Math. 75, 839-858, 1953.
- [11] E. C. LANCE, Hilbert C^* -modules. LMS Lecture Note series 210, CUP, 1995.
- [12] C.-S. Lin, Heinz's inequality and Bernstein's inequality. Proceedings of the American Mathematical Society, Volume 125, Number 8, August 1997.
- [13] A. ROUKBI, Dragomir's, Buzano's and Kerupa's Inequalities in Hilbert C*-modules.Facta Universitatis (NIS)Ser. Math. Inform. Vol. 27, (2012).