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Abstract. This article establishes the existence of distributional solutions to a nonlinear system involving non-
compact resolvent. By means of the Leray-Schauder degree theory, with suitable assumptions on the nonlinearities,
the authors prove the existence of distributional solutions.
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1. INTRODUCTION

After the pioneer work by Landesman and Lazer in 1970 [16], many researchers were in-
terested in nonlinear problems at resonance (see [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 21, 25, 26]).
In their article, Landesman and Lazer provided sufficient conditions ( which in certain circum-
stances are also necessary) for the existence of solutions for the smooth semilinear Dirich-
let problems. Recently, Lakhal, and Khodja [15] treated an elliptic system at resonance for
jumping non-linearities in the compact case, employing the Leray-Schauder degree theory (see
[20]) . The scalar case considered in [12] shows the existence of solutions to the problem
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Au = au™ — Bu~ + f(x,u) + h, where A is a self-adjoint operator and f(-,-) maps Q x R into
R, such that limg_,c @ =0and o < f satisfy [o, B]NSp(A) = A, (A is a simple eigenvalue
of A).

In our work, we concentrate our efforts to extend the results obtained in [12, 15] to the system
for the non-compact case. This type of problems has been extensively studied by many authors.
In 2021, Zhang and Liu [27] obtained the existence of nontrivial solutions for a quasilinear
system. In [17], the authors studied the existence of weak solutions of a quasilinear system of
partial differential equations which are a combination of the Perona-Malik equation and the heat
equation. Their study is mainly based on the use of the compactness method and the motonocity
arguments. Far from being complete, we refer the interested readers to [18, 19, 22, 24] and the
references therein.

The aim of this article is to investigate the existence of weak solutions to a nonlinear system
at resonance, when the resolvent of our operator is non-compact. We consider the following

problem
Au=gi(x,u,v)+hi(x) inQ,
(1) Av = gr(x,u,v) +hy(x) inQ,
u=v=0 ondQ,

where Q is a bounded domain in RY(N > 2) with smooth boundary dQ and i = (hy,hy) is
in (L>(Q))?, A is a linear self-adjoint operator with non-compact resolvent, R(A) is closed in
L*(Q), D(A) C L*(Q), and the inclusion of D(A) NR(A) (equipped with the graph norm) in

L?(Q) is compact, the functions g; are semi-linear at infinity such that

81 (xasag) = O£1s+—[31s_—|—f1(x,s,§),

g2<x7s7§) - azéJr _B2§7+f2(xas7é:)v

where s = max(s,0) (resp &7 = max(£,0)) and s~ = max(—s,0) (resp &~ = max(—&,0) ),
f maps Q x R x R into R. The difficulty here lays in the fact that for a regular value r of
A, (A—rI)~!is not compact on L?(Q) x L?(€) while the restriction of (A —rI)~! to R(A) is
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compact. We can write (1) in the form

+ —

A 0O u o O u ﬁl 0 u
0 A v 0 o v 0 B 1

10 fi 10 h

+ +
01 f2 0 1 hy
We putw = (u,v), f = (fl,f2>, h= (hl,hz) and
A O a; 0 B 0O
M= , o= and P =

0 A 0 o 0 B

Then
Mw=ow" —Bw +If+Ih inQ.

In what follows, we need a strong motonocity hypotheses on g;,i = 1,2, i.e.

38 >0,i=1,2, Vs,5EE€R,

) (g1(x,5,E) —g1(x,8,E))(s—5) > 8|s—§|?, ae. €,

A

(82(x,5,8) — g2(x,85,E))(E — &) > 8|& — &%, ae. €.

From now on, we suppose that o, B; € } ,I[ = I satisfy
3) [, B]NSp(A) ={A},i=1,2
where A and A are defined as follows
A=inf{A: 4 > A,k e N} A =sup{ A : A <A,k e N*}.
For every o, B; € I, X I, we define the function C(+,-) on I X I, satisfying

Au=au" —Bu +C(a,B)e, and / up =1,
Q

where ¢ is a normalized eigenfunction corresponding to A.

The function C(.,.) is defined on I, x I, with values in R and satisfies the following properties

(1) forevery x €I, C(a,00) = A —
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(2) if ¢ >0, then C(a, B) = A — ax,

(3) if ¢~ #0and @* #£0, C(+,-) is decreasing in each variable,

(4) the curve

T={(a,p) e xI,C(e, B) = {0}},
is continuous, passing through the point (A,4) of I}, X I

In the present paper we study the case where C(a, 3;) - C(Bi,06) =0, i=1,2. For the case of
a system, the interested reader is referred to [6, 7] and [8]. The main idea in [23] is to present
a priori bounds for the solutions of (1) where C(a,3) - C(B, ) # 0. Let N(«, B) be defined as
follows

N(a,B)={ueD(A),Au=ou™ —Bu"},

then N(o, ) = {0} if and only if C(a, B) - C(B, @) # 0 noting that N(A,A) = N) = ker(A —
AI). The equation of existence of solutions for (1) when N(a,) = {0} has been studied in
[11, 23]. The main idea of the present paper is to study the existence of solutions for a system
with non compact resolvent operators of the form (1) in the case where N (o, ) # {0}:
>IfC(B,a) =C(a,B) =0, we have resonance;

>IfC(a,B)=0#C(B,a), or C(B,00) =0 +# C(ax, B), we have semi resonance.

We assume that fi, f : Q x R x R — R are continuous functions satisfying the conditions:

f1(x,8,8) < ' (1+[s| +1&)),
“4)

f2(x,5,8)| < (1 +s] +5)),

where ¢/, ¢” are real positive constants;

lim fl(xwgv&) = C]—i_aihvl'igln;)oofl(xasaé) = Cl_v

5| §[ e

(5)
§ 6 e X (Q) and & < filx,s,8) < ¢fF
and
lim fo(x,5,6) =8, lim f(xs,€) =0,
6) &,|s|—o0 =& ,|s|—e0

C{,Cj € L*(Q) and & < folx,5,8) < (:;

Let 6; = (v1,V2) and 6, = (v3, v4) be defined as follows
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Av; = oV — B,-vl.‘,/ Viodx = 1 when C(a;,8;) = 0,i = 1,2,
Q
(N
AV,'+2 = (X,'V;er _ﬁivi+27/ Vi+2(de = —1 when C(ﬁ,’, OC,') = O,i = 1,2.
Q

Our main theorem is

Theorem 1. Assume that (3),(4),(5),(6) and (7) are fulfilled. For each (hy,hy) € (L*(Q))?, we
define T;(h;) and T;1(h;) as follows

Ti(hi)Z/hividx—i—/ Cﬁvﬁdx—/ Lvidy, i=1,2
Q Q Q
Tia(hi) = /Q hiViiodx + /Q Crvidx— /Q G vi,dx, i=1,2

(1) If C(ay, B;) = C(Bi, ;) = 0, (1) has at least one solution for every h; € L*(Q) such that
E(hi)]}+2(hi) >0,i=1,2
(2) If C(a;, Bi) =0 # C(Bi,04) (resp C(Bi, ;) = 0# C(, Bi)), (1) has at least one solu-
tion for every h; € L*(Q) such that
C(ﬁ[, OC,')T[(h,') < 0( resp C(OC,‘,B,')T,‘+2(}1,') < 0), i=1,2.
2. PRELIMINARIES
Let us consider the space
V = D(A) x D(A),
endowed with the norm
()5 = el + 111Dy

and let V = L2(Q) x L2(Q). In the sequel,

|Iz2(q) denote the usual norm on L?*(Q). Through-
out this paper, we denote by A a simple eigenvalue of A, ¢ is an eigenfunction associated to A
normalized in L2(Q), P designates the orthogonal projection of V on (@)% (¢ is the orthog-

onal of @ in L? (Q)). We recall the following proposition proved by Gallouet and Kavian (see
[11]).
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Proposition 1. Forall a,f € ]LI[ there exists a unique C(a, ) € R and a unique u € D(A),

such that
Au= aut — Bu +C(at, B)o.

/ updx = 1.
Q

The next result is given in a general framework.

Proposition 2. Let G(x,s) : Q@ X R — R be measurable function on x € Q and continuous on
s € R, verifying
(i) There exist o, 3 € R such that A < a0 < w < B < Aforalls,t € R,a.e.in Q,

G(x,s)

@i1) lim =la.e. inQ,

sl=r-+oo

(iii) G(x,0) =0 a.e. in Q.

Then, for all s € R, and all hy € (pL, there exists a unique v € D(A)N (pL such that
Av = PG(.,v+sQ) + hy.

The proof of the above proposition can also be found in [11]. The following lemma is proved

in [12]
Lemma 1. Let (2), (4), (5) and (6) be satisfied, and let F be the orthogonal projection of LZ(Q)
onN(A) (#{0}) and B= (A—rl)~! forr c R—Sp(A). For T €[0,1] and u € L*(Q), we define
1
Diu=(I—F)u+—-Fg¢(x,u,v).
r

Then, Dy : L*(Q) — L*(Q) is inversible, D; ' : L*(Q) — L*(Q) is continuous, and bounded on

bounded sets.
Then, for (t,u,v) € [0,1] x V, we define
Sl(f,u,V) :B(I_F)gl,f(x7u7v) —rB(I—F)u,

Sa(t,u,v) =B(I —F)ga ¢(x,u,v) —rB(I —F)v,

and
Hy(t,u,v) Dyl o0 Si(t,u,v)+ Bh;

H>(t,u,v) 0 D! Sa(t,u,v)+ Bhy
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B(I —F), is compact and so H : [0,1] x V — V is compact.

Clearly, the following problems are equivalent:
(u,v) €V,
€)) Au=oqu™ — Biu= +tf1(x,u,v)+ (1 —7)(B1 — ay)u™ + hy(x),

Av=opvt —Bov + 1 (xu,v)+ (1 —1) (B — ap)v™ + ha(x),
and

) (u,v) €V, (u,v) =H(t,u,v).
3. A PRIORI BOUNDS FOR SOLUTIONS OF (1)
Lemma 2. Under the assumptions of theorem (1), and assuming that

0<A<o<A<Bi<A

and T;(h;) < 0, Tiio(hi) < 0,i = 1,2, there exists R > 0 such that for all T € [0,1] and all
(u,v) eV

(u,v) = H(t,u,v) = ||(u,v)|ly <R.

Proof. To prove this lemma we assume by contradiction, that for all R > 0 there exists (7,u,v) €
[0,1] x V such that

(u,v) = H(7,u,v) and ||(u,v)|lv > R.

In other words, we can find a sequence (7,,up,v,) € [0,1] x V such that
(10) (tn,vn) = H( Ty, tn,vy) and a, = ||(uy,vn)|lv > n.

Taking

(i, 90) ( i v )
iy, Vp) =
w0 =\ TGamndlly” Taamwdlv )

then it follows with this choice of (i, ?,) that

(G, V) €V and ||(dy,0,)||v = 1.

Indeed, it is easy to see that (i, V,) = (@, V—") — (,7) in V and || (dp, V) ||y = 1. Let us show

that (i1,,7,) € V.
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N ~ Up v . " N AN TS
(ulvn,vhn) = (I—F) (a—n,a—n> S (D(A) ﬂR(A))z, (I/t]’n,V]?n) — (ul,v1) mV
n dn
(11)
R ~ Un Vn ) N N N AN LTS
(u27n,v27,,) =F (a—, a—) < (N(A)) , (uzﬂ,uz’n) — (uz,VQ) in V weak.
n dn

It is easy to see that
Yu,v,u,v € R,v1 € [0, 1],
(12) (gl,f(x7uav)_gl,T(x7ﬁ7§))(u_ﬁ> Z31|I’l_1f’\[|27

(gZ,T(xau’v) _gZ,T(xv i‘va‘j))(v_ ‘A}) > 52|v_ v 27

and (i, v,) satisfies

. 1 . R .
(13) Ally = —[g1.1, (X, anlin, anVy) + hi(x)] = Al p,
. 1 . R .
(14) Ay = — 82,7, (X, Anlin, an¥n) + ho(x)] = AV,
n
such that

ﬁn = ﬁl n+ ﬁ2,n7 ﬁZ,n € N(A): ‘,}\n = ‘Gl,n +‘/}2,na ‘/}2,n € N(A)

I

Using (12), we have for (w,w) € V:

1 i v W 1 A
(15) o /Q(glrn (x, aniin, andn) — g1 5, (X, anw,ayw)) (fi, — w) dx > 8 |ty _WHiz,
n
and
1 i n’ W)) (P —w 5 w2
(10 an /Q(gz’f" (, i, @pPn) — 825, (X, Anw, anW) ) (Py — W) dx > & |9, — W] 7.
n
But
! h
~8ln, (x’ a”ﬁnaanﬁn) = Aﬁl,n - la(X) ’
(17) 1n h -
_gz’f" (X, anﬁmanﬁn) — A‘,}\ln - 2(x) 9
an , a

hence, using (15), (16) and (17), we have

h 1 -
(18) /Aﬁl,n(ﬁn—w)dx—/ (ﬂ+—g1’fn(x,anw,anw))(ﬁn—w)dxzo,
Q Q an an
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and
- h 1 - -
(19) / ADy (0, — W) dx — / (ﬂ + —gaz, (x,anw, anw)) ($ — W) dx > 0.
Q Q ay dap
We write
w=w| +wy withw| € R(A), wy € N(A),
and

w=w| +wy withw; € R(A), wp € N(A).

By (11), we have
/QAI/Ath(LAtn—Wl)dx:/QAL’ZLn(ﬁLn—WI)dx—)/QAﬁl(ﬁl—Wl)dx,

/A917n(\9n—v?1)dx:/A\?l,n(\?l,n—v?])dx%/m?l(ﬁ]—Wl)dx,
Q Q Q

and ( we put y| , = a,wi, y2,, = apW1)

1 - -
a_[hl(x) + 81,7, (xaanW7 anw)] = a_[hl(x) + 81,1, (X, anwlvanwl)]
n n
1 _
= —[hx)+ aly;fn —Biyy,
an b )
(20) + Tuf1 (61,0, ¥2,0) + (1= T) (Br — o)y ],
1 - 1 -
() + 82,5, (v anwanw)] = —[ha(x) + 82,5, (x, anwr, @i )]
n n
1 _
= —[ha(x)+00y;, — B2y,
an bl b}
(21) + Tuf2(X, Y10 Y2,0) + (1= ) (B2 — )y, |-

From (4) and noticing that (a4 b)? < 2(a? + b?), we obtain the following estimate

/Q A6y yan)Pdx < /Q (14 [yl + [y2n])2dx

< 26'2/9((1+|Y1,n!)2+\y2,n!2)dx§k1(1+!\yl,n\\2+!\y2,n|\2)-
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Similarly, we obtain

L1z Pdx < [ Pyl + )

< 27 /Q (1 y1al) + y2al?)dx < Ko

2)7

where k1, k, are positive constants. Therefore

2
dx <k ’
<a2 a2 + az )’

/ | f1(x, 1 n,yzn)|

and
|f2(-xay1,n7y2,n)|2 1 ) 2 > §
f,E s (G T ).
Then
’fl-xyll’nyZn)‘ < 2 ~ 112
dx < ki (1+[will72(g) + W1 ll72(q)):
|f2(X,)’1, yan)|? _
/Q ag 1 dxgk2(1+||Wl|‘[%2(Q)+‘|W1||[%2(Q))7
that is, iV, Y2.0) and 2 (%Y1, ¥2) are bounded in L?(Q). Moreover, by (10) we have
an an
17ll2@) Al
< ||h
210 BT iy,
and
12l lh2llz@
@ < 2D iyl 2

a n

then the right hand side of (20) and (21) are bounded in L? (Q) for all n, thus

1 _ -
— [hl () +eayf, = By, + i (6, y1my20) + (1= Ta) (B1 — 0‘1))’1,;1} € L*(Q),

n

and

L o) () 0y3, — oy, + Tnfalxyinoyan) +(1- %) (Br— 00y, € 2(Q).

n
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Since (wy,w;) € (R(A))? and as R(A) is closed in L? (Q), there exists (T, wi,, wi,) € [0,1] x
(R(A))? which converges to (7,w,w). Consequently (wy,,w1,) are bounded in L?(), then

F1(xX, Y105 20) <

L+ [win| +[win]) < K ae.in Q,
an

and

fz(X,yanzn) < CN (

1+ |win| + [Wia|) < k" ace. in Q,
an

where k', k" are real positive constants.

And from the hypotheses (5) and (6), it follows that

N1GYLY20) Vi [1(6Y10Y20)

an an Yin
X, AW .
— W17nf1( yUn l,nayz,n) v 0ae.in Q,
AnWin oo
and
LEyinyen)  — van (5 Y10,Y20)
Qn an Y2.n
(XY, a1 .
= W1,nf( & o7 n) — 0a.e. in Q,
anWin n—roo

Whereupon, using Lebesgue’s convergence theorem,

Ayt ¥20) L i 12(0) 0 oo

ap
and
LS ITINEN) S L*(Q),n — oo.
ay
Consequently
hy(x 1 ~ - i
1a< )+ —81,,(%,anw, @, ) = arwt —Biw” + (1= 1)(B1 —ou)w™, in L*(Q),
n n
and
h(x) | 1

+ a_g“" (x,anw,ay,w) — oW — Bow™ + (1 —1)(B2— )W, in LZ(Q),

a}’l n
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and hence
h 1 -
lim/ < 1) + —281,5,(x, anw, anw)> (lin — w)dx
n—e [0 a, "
_ / (cwt — Biw™ + (1= 7)(B1 — o )w™ ) (din — w)dlx,
and

h 1 - -
lim/ ( 2(%) +—a 82,1, (x,aw, anw)) (P —w)dx
Q

n—oo an n

_ /Q (0™ — Buiv— + (1= 7) (B — a)iv ) (P — W)dx.
So, passing to the limit in (18) and (19), we have

/Q(Aa1 —(ouw = Biw + (1= 7)(B1 — ot )w ) (i — w) dx > 0,

and
/Q(A\91 (0t — B + (1= 1) (Ba— o)) (§— ) dx > 0.
Using Minty’s trick we replace w by i+ & w and w by v+ &w and let & — 0,i = 1,2,
Ad=auit —pia+(1—1)(f1—an)d,
(22)

AV = 062\7+ - [32\9_ + (1 - ‘L')(ﬁz - 062)\9_.

Now, coming back to (15) and (16), we put w = i in the first equation, and w = ¥ in the second

equation and pass to the limit, we find
lim & ||, —a|*> <0,
n—soo

lim &, |9, — 9[|* <0,
n—soo

1.e.
f, — 4in L*(Q), ¥, — ¥in L*(Q),
n—oo n—oo
. 1 JA R L .
Al = —[g1.1, (%, anlin, anbp) + hy (x)] 4 o™ = Pia~ 4+ (1—71) (B —on)d~ in L*(Q),

n

L1 P . . N
AV, = a_[gz’r" (x, anlin, anvn) +ha(x)] — vt — Byv + (1 —1)(Br — 0)¥~ in L*(Q),

n
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so that (d,,V,) — (2,9) in V and ||(2,9)[|y = 1.
n—soco
Case I: / ﬁ(pdx:/ vodx = 0.
Q Q
By projecting on @, we have

Al = Ployat — B~ + (1 —1)(B1 — )i ],

AV = Plapht — Bob™ + (1= 1) (B2 — o) 97 ],
and from proposition 2 (s = 0,y = 0), we have 4 = ¥ = 0, this is in contradiction with
1@ 9)]lv = 1.
Case II: / i@dx = 6; >0, and / vopdx =6, > 0.
Q Q

i v )
Then vi = —, v» = — verifies
0’ 6,

Avi = oy v = Bivy +(1—=7)(B1— o) vy, /QVHde:L

AV, = oczv;r —Bov, +(1=1)(Br— )V, /sz(pdx =1.
From proposition 1, we deduce that
C((Xl,ﬁl + (1 — ’L')(Otl —ﬁl) =0,

Clon, B+ (1—1)(0a—B2) =0.

As the function C(.,.) is strictly decreasing with respect to each variable, with o; < B;,i = 1,2

and T < 1, we have
C(ay,B1+(1=1)(0o1 — 1) > C(ay,B1) =0,
C(op, B+ (1 —1)(a2 — B2) > C(,B2) =0,
which is a contradiction.
Case III: /Q igdx — 6; < 0, and /Q Podx = 6, < 0.

Then v| = o V) = e we obtain a contradiction with the similar argument as in the above
1 )

step. Hence we have 7 =1 and

Al =it — Bia—, (4,9) € N(ay, Br),
(23)
AD = o0t — B0, (4, 0) € N(a, B).
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Then, we can write
n=rcivi if C1=/ﬁ([)d)€>0,
Q

p=cyvy if Q=/$¢m>q
Q

and

We assume first that
(/mm<amg/mm<m
Q Q

and we define

Cl,nER7 Xl,neD(A)7 Cl,n:_/gﬁn(pdx7 Xl,n:ﬁn_cl,nv?n
Con € R, X2,n € D(A)a Con = _/Q‘/)n(p dx, X2,n =V — C2.nV4,

in such a way that

p=c1aV3+Xin, cin—c1>0, |Xiallpa) =0, Xin€ob,

1X2ullpay =0, Xon €0t

Vn=copVa+Xopn, C2—c2>0,
We claim that
(24) 3K > 0 such that for any n > 1, an||X,~’n||D(A) <K, i=1,2.
Supposing that (24) is established and multiplying (13) on both sides by v3, we obtain
ap /QAﬁnwdx = an/Q (oudy, — Bidty, ) vadx+ (1 —1,) (B — o) ap /Qﬁnv3dx

+ Tn/ S (x7 anﬁnaanﬁn)‘@dx"f—/ hl(X)V3dx.
Q Q
For n large enough, / i, v3 <0, because iI,, — c1V; in L? ¢ > 0, hence
Q

(25) /th(x)V3dx—|—Tn/ﬂfl(x,anﬁn,anﬁn)wdx

> an/gAﬁnwdx—an/Q(alﬁ:—ﬁlﬁ;)wdx.

Using the same arguments with (14), we obtain
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(26) / hy (x)vadx+ 1, / 2 (x,anily, anvy) vadx
Q Q
> %/AWWM—%/umﬁ—m@mmx
Q Q
Noticing that

bia= [ Advsde— [ (i - Bidy ) vad
(27)
Son= [ Atwvadi— [ (a0 — B, vad,
Q Q
and because (A = A*)

@@Ln:/Qﬁn(A"s)dx—/Q(Otlﬁ;f—ﬁlﬁ;)\@dx,

gZ,n = /Q‘,"\n(AVAL) dx — /Q ((XZ\;: — BZ‘,};) V4dx.

Then
gLn:Aﬁn(alvj_ﬁlvg)w—lz(alﬁ;—ﬁlﬁ;) vz dx,

= /Qﬁn(azvf —[32V4)dx—/Q (b} — Bab, ) vadx,
that is
in =0 /Qum iy vy dx —py /Q<ﬁ:v3 — i, vy dx,

@@2’,1:ocz/g(ﬁ;fv;—ﬁ;vj)dx—ﬁz/g(ﬁjvg—ﬁ;vj)dx,

and we have

(28) |é"1,n\slﬁl—all(/ﬂﬁiv;dw/gﬁgv; )

(29) %AS%—@(Lﬁwm+A%qm)
If x € Q is such that
V3 ()C) > (0 and ﬁn(x) = C17nV3(x) +X17n(x) <0,

V4(x) > 0 and ¥,(x) = 2 ,va(x) + X2 ,(x) <O,

15
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then
/) —-X X
Xin(x) <ip(x) <0 and 0<w3(x)= fin(26) = X1 () < | 1’n(X)’,
Cln Cln
D - X X
Con C2n
we obtain
X 2
(30) i, (x)vi(x) < K@ o in Q,
Cln
X 2
31) b (v (x) < Xen e ina.
C2n
Using the same arguments, one can see that
X 2
(32) i (x)vy (x) < X e in Q,
Cln
X 2
(33) P )y (x) < Xen e g,
C2n
From (28), (29), (30), (31), (32) and (33) we deduce
2 2
(34) 81,0 < 1B — o] X1 2(Q)
Cln
2 2
(35) |£)2,n < 2n|B2_a2|||X2,n 12(Q)
Hence, (24) implies that
2K
an|E1n| < —I[B1 — 1| IX1 nllpa),
Cln
2K
an|E2n| < —[B2 — || X2,nllp(a).

2.n

therefore lima,|&; ,| =0, and lima,|&> ,| = 0.
n—oo n—oo

Now, coming back to (25), (26), we have by (5) and (6)
anéin < fn/ Civg*dx—/ C vy dx+hy(x)vsdy,
Q Q

a, &, grn/gé’;vjdx—/gézv4dx+h2(X)V4dX,
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and passing to the limit, we find
0= liman&i, < / cﬁv;dx—/ gl—v;dx+/ By (x)vs dx = Ty (hy),
oo Q Q Q

0= limay, < / c;vjdx—/ §2v4dx+/ 7o (x) v dx = Ty (ha),
n—yeo Q Q Q
which is in contradiction with 73(h;) < 0 and Ty (hy) < 0.

Now, we assume that,
/ fgdx > 0 and / Ppdx >0,
Q Q

defining
Cln € R, Xl,n S D(A), Clp= /Qﬁn(pdx, X17n =i, —C1uV1,
can€R, Xp,€D(A), cop= /Qﬁn(pdx, Xon="Vn—cC2nV2,
in such a way that
p=c1aVi+Xin,  cla—c1>0, [Xiallpa) =0, Xin€oh,

On=coaV2+Xon, Can—2>0,  [Xoullpa)y =0, Xau€ @t
multiplying (13) on both sides by v; and (14) by v, and by the same arguments used in the

previous step, we obtain
(36) / hy(x)vidx+ ’L'n/ f1(x,aniy, anv,)vidx
Q Q
> an/ A,V —an/ (oqd; — i, )vidx,
Q Q
and
(37) /th(x)vzdx—}— ”L‘n/gfz(x, Anlin, anVy) Vadx
> an/ Ali, Vo —an/ (062\9;’1_ —Bz\?,?)\/zdx,
Q Q
leading to a contradiction as 7j (h;) < 0 and T3 (hy) < 0.
Now, if (24) does not hold, then there exists a subsequence denoted by a,||X,||v such that
lim a,||X, ||y — . Let
n—so0

> 5 XL Xz7
b= Xallvs 20 = Gnnta) = (WW)
n n
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= (Zn2n) €V, ||(Zn,2n)|lv = 1. We notice that

mﬂ%@)

Zin= Cimiia) =I—F)( € (D(A)NR(A))?,

and

Xln X2n 2
: : N(A))~.

The inclusion D(A) N R(A) < L?(Q) being compact, then there is a subsequence still denoted

LDn= (22,11;22,11) = F(

by (21 4,21,1) such that
Z1a(x) = z1(x)  ae. in Q and there exists (c,c2) € V such that

Z1a(x)] <ci(x)ae. |Z1a(x)] <ca(x)ae.

On the other hand &, = ¢1 , V3 + X1, Vn = c24Va+ X2, satisty

X, Ay, anV . h
Aﬁnzalﬁ:—ﬁlﬁ;wﬂ( L ”)+<1—rn)(ﬁ1—a1>un +=

n n

b 1 b D A— h
fa(x, anily, anVn)+(1_Tn>(ﬁ2_a2)vn ey

ap an

ADy = o0t — Bty + Ty

Multiplying the first equation by v /b,, and the second equation by v4/b,, we have

ﬂxawm%w)

n

v3dx

—/AunV3dx :—/ 061u+ Blu V3dx+Tn

+(1 ;nfn) (B1—a) /Q 1,

ﬁanm%W)

n

—/Avn\qu :_/ 062V+ ﬁzv V4dx+fn V4dx

<1 ;nfn) (ﬁz — (Xz) /Qﬁnv4dx+

Using the fact that A = A* and 27, we get

1 (1—rn)
— &=
b "

n i’l

2
V4 dx.
Q anby

+

1 (x, antly, an?
f nn»nn) vy dx +
by, Q azb,

(B1— Oﬂl)/g” V3dx+Tn

and

2
V4 dx.
Q anby

Vadx+

1 (1—1,)
— &=
by >

/ fZ (x7 anﬁna an‘;n)
n by, ab

(ﬁz—az)/ v, Vadx+ 1,
Q Q
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Then
1—71
( n><ﬁ1—a1)/ﬁ;\’3dx— — &1 — /f] xanun’anvn) v3dx — —vsdy,
by, Q Q apb,
and
1—
( Tn)(ﬁz_az)/v V4d)€——(§’2n /f2xanun;anvn) v dx — 2 vadx.
by, Q Q azby
From (4), (5), (6), (34) and (35), we conclude that
(=)
(ﬁl—al)r}l_r& bn /Qun V3dX—O,
. (1—-1) - _
([32—062)”11_{1010 by /Qvn V4d)C—0,
such that
lim ﬁnv3dx:—c1/ vy |2 dx
n—ee JQ Q
lim ﬁ;v4dx:—c2/ v, |?dx.
n—ee JQ Q
Since V; satisfies (7) and ; ¢ Sp(A), then v; # 0. As B; — a; # 0, we find that
1—1
39) 1im£————i12 =0.
n—oo n
From (7), (13), (14) and
iy = C1nV3 +X17n7 Vn = C2nV4 +X27n7
we obtain
~ Cln ~ \t+ Cln Cln ~ \— Cln_ _
A,,:oc<’v ,,—’v+>—<’v n—7v)
21, 1 (bn 3+21 ) b, 3 B (bn 3121, ) b, 3
o Ji(x,anilp, anbp) 1 h
1\ X, Qnltn, AnVn —Tn e 1
T — —_—
o anby, * by, (ﬁl l)un * anbn’
c c c _ c
At = an((virt) = 00) — B (G ) =)

X, aply, anV, 1—7 . h
—|—Tnf2( nyln n)+ n(ﬁZ_aZ)Vn + 2

anbn bn anbn ’
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when n — oo, a,b, goes to infinity, and the last three terms of (40) and (41) converge to zero in

L?*(Q), it is easy to see that

C1, ~ + C1, -~
|( an3 +Zl,n) - an3+| <|Zinl <crae,
n n
‘1, ~ \— Cln__ ~
\( 5 v ~|—Z1,n) — bnv3 | <|zZia] <crae.,
42) " "
2, A N\t €2 .
I( b “Vat+2i,) — anII <|Zinl < czae,
n n

C
2Ry < Jgral < o ae.

C2n ~ -
|< bn V4 +Z1,n) bn

Moreover, extracting a subsequence, we may assume that the last three terms of the two equa-

tions (40) and (41) go to zero a.e. in Q and there exists (c},c5) € L2(Q) x L*(Q) such that

fi D 1—7 h
f1(x, anily, any,) "By — o) + 1

\<c'ae in Q
= L] 4.b. )
anbn bn anby

| T

and

X, Qnliy, anV -1 — h ;
| nfz( nln, Un n) "(ﬁz—Oﬂz)Vn +_Z| gclz a.e. in Q.

anby, by, anbn

Then applying (40), (41), (42) and the above inequalities, we obtain

|AZ) n(x)| < 2max(|ey |, |B1])er (x) 4} (x),
(43)

A2 ()] < 2max(|enl, |B2)ea(x) + 5 (x).

Let p(x) be defined a.e. in Q as follows

o; ifv;>0, orifv;=0andz(x)>0,
p(x) =
Bi ifvi<0, orifv;=0and z(x) <O.

From (40), (41) and the fact that b,, — 0 one can see that
Az n(x) = p(x)Z1(x) ae. in Q,

AZ1 p(x) = p(x)Z1(x) a.e. in Q.
Using Lebesgue dominated convergence theorem and (43), we conclude that

Q) Q)

A

AZip — pz1, A, — pZi,

2 2 2 2
Az, (LE;) Pz, Zn (LE;) Z.
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The operator M being closed, we have
_ 1 —
Az=pz, z€o, |zllv=1

Since p satisfies: A < a; < p < B < A thanks to proposition 2, we conclude that z = 0, this is

in contradiction with ||z||y = 1, and hence, (24) is established. O
Now, we give the proof of our main result.

Proof of Theorem (1). Let
B(0,R) = {(u,v) € V,[|(u,v)[lv <R}.

By invariance of the topological degree, for ¢ € [0, 1], deg(H(t,-,-),B(0,R),0) is constant. In

particular, if # = 0 we have

Hi(0,u,v D70 S1(0,u,v)+ Bh
H(O,u,v) = i ) = 1,0 i ) !

H>(0,u,v) 0 Dy, S2(0,u,v) + Bhy

On the other hand, for t = 0, the linear problem

Au = Qqu+hy in Q,
Av=0pv+hyin Q,

u=v=0o0ndQ.

admits a unique solution (u,v) € V.

By the homotopy invariance property, we have

deg(H(0,-,-),B(0,R),D"'Bh)

= deg(H(1,-,-),B(0,R),D"'Bh) = +1.

This completes the proof. U
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4. CONCLUSIONS

We considered the existence of nontrivial solutions for nonlinear system with non-compact
resolvent operators at resonance for jumping non-linearities. By using the Leray-Schauder de-
gree theory, we obtained the existence results of our problem when the resolvent of our operator
is non-compact. Some future works include similar problems with variable growth, fractional

derivatives models and an application in image processing.
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