
Available online at http://scik.org

J. Math. Comput. Sci. 2022, 12:191

https://doi.org/10.28919/jmcs/7629

ISSN: 1927-5307

LIMIT CYCLES OF DISCONTINUOUS PIECEWISE DIFFERENTIAL SYSTEMS
FORMED BY LINEAR AND CUBIC ISOCHRONOUS CENTERS

REBIHA BENTERKI∗, MERIEM BARKAT

Department of Mathematics, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arréridj 34000, El
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Abstract. One of the main problems in the qualitative theory of the planar differential systems is to control the

existence and the number of their limit cycles. There are many researchers who tried to solve this problem for

special classes of planar differential systems, see for instance [7, 16].

In this paper, we study the maximum number of limit cycles for discontinuous planar piecewise differential

systems formed by four classes of isochronous cubic centers separated by irregular straight line. We provide a

sharp upper bound for the maximum number of crossing limit cycles that these classes of discontinuous piecewise

differential systems can exhibit. Therefore, we will solve the extended of the 16th Hilbert problem for these classes.
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1. INTRODUCTION

In this paper we deal with the piecewise differential systems defined by

(1) F(x) =


F−(x) = (F−1 (x,y),F−2 (x,y)) (x,y) ∈ Σ−,

F+(x) = (F+
1 (x,y),F+

2 (x,y)) (x,y) ∈ Σ+,
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where Σ = Γ1 ∪Γ2 such that Γ1 = {(x,y) ∈ R2 : x = 0 and y ≥ 0}, Γ2 = {(x,y) ∈ R2 : x ≥

0 and y = 0}, when the separation curve Σ+ = {(x,y) ∈R2 : x > 0,y > 0} and Σ− = {(x,y) ∈

R2 : x≥ 0,y < 0}∪{(x,y) ∈ R2 : x < 0}.

We can divide the discontinuity line Σ into important subsets:

(a) Crossing set Σc = {p ∈ Σ : F−(p) Σ(p) . F+(p) Σ(p)> 0}.

(b) Sliding set Σs = {p ∈ Σ : F−(p) Σ(p)> 0 and F+(p) Σ(p)< 0}.

(c) Escaping set Σe = {p ∈ Σ : F−(p) Σ(p)< 0 and F+(p) Σ(p)> 0}.

Follow the Filippov’s convention for defining the discontinuous piecewise differential system,

see [12]. That a limit cycle of system (1) is crossing if it shares no points with the sliding set of

the system. In this paper, we work only with crossing limit cycles.

In 1920 Andronov, Vitt and Khaikin [1] started the study of the piecewise differential systems

separated by a straight line and nowadays such systems have deserved the attention of many

researchers. These differential systems are used extensively to model biological process as well

as some electronics and mechanical applications see for instance [11, 19].

A limit cycle is a periodic orbit of a differential system isolated in the set of all periodic orbits

of such system. This concept was defined by Poincaré [23, 24] at the end of the 19th century.

The study of the existence and the number of limit cycles for the discontinuous piecewise dif-

ferential systems is one of the main problem. Thus limit cycles have played and still playing an

important role in physical phenomena, see for instance [20, 21, 22, 25].

In [13] Han and Zhang conjectured that discontinuous piecewise linear differential systems

in the plane separated by a straight line have at most two crossing limit cycles, but in [14] Llibre

and Ponce provided a negative answer to this conjecture by presenting an example with exactly

three limit cycles. Many papers are dedicated to study the existence of limit cycles for the

piecewise linear differential systems, when the curve of separation is either a straight line, or an

algebraic curve, see [2, 4, 5, 6, 9, 10, 17, 18]. In the literature we find many papers interesting

in solving the second part of the sixteenth Hilbert problem for linear discontinuous piecewise

differential systems, but few papers devoted to solve this problem for nonlinear piecewise dif-

ferential systems.
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In 2020 Benterki and Llibre [3] studied the sixteenth Hilbert problem for discontinuous piece-

wise differential systems separated by a straight line, when these differential systems are linear

centers or three families of cubic isochronous centers, and they proved that the maximum num-

ber of limit cycles varies from 0, 1 and 2 depending on the chosen class.

In this paper, we deal with the following four classes of isochronous linear and cubic centers.

Lemma 1. After a linear change of variables and a rescaling of the independent variable every

linear center in R2 can be written as

(2) ẋ =−Ax− (A2 +ω2)y+B, ẏ = x+Ay+C,

with ω > 0, A, B, C ∈ R and A 6= 0.

The first integral of this system is

(3) H(x,y) = (Ay+ x)2 +2(Cx−By)+ y2ω2.

Or we can define the linear differential center as follows

(4) ẋ =−Ax− (A2 +ω2)y, ẏ = x+Ay,

with ω > 0, A ∈ R−{0}, and its corresponding first integral is

(5) H1(x,y) = (Ay+ x)2 + y2ω2.

For a proof of Lemma 1 see [15].

Now we give the three classes of isochronous cubic differential centers.

I) The first class is given by:

ẋ = y
(
2K1x+2K2x2−1

)
, ẏ = K1

(
y2− x2)+2K2xy2 + x,

which has the first integral

H2(x,y) =
x2 + y2

1−2x(K2 +K2x)
.

(II) The second class is:

ẋ = y
(

8x
3
− 32y2

9
−1
)
, ẏ = x− 4y2

3
,
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and its first integral is

H3(x,y) =
(
3x−4y2)2

+9y2.

(III) The last class is:

ẋ = (1− x)(1−2x)(−y), ẏ = 2x3−2x2 + x+ y2,

and its corresponding first integral is

H4(x,y) =
(x−1)2 (x2 + y2)

(2x−1)2 .

For a proof, see [8].

2. MAIN RESULT

In this paper we study the existence and the upper bound of limit cycles that intersect with the

irregular separation line Σ in two points, where we will find two possible configurations of limit

cycles. The first configuration denoted by conf 1 is when the limit cycles have two intersection

points with Γ1 or with Γ2. But the study the limit cycles which intersect Γ1 or Γ2 in two point

is equivalent to study the piecewise differential systems separated by one straight line. It was

proved by Benterki and Llibre in Theorem 1 of [3] that the maximum number of limit cycles of

this configuration varies from 0, 1 and 2. Then this configuration is not considered in our paper.

The second configuration denoted by conf 2, is when the limit cycles have two intersection

points with the irregular line Σ, such that one point is situated in Γ1 and the second point is

located in Γ2, i.e., the first point of intersection is (x1,0) ∈ Γ1 and the second point is (0,y2) ∈

Γ2. We notice that when we combine the two configurations conf 1 and conf 2 we obtain

another configuration that have a combination between the two kinds of limit cycles and we

will denoted it by conf 3.

We restrict our analysis to study the maximum number of limit cycles of conf 2 and conf 3.

The first main result of the present paper is the following.

Theorem 2. Consider the discontinuous piecewise differential systems separated by the irreg-

ular line Σ and formed by an arbitrary linear differential center (4) in the regions Σ− and an

arbitrary cubic isochronous center in the regions Σ+ after an affine change of variables. Then
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the maximum number of limit cycles with conf 2 of these discontinuous piecewise differential

systems is:

(i) at most two for systems of types (4) and (I), and there are systems with exactly two limit

cycles, see Fig 1(a);

(ii) at most two for systems of types (4) and (II), and there are systems with exactly two limit

cycles, see Fig 1(b);

(iii) at most three for systems of types (4) and (III), and there are systems with exactly two

limit cycles, see Fig 2(c).

Theorem 2 is proved in section 4.

Our second main result is given as follows.

Theorem 3. Consider the discontinuous piecewise differential systems separated by the irreg-

ular line Σ and formed by an arbitrary linear differential center (2) in the regions Σ− and an

arbitrary cubic isochronous center in the regions Σ+ after an affine change of variables. Then

the maximum number of limit cycles with conf 1 and conf 2 simultaneously of these discontin-

uous piecewise differential systems is:

(i) at most three for systems of types (2) and (I), and there are systems with exactly three

limit cycles, see Fig 3(a);

(ii) at most three for systems of types (2) and (II), and there are systems with exactly three

limit cycles, see Fig 3(b);

(iii) at most five for systems of types (2) and (III), and there are systems with exactly five

limit cycles, see Fig 4(c).

Theorem 3 is proved in section 5.

3. CUBIC ISOCHRONOUS SYSTEMS AFTER AN AFFINE CHANGE OF VARIABLES

In this section, we present the expression of the three families of the cubic isochronous centers

(I), (II) and (III) after doing the general affine change of variables of the form (x,y)→ (ax+
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by+ c,αx+βy+ γ), with bα−aβ 6= 0. Thus, system (I) becomes

(6)

ẋ =
1

αb−aβ
(b(−a2K1x2 +d(−2aK1x+2K2(γ +αx+βy)(γ +αx−βy)+1)+ax

(2K2(γ +αx+βy)(γ +αx−βy)+1)−d2K1 +K1(γ +αx+βy)(γ +αx

−βy))+b2y(−2aK1x−2dK1 +2K2(γ +αx)(γ +αx+βy)+1)−β (2(ax

+d)(K2(ax+d)+K1)−1)(γ +αx+βy)−b3K1y2),

ẏ =
1

αb−aβ
(b(−a2K1x2 +d(−2aK1x+2K2(γ +αx+βy)(γ +αx−βy)+1)+ax

(2K2(γ +αx+βy)(γ +αx−βy)+1)−d2K1 +K1(γ +αx+βy)(γ +αx

−βy))+b2y(−2aK1x−2dK1 +2K2(γ +αx)(γ +αx+βy)+1)−β (2(ax

+d)(K2(ax+d)+K1)−1)(γ +αx+βy)−b3K1y2),

with its first integral

(7) H̃2(x,y) =
(ax+by+d)2 +(γ +αx+βy)2

1−2(ax+by+d)(K2(ax+by+d)+K1)
.

System (II) written as

(8)

ẋ =
1

9αb−9aβ
(3b(3ax+3d−4(γ +αx+βy)(γ +αx+3βy))+β (γ +αx+βy)(−24ax

−24d +32(γ +αx+βy)2 +9)+9b2y),

ẏ =
1

9aβ −9αb
(9a2x+3a(3by+3d−4(γ +αx+βy)(γ +3αx+βy))+α(γ +αx+βy)

(−24by−24d +32(γ +αx+βy)2 +9)),

where its first integral is

(9) H̃3(x,y) =
(
3(ax+by+d)−4(γ +αx+βy)2)2

+9(γ +αx+βy)2.

System (III) is given by

(10)

ẋ =
1

αb−aβ
(b2y(6a2x2 +4d(3ax−1)−4ax+6d2 +2βy(γ +αx+βy)+1)+b

(2a3x3 +d(6a2x2−4ax+4βy(γ +αx+βy)+1)−2a2x2 +d2(6ax

−2)+ax(4βy(γ +αx+βy)+1)+2d3 +(γ +αx+βy)(γ +αx

−2βy))+2b3y2(3ax+3d−1)+β (ax+d−1)(2ax+2d−1)(γ +αx

+βy)+2b4y3),



LIMIT CYCLES OF DISCONTINUOUS PIECEWISE DIFFERENTIAL SYSTEMS 7

ẏ =
−1

αb−aβ
(2a4x3 +2a3x2(3by+3d−1)+a2x(6b2y2 +4d(3by−1)−4by+6d2

+2αx(γ +αx+βy)+1)+a(2b3y3 +d(6b2y2−4by+4αx(γ +αx

+βy)+1)−2b2y2 +d2(6by−2)+by(4αx(γ +αx+βy)+1)+2d3

−(−γ +2αx−βy)(γ +αx+βy))+α(by+d−1)(2by+2d−1)(γ

+αx+βy)),

and its corresponding first integral is

(11) H̃4(x,y) =
(ax+by+d−1)2 ((ax+by+d)2 +(γ +αx+βy)2)

(2(ax+by+d)−1)2 .

4. PROOF OF THEOREM 2

In the region Σ− we consider the linear differential center (4) with its first integral H1(x,y)

given by (5). In the region Σ+ we consider one of the three families of cubic isochronous sys-

tems with its corresponding first integral H̃i(x,y) with i = 2,3,4. If the discontinuous piecewise

differential system (4)–(2m), with m ∈ {3,4,5} has a limit cycle, which intersects the separa-

tion line Σ in two distinct points (0,y1) ∈ Γ1 and (x1,0) ∈ Γ2. These two points must satisfy the

system of equations

(12)
e1 = H1(x1,0)−H1(0,y1) = P1(x1,y1) = 0,

e2 = H̃i(x1,0)− H̃i(0,y1) = Pi(x1,y1) = 0, with i = 2,3,4.

By solving P1(x1,y1) = 0, we get x1 = g(y1) =Dy1, with D=
√

A2 +ω2, and by substituting x1 in

Pi(x1,y1) = 0 we obtain an equation in the variable y1, and we distinguish three cases according

to the expression of the first integral H̃i(x,y).

Proof of statement (i) of Theorem 2. For i = 2, the corresponding isochronous cubic system is

(3) with its first integral H̃2(x,y) given in (7), the solutions of the equation P2(g(y1),y1) = 0 are

equivalent to the solutions of the quartic equation F1(y1) = 0 such that

F1(y1) = y1(2b(K1(D2y2
1(a

2 +α2)+ γ2)−d2K1 +d(2K2(γ
2 +α2D2y2

1)+1))−a2D2y1

(−2dK1 +2K2(γ +βy1)
2 +1)+b2y1(−2aDK1y1−2dK1 +2K2(γ +αDy1)

2 +1)

+2aD(d2K1−d(2K2(γ
2 +β 2y2

1)+1)−K1(γ
2 +β 2y2

1))+(2d(dK2 +K1)−1)(αD

−β )(2γ +αDy1 +βy1))+4γDy2
1(2dK2 +K1)(αb−aβ ).
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This equation has at most four real solutions. Therefore system (12) has at most four real

solutions, which can easily be proved that they are symmetric. These tow solutions provide at

most two limit cycles for the discontinuous piecewise differential system (3)–(4).

Now we prove that the result of statement (i) is reached by giving an example of discontinu-

ous piecewise differential system (4)–(3) with exactly two limit cycles.

In the region Σ+ we consider the cubic isochronous differential center

(13)

ẋ = x2(0.29088..−0.234119..y)+ x(y(0.389428..−0.210984..y)+0.673442..)

+0.2x3 +(−0.594058..y−1.39526..)y+0.0801447..,

ẏ = x(y(0.69824..−0.234119..y)+0.788391..)+ x2(0.2y−0.152264..)

+y((−0.210984..y−0.191014..)y−0.289442..)+0.251744..,

with the first integral

H̃2(x,y) =
(x+0.596858..y+0.4..)2 +(x−1.76745..y+0.2..)2

1−2(0.1..(x−1.76745..y+0.2..)+0.2..)(x−1.76745..y+0.2..)
.

In the region Σ− we consider the linear differential center

(14) ẋ =− 1
10

x− 37
100

, ẏ = x+
1

10
y,

which has the first integral

H1(x,y) = (x+
1

10
y)2 +

9
25

y2.

The real solutions of system (12) are (1.09545...,1.8009...) and (0.632456...,1.03975...). Then

the two crossing limit cycles of system (13)–(14) corresponding to these solutions are shown in

Fig 1(a). �

Proof of statement (ii) of Theorem 2. For i = 3, the isochronous cubic system is (8) where its

first integral is H̃3(x,y) given in (9). To obtain the number of real solutions of system (12) we

have to solve the equation P3(g(y1),y1) = 0 which has the same solutions as the quartic equation

F2(y1) = 0, such that

F2(y1) = 3y2
1(−3a2D2 +16aαγD2 +3b2−16βbγ +(−32γ2 +8d−3)(αD−β )(β +αD))

−2y1(3aD(3d−4γ2)+b(12γ2−9d)+ γ(32γ2−24d +9)(αD−β ))+8y3
1(3aα2D3

−3bβ 2 +8γ(β 3−α3D3))+16y4
1(β

4−α4D4).
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Its clear that this equation has at most four real solutions, and due to the fact that these

solutions are symmetric, we know that system (12) has at most two distinct real solutions.

Consequently, the discontinuous piecewise differential system (4)–(8) has at most two limit

cycles.

To reach our result we shall give an example of discontinuous piecewise differential system

(4)–(8) with exactly two limit cycles.

In the region Σ+ we consider the cubic isochronous differential center

(15)

ẋ = y(y(0.195657..−0.0114478..y)−0.0714585..)+0.0114478..x3 + x2(−0.0343434..y

−0.0710098..)+ x((0.0343434y−0.124647)y−1.44776)−6.3691,

ẏ = y(y(0.0623236..−0.0114478..y)+1.44776..)+0.0114478..x3 + x2(−0.0343434..y

−0.204343..)+ x((0.0343434..y+0.14202..)y+0.138904..)+5.20374..,

with the first integral

H̃3(x,y) = (3(0.1..x+0.210589..y+1.22182..)−4(−0.1..x+0.1..y+0.22..)2)2 +9(−0.1..x

+0.1..y+0.22..)2.

In region Σ− we consider the linear differential center

(16) ẋ =− 7
10

x− 149
100

y, ẏ = x+
7

10
y,

which has the first integral

H1(x,y) =
(

x+
7

10
y
)2

+ y2.

The discontinuous piecewise differential center (15)–(16) has exactly two crossing

limit cycles, because system (12) has the two solutions (1.04881...,0.859218..) and

(0.447214...,0.366372...). These limit cycles are shown in Fig 1(b). �

Proof of statement (iii) of Theorem 2. For i = 4, the first integral for the cubic isochronous sys-

tem (10) is H̃4(x,y) given in (11). We are interesting in finding the solutions y1 of the equation

P4(g(y1),y1)) = 0 which has the same solutions as the equation of degree six F3(y1) = 0 such

that
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(b)

FIGURE 1. The two limit cycles of the discontinuous piecewise differential

systems with conf 2, (a) for (13)–(14), and (b) for (15)–(16).

F3(y1) = y2
1(a

2D2(3γ2−2d(2γ2 +5d(2(d−2)d +3)−5)−1)−4aγ(d−1)(2d−1)D(α(2d

−1)D−2β (d−1))+b2(−3γ2 +2d(2γ2 +5d(2(d−2)d +3)−5)+1)−4bγ(d−1)

(2d−1)(β −2βd +2α(d−1)D)+(d−1)2(−(1−2d)2)(αD−β )(β +αD))+4a2

b2D2y6
1(−D2(a2 +α2)+b2 +β 2)−2y3

1(b(2a2D2(γ2 +(2d−1)3)+8aγ(d−1)(2d

−1)D(αD−β )+(d−1)(2d−1)(β 2(1−2d)+2α2(d−1)D2))+aD(a2(2d−1)3D2

+aγD(α(1−2d)2D−4β (d−1)2)+(d−1)(2d−1)(α2(2d−1)D2−2β 2(d−1)))

−b2(2aD(γ2 +(2d−1)3)+ γ(β +4(d−1)(βd +D(α−αd))))−b3(2d−1)3)

−4abDy5
1(b(2a2(2d−1)D2 +2aγD(αD−β )+β 2(1−2d)+2α2(d−1)D2)+a(2d

−1)D3(a2 +α2)+2ab2(1−2d)D−2aβ 2(d−1)D+b3(1−2d))+ y4
1(8abD(aγD(2β

(d−1)+D(α−2αd))− (2d−1)(a2(2d−1)D2 +(d−1)(αD−β )(β +αD)))+a2

D2(4β 2(d−1)2− (1−2d)2D2(a2 +α2))+8ab3(1−2d)2D−b2(β −2βd +2α(d

−1)D)(8aγD+β (2d−1)+2α(d−1)D)+b4(1−2d)2)+2(d−1)(2d−1)y1(d(2(d

−1)d +1)(b−aD)+ γ2(b−aD)− γ(d−1)(2d−1)(αD−β )).

The equation F3(y1) = 0 has at most six real solutions. Therefore, system (12) has at most

three real non symmetric solutions, which provide at most three limit cycles for the discontinu-

ous piecewise differential system (4)–(10).

To complete the proof of this statement we shall provide an example of discontinuous piece-

wise differential system formed by an arbitrary linear center and a cubic isochronous center of

type (10) with exactly three limit cycles.
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In the region Σ+, we consider the cubic isochronous differential center

(17)

ẋ = −0.0333565..x3 + x2(0.0251109..y+325.854..)+ x((0.220905..y−1633.64..)y

+1.31696..×106)+ y((0.171752..y−2564.66..)y+1.1617..×107)

−1.43102..×1010,

ẏ = x2(1293.86..−0.139931..y)+ x(y(1299.6..−0.0250305..y)−7.36102..×106)

−0.0689903..x3 + y((0.0526109..y−409.335..)y−1.31566..×106)

+1.13904..×1010,

which has the first integral

H̃4(x,y) =
1

(2(0.2x+0.251176..y−1624.97..)−1)2 ((0.3x−0.376965..y+0.2)2 +(0.2x

+0.251176..y−1624.97..)2)(0.2x+0.251176..y−1625.97..)2.

In the region Σ−, we consider the linear differential center

(18) ẋ =− 3
10

x− 1973
1250

y, ẏ = x+
3
10

y,

and its corresponding first integral is

H1(x,y) =
(

x+
3
10

y
)2

+
3721
2500

y2.

The three solutions of system (12) for these systems are (1.48324...,1.1806...),

(1.18322...,0.941793...) and (0.774597...,0.616548...). Then the three crossing limit cycles

for the discontinuous piecewise differential system (4)–(18) are shown in Fig 2.

-2 -1 0 1 2

-2

-1

0

1

2

FIGURE 2. The three limit cycles of the discontinuous piecewise differential

system (17)–(18) with conf 2.

�
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5. PROOF OF THEOREM 3

In order to have limit cycles of Conf 1 and Conf 2 simultaneously, the limit cycles of Conf

1 which intersect the separation line Γ1 in two points must satisfy the equations

(19)
E1 = H(0,y1)−H(0,y2) = (y1− y2)(−2B+(y1 + y2)(A2 +ω2)) = 0,

E2 = H̃i(0,y1)− H̃i(0,y2) = Pi(y1,y2) = 0,

where H̃i(x,y) for i = 2,3,4, are the first integrals given by (7), (9), (11). On the other hand the

two intersection points of limit cycles of Conf 2 with the irregular separation line Σ must satisfy

system (12). Then we have the following results.

Proof of statement (i) of Theorem 3. In what follows we give an example of discontinuous

piecewise differential system formed by an arbitrary linear center (2) and the cubic isochronous

center (3), which has one limit cycle of Cnf 1 and two limit cycles of Cnf 2, i.e, has three limit

cycles of Cnf 3.

In the region Σ+ we consider the cubic isochronous center

(20)

ẋ = x2(0.103711..−0.006568..y)−0.00592118..x3 + x((0.0124892..y+0.189279..)y

−0.755639..)+(−0.118324..y−1.2791..)y+2.88432..,

ẏ = x(y(0.112022..−0.006568..y)+0.445381..)+ x2(−0.00592118..y−0.0323263..)

+y((0.0124892..y+0.0949698..)y−0.143181..)−0.122118..,

with the first integral

H̃2(x,y) =
(−0.1..x−0.210924..y+0.4..)2 +(−0.1..x+0.1..y−0.2..)2

1−2(−0.296059..(−0.1..x+0.1..y−0.2..)−0.680186..)(−0.1..x+0.1..y−0.2..)
.

In the region Σ− we consider the linear differential center

(21) ẋ =− 1
10

x− 101
100

y+2, ẏ =
5
10

+ x+
1

10
y,

which has the first integral

H(x,y) =
(

x+
1

10
y
)2

+2
( 5

10
x−2y

)
+ y2.

For the discontinuous piecewise differential system (20)–(21), system (19) has the unique solu-

tion (y1,y2) = (1.00506..,2.95533..), which provide one limit cycle intersecting Γ1 in the two
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points (0,y1) and (0,y2), and system (12) has the two solutions (x3,y3) = (1.56155..,4.78761..)

and (x4,y4) = (2.8541..,5.82887..), which provide the four intersecting points (xi,0),(0,yi)

with i = 3,4 of the two limit cycles with the separation irregular line Σ. Then the discontinuous

piecewise differential system (20)–(21) has exactly three limit cycles, see Fig 3(a). �

Proof of statement (ii) of Theorem 3. In what follows we give an example of discontinuous

piecewise differential system formed by an arbitrary linear center (2) and the cubic isochronous

center (8), which has one limit cycle of Cnf 1 and two limit cycles of Cnf 2, i.e, has three limit

cycles of Cnf 3.

In the region Σ+ we consider the cubic isochronous center

(22)

ẋ = x2(0.169221..−0.246893..y)+ x(y(1.03113..−0.292023..y)−0.914334..)

+y(y(0.982871..−0.115134..y)−3.20465..)−0.0695791..x3 +3.31428..,

ẏ = 0.0588262..x3 + x2(0.208737..y+0.082386..)+ x((0.246893..y−0.338442..)y

+0.983531..)+ y((0.0973408..y−0.515564..)y+0.914334..)−0.716136..,

and its first integral is

H̃3(x,y) =
(
0.16..x2 + x(0.378493..y+0.149387..)+(0.223839..y−1.27391..)y+1.48034..

)2

+9(−0.2x−0.236558..y+0.469133..)2.

In the region Σ− we consider the linear differential center

(23) ẋ = 3− 1
100

x− 14401
10000

y, ẏ = 1+ x+
1

100
y,

which has the first integral

H(x,y) =
(

x+
1

100
y
)2

+2
(

x−3y
)
+

36
25

y2.

For the discontinuous piecewise differential system (22)–(23), system (19) has the unique solu-

tion (y1,y2) = (0.833353..,3.33302..), which provide one limit cycle intersecting Γ1 in the two

points (0,y1) and (0,y2), and system (12) has the two solutions (x3,y3) = (1.23607..,4.75101..)

and (x4,y4) = (2.60555..,5.64302..), which provide the four intersecting points (xi,0),(0,yi)

with i = 3,4 of the two limit cycles with the separation irregular line Σ. Then the discontinuous

piecewise differential system (22)–(23) has exactly three limit cycles, see Fig 3(b).

�
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FIGURE 3. The three limit cycles of the discontinuous piecewise differential

system with conf 3, (a) for (20)–(21), and (b) for (22)–(23).

Proof of statement (iii) of Theorem 3. In what follows we give an example of discontinuous

piecewise differential system formed by an arbitrary linear center (2) and the cubic isochronous

center (10), which has two limit cycles of Cnf 1 and three limit cycles of Cnf 2, i.e, has five

limit cycles of Cnf 3.

In the region Σ+ we consider the cubic isochronous center

(24)

ẋ = −0.0481337..x3 + x2(−0.121939..y−0.426587..)+ x((−0.0950406..y−0.972986...)y

+0.995223..)+ y((−0.0235266..y−0.581449..)y+1.46708..)+1.15725..,

ẏ = 0.0367839..x3 + x2(0.0930168..y+0.59027..)+ x((0.0724234..y+1.42865..)y

+0.128844..)+ y((0.0179159..y+0.892226..)y−0.0374027..)+0.794241..,

with the first integral

H̃4(x,y) =
1

(2(0.0377968..x+0.0230595..y+0.77109..)−1)2 ((0.0377968x+0.0230595y

+0.77109)2 +(0.339871x+0.447675y+0.5)2)(0.0377968x+0.0230595y−0.22891)2.

In the region Σ− we consider the linear differential center

(25) ẋ =− 2
10

x− 26
25

y, ẏ =
5

10
+ x+

2
10

y,
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and its first integral is

H(x,y) =
(

x+
2

10
y
)2

+2
( 5

10
x−3y

)
+ y2.

For the discontinuous piecewics differential system (24)–(25), system (19) has the two so-

lution (y1,y2) = (2.09171..,3.67752..) and (y3,y4) = (0.553009..,5.21622..), which provide

the two limit cycles intersecting Γ1 in the four points (0,yi) with i = 1,2,3,4, and sys-

tem (12) has the three solutions (x5,y5) = (1,6.08525..), (x6,y6) = (2.19258..,6.76428..) and

(x7,y7) = (3,7.34101..), which provide the six intersecting points (xi,0),(0,yi) with i = 5,6,7

of the three limit cycles with the separation line Σ. Then the discontinuous piecewise differential

system (24)–(25) has exactly five limit cycles of Cnf 3 shown in Fig 4.

-8 -6 -4 -2 0 2 4

-2

0

2

4

6

8

FIGURE 4. The five limit cycles of the discontinuous piecewise differential sys-

tem (24)–(25) with conf 3.
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