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Abstract:  The objective of this paper is to study the stability of charged isentropic superdense star models. 

A limitation of the density variation for different models guided by a specific choice of measure of 

departure from physical geometry of the physical space to ensure the physical acceptability has been 

obtained and analyzed for the stability performance. The solution so obtained has investigates large density 

and pressure at the center of the super dense star model; however the energy conditions are seen to be 

satisfied throughout certain spherical regions.  In addition to that, the analysis yields a strong indication that 

the model is stable with respect to infinitesimal redial pulsation.  We also found that the adiabatic speed of 

sound is smaller than unity inside the fluid sphere if and only if the radius of the sphere is larger than 1.46 

times of its Schwarzschild radius.  Furthermore the solution for K= -11 (case study), has been tested for the 

stability and found it is stable for least admissible value 3.0)(
0





 ar . 
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1 Introduction 

In general relativity and allied theories, the distribution of the mass, momentum, and 

stress due to matter and to any non-gravitational fields is described by the energy-

momentum-tensor (or matter tensor) T
ab

. However, the Einstein field equation is not 

very choosy about what kinds of states of matter or non-gravitational fields are 

admissible in a space-time model.  It is well known that the static, spherically symmetric, 

uncharged fluids cannot be held in equilibrium below a certain radius without 

developing singularities inside [6].  The possibility of holding a non-singular object in 

stable equilibrium but not compact enough to be close to a black hole state, is of great 

interest not only to judge the state of matter in this condition, that is being about to turn 

into black hole, but also to yield a classic model of charged massive particles which 

might have astrophysical and cosmological implications. 

For the last four decades researchers have been busy in deriving solutions for charged 

fluid spheres to provide source of Reissener (1916) and Nordstrom (1918) solutions [7].  

Such fluid models are not likely to undergo gravitational collapse to reduce into a 

singularity point, in presence of charges.  The gravitational attraction may be nullified 

by electrostatic repulsion and pressure gradient.   Several research papers have studied 

charged fluids spheres in different contexts such as Tikekar (1990), Gupta et al (1986), 

Ray et al (2003). Moodely et al (2003) found a class of accelerating, expanding and 

shearing solutions which is characterized geometrically by conformal Killing vector.  

Gupta, et al (2005, 2011), considered the charged case of Vaidya-Tikekar type solutions, 

then followed have charged Buchdahl's fluid spheres.  

In the present article, the stability of charged superdense star has been investigated and 

analyzed with respect to the reality conditions.  Runge-Kutta method has been 

implemented for our proposed model and found to satisfy various physical conditions.   

 

 

 

http://en.wikipedia.org/wiki/General_relativity
http://en.wikipedia.org/wiki/Energy-momentum_tensor
http://en.wikipedia.org/wiki/Energy-momentum_tensor
http://en.wikipedia.org/wiki/Einstein_field_equation
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2 Basic Equations  

In standard coordinates ),,r,t(xi  , the general line element for a charged fluid 

sphere model takes the form 

  2)(22222)(2 sin dteddrdreds rr    ,                                       (1) 

where  





















































2

2

2

2

1

1

ln)(

R

r

R

r
K

r                                                                                    (1a)    

and  

3

2

2
2 11lnln)(





























 K

R

r
Kyr                                                                   (1b) 

The static spherical symmetric space-time with t=constant hypersurfaces as spheroid can 

be written as: 
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Equation (2) is regular and positive definite at all points r<R. 

 

If Eq. (2) describes charged fluid distribution then the space-time satisfied by equation (1) 

has to satisfy the following Einstein –Maxwell equation:    

i
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where C=1, G=1 and   i
j

i
j

i
j EMT                                                                                 (3) 
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In the interior 
i
jM  can be described in terms of isentropic pressure P and the mass 

density  ; it takes the form:  

  i
j

i
i

i
j PuuPM                                                                                          (4) 

where  2/vi e,0,0,0u                                                                                                     (5) 

while, 
i
jE ,is the electromagnetic contribution to the stress energy tensor; it can be 

written as: 
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ikF , being the skew symmetric electromagnetic field tensor satisfying the following 

Maxwell equations 

0FFF k,jii,kjj,ik                                                                                            (7) 
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where 
ii vj  represents the four-current vector of charged fluid with   as the charged 

density. 

In view of Equations (1), (2) and (3), the field equation can be furnished as: 

   2i
j2

E8
r

e1
e

r
8 





 








                                                                      (9) 

   2
2

8
1

8 i
jE

r

e
e

r
P 





 








                                                                    (10) 

                                                       



MAHMOOD K. JASIM, RAAD A SWADY, RAHEAM A MANSOR AL-SAPHORY          270 

 2i
j

2

E8e
r2

v

4

v

4

v

2

v
P8 


  











 









                                                 (11) 

where, prime denotes the differentiation with respect to r and [10]  
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which represents the total charge contained within the sphere of radius r=a.  

We have proposed a charged fluid distribution by considering the electric field intensity 

(Gupta, et al 2005)  
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where &K  are constants to be determined.  

The consistency of the field Equations (9)-(11) using (1a) & (1b) yields the following 

hypergeometric equation  
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Equation (14) can be solved exactly for two cases: 

Case I: Null charged by putting 0  (Gupta-Jasim, 2000 and 2003) [3, 4] 

Case II: for charged case 0 , the case was discussed by Athraa-Jasim (2004), and 

latter on by Gupta-Mukesh (2005, 2011), whom discussed some physical properties of 

such case.  
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3      Dynamical Stability of Charged Fluid Sphere 

The basic method for examining whether a relativistic charged fluid sphere is stable with 

respect to infinitesimal radial adiabatic pulsations has been developed by Chandrasekhar 

(1964).  

Athraa-Jasim (2004) obtained their solution by demanding that the energy-momentum 

tensor was that of a perfect fluid. However, the same static solution is in fact obtained 

assuming only that the static energy-momentum tensor is given by: 

),,,( PPPT
j

i                                                                                            (15) 

Now, the investigating of stability requires studying a dynamical object, and to describe 

its behavior needs to know the non-static energy momentum tensor. We restrict our 

analysis to the case where the energy-momentum tensor is given by that of a perfect fluid, 

i.e. 

  i
j

i
i

i
j PguuPT                                                                                            (16) 

To perform the stability analysis, we restrict our examination to the case where the fluid 

is isentropic under static conditions. This restriction has also, in fact, been done by 

Vaidya and Tikekar (1982).  Since the speed of sound given by 
d

dP
 should be less than 

the velocity of light inside or on charged fluid spheres; the fluid is isentropic, i.e., if the 

entropy per baryon is constant everywhere, since we generally have: 

s
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where s denotes the entropy per baryon. The fluid flow is isentropic for a perfect fluid, it 

is thus constant everywhere as in the static case. Our analysis is thus valid at absolute 

zero (white dwarfs, neutron stars) or a star in convective equilibrium (super massive star). 

Barden, et al (1966) used the pulsation equation for the line element of Chandrasekhar's 

(1964) as: 
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where 2/2)( verru    

The relativistic adiabatic index  is given by 


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The adiabatic index should be larger than unity for temperature away from the center, or 

to be larger than 4/3 which is the necessary but not sufficient condition to prevent the 

instability under the radial perturbation. 

The pulsation equation for Athraa-Jasim model (2004) (tested case K= -11) provides the 

following data for the adiabatic index  inside the star at 3.0  for charged c  and null 

charged nc  spheres. 

2

2

R

a
x   




d

dp

p

p
c


  






d

dp

p

p
nc


  

1     

0.9 8.4726 7.3615 

0.8 5.9932 4.2021 

0.7 5.1264 3.1425 

0.6 4.0262 2.6064 

0.5 3.8234 2.2811 

0.4 3.4244 2.0653 

0.3 3.3.121 1.9179 
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0.2 3.1798 1.8205 

0.1 3.1674 1.7646 

0 3.1103 1.7463 

Equation (18) has been integrated numerically for different values of 5.0
2

2


R

a
x to 

fulfill the physical properties as follows: 

2

2

R

a
x   

Value of integral 

0.5 1101871.0   

0.4 1102372.0   

0.3 1102845.0   

0.2 1102841.0   

0.1 1102017.0   

 

 

Summing up, to ensure the physical properties the following figures show the behaviour 

of standard physical quantities inside the Star for the least admissible values of (denoted 

as L in graphs).   



MAHMOOD K. JASIM, RAAD A SWADY, RAHEAM A MANSOR AL-SAPHORY          274 

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r/a

D
e
n

si
ty

L=0.9

L=0.8

L=0.7

L=0.6

L=0.5

L=0.4

L=0.3

 

Fig.(1) Shows the Behavior of density inside the fluid sphere at (K  11). 
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Fig.(2) Shows the Behaviour of pressure inside the fluid sphere  

at (K  11). 
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Fig.(3) Shows the Behaviour of W.E.C. inside the fluid sphere at (K11). 
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Fig..4) Shows the Behaviour of S.E.C. inside the fluid sphere at (K11). 
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Fig.(5) Shows the Behaviour of adiabatic index inside the fluid sphere 

 at (K 11). 
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