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Abstract. Pseudospectra of polynomial eigenvalue problems (PEPs) have been investigated in recent

years. In this paper, we firstly investigate the grid method, linearization method for pseudospectra of

PEPs. Then, we explore a method for computing the pseudospectra of large PEPs, which is so called

generalized projection method that projects to reduce the size of the problem directly using the generalized

Arnoldi iteration. At last, numerical experiments and comparisons are given to illustrate the efficiency

of generalized projection method and the different sensitivity of these methods.
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1. Introduction

Pseudospectra are an established tool for gaining insight into the sensitivity of the eigenvalues of a

matrix to perturbations. Their use is widespread with applications in areas such as fluid mechanics,

Markov chains, and control theory. Especially, pseudospectra associated with the standard and general-

ized eigenvalue problems have been widely investigated in recent years. We refer to Trefethen[18, 20] for

thorough surveys of pseudospectra and their computation for a single matrix; see also the Web site[4].

Most of the existing work is for the standard eigenproblem, although attention has also been given to

matrix pencils[7, 9, 16].
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In this paper, we investigate pseudospectra of polynomial eigenvalue problems(PEPs) which is to find

the solutions (λ, x) of

P (λ)x = (λmAm + λm−1Am−1 + · · ·+A0)x = 0 (1)

where Ak ∈ Cn×n, k = 0, 1, · · · ,m.

The If x 6= 0 then λ is called an eigenvalue and x the corresponding right eigenvector; y is a left

eigenvector if y∗P (λ) = 0. The set of eigenvalues of P is denoted by Λ(P ). When Am is nonsingular

P has mn finite eigenvalues, while if Am is singular P has infinite eigenvalues[2, 8, 15]. Throughout

this paper we assume that PEPs have only finite eigenvalues (and pseudoeigenvalues); how to deal with

infinite eigenvalues is described in [7].

For notational convenience, we introduce

∆P (λ) = λm∆Am + λm−1∆Am−1 + · · ·+∆A0

The definition of the ε-pseudospectrum of P in [16] as following

∆εP (λ) = {λ ∈ C : (P (λ) + ∆p(λ))x = 0, x 6= 0, ‖Ak‖ ≤ εαk, k = 0 : m} (2)

Here the αk are nonnegative parameters that allow freedom in how perturbations are measured, for

example, in an absolute sense αk ≡ 1 or a relative sense αk = ‖Ak‖ . By setting αk = 0 we can force

∆Ak = 0 and thus keep Ak unperturbed. The norm, here and throughout, is any subordinate matrix

norm.

Specifically, when m = 1 and α1 = 1, The definition (2) reduces to the standard definition of ε-

pseudospectra of a single matrix. when m = 2, it is so called the pseudospectra of quadratic eigenvalue

problems(QEPs). And when m = 3, it is so called the pseudospectra of cubic eigenvalue problems(CEPs).

There is a generalization of the equivalence for the ε-pseudospectrum of PEPs in [7] as following.

Proposition 1

∆εP (λ) = {λ ∈ C : ‖P (λ)−1‖ ≥ (εp(|λ|))−1}

where p(x) =
∑m

k=0 αkx
k .

In this paper, we firstly investigate the grid method, linearization method for pseudospectra of PEPs.

Then, we propose a new projection method for pseudopectra of large PEPs, which constructs a generalized

projection method, so called generalized Arnoldi iteration. In this method, we directly project the original

PEP onto a properly chosen low dimensional subspace to reduce to a PEP with lower order by the

generalized Arnoldi iteraion. Then compute the pseudospectra of the reduced PEP using the above small

dense problem methods. Numerical experiments described in the later section show the efficiency of this

methods. At last, numerical experiments and comparisons are given.

The outline of this paper is as follows. In Section 2, we investigate the grid method, linearization

method for pseudospectra of PEPs. In Section 3, the generalized projection method for pseudospectra

of PEPs is proposed. In Section 4, some numerical experiments and comparisons are given. Finally, we

make some concluding remarks.

2. The direct approach and linearization
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In recent years, researchers have been studying for numerical methods[3, 6, 7, 9, 13, 16, 20] which can

be applied to compute the pesudospectra of PEPs. In general, for small dense problems, there are the

following main methods.

The basic method is the grid method based on Golub-Reinsch SVD (Singular Value Decomposition)

by evaluting the scaled resolvent norm on a grid of points z in the complex plane and sending the

results to a contour plotter. Another approach named transfer function method based on generalized

Schur decomposition using the QZ algorithm for computing pseudospectra of PEPs [5, 6, 12, 13, 16, 21].

The third kind of the methods are the solvent-type methods which includes the following three special

methods: the Newton’s method, the Bernoulli iteration for QEPs[16], and the Schur method based on

generalized Schur decomposition by the QZ method[6].

All the methods described above are intended for small to medium-scale problems for which Schur and

other reductions are possible. For large, possibly sparse, structured problems, different techniques are

necessary. These techniques can be classified into two categories: (1) those that approximate the norm

of the resolvent directly, and (2) those that project to reduce the size of the problem and then compute

the pseudospectra of the reduced problem using the above methods for small problems.

The characterization of the ε-pseudospectrum in Proposition 1 is the basis of the methods for comput-

ing pseudospectra of PEP. The main idea is to compute p(|z|)‖P (λ)−1‖ on a grid in C and send results to

a contour plotter. Especially, for the 2-norm, ‖P (λ)−1‖2 = (σmin(P (z)))−1. This is so called the direct

approach which consists of approximating ‖P (z)−1‖ at each grid point z. Techniques analogous to those

used for single matrices can be applied, such as the Lanczos method applied to P (z)∗P (z) or its inverse.

See [19, 20] for more details and further references.

Algorithm 2.1 The grid method for pseudospectra of PEPs

(1) Construct a mesh Ω over a region of the complex plane that includes Λε(A);

(2) Compute p(|z|)‖P (λ)−1‖ for every node z of Ω;

(3) Use a visualisation tool to display the computed pseudospectra.

In another hand, the classical approach in solving PEPs is to turn it into a linear eigenvalue problem.

In the case of (2) this leads to the linearized generalized eigenvalue problem (GEP)

(
λ




Am 0 · · · 0

0 I · · · 0
...

. . .
. . .

...

0 · · · 0 I



−




−Am−1 −Am−2 · · · −A0

I 0 · · · 0
...

. . .
. . .

...

0 · · · I 0




)




λm−1x

λm−2x
...

x



= 0 (3)

or an equivalent standard eigenvalue problem (SEP)




−A−1
m Am−1 −A−1

m Am−2 · · · −A−1
m A0

I 0 · · · 0
...

. . .
. . .

...

0 · · · I 0







λm−1x

λm−2x
...

x



= λ




λm−1x

λm−2x
...

x




(4)

where we assume throughtout the paper that Am is nonsingular.

If (λ,
[
λm−1xT , λm−2xT , · · · , xT

]
is an eigenpair of (3), then x is an eigenvector of PEPs (1) asso-

ciated with the eigenvalue λ. Therefore, we may compute the pseudospectra of PEP using the methods

for those of SEP or GEP by this linearization technique. However, it suffers some disadvantages, such as
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solving the GEP (3) or SEP (4) of m times of the dimension of the original PEP, and more importantly,

the loss of original structure of the PEP in the prosess of linearization.

The projection methods for single matrix, Toh and Trefethen[17] and Wright and Trefethen[22] approx-

imate the resolvent norm by the Arnoldi method. Simoncini and Gallopoulos[13] show that a better but

more costly version. However, these techniques are not applicable to the polynomial eigenvalue problem

of degree larger than one because of the lack of a Schur form for the Arnoldi method to approximate.

Here, we apply the Arnoldi projection iteration to the SEP (4) and the use the grid method to compute

the pseudospectra. We call it the linearization method.

Algorithm 2.2 The linearization method for pseudospectra of PEPs

(1) Do the Arnoldi iteration to the SEP (4) and get the small projection matrix ;

(2) Compute the pseudospectra of the small projection matrix using the grid method;

(3) Use a visualisation tool to display the computed pseudospectra of the small projection matrix

which approximate the pseudospectra of original PEPs.

3. The generalized Arnoldi method

3.1 The generalized projection iteration

In this section, we discuss a generalized projection procedure. Firstly, we discuss a generalized Krylov

subspace of a square matrix sequence {Aj} and a vector sequence uj . Then we study a generalized

Arnolid procedure for generating an orthonormal basis of the generalized Krylov subspace[1].

Let A0, A1, · · · , Am−1 be a square matrix sequence of size n, and u0, u1, · · · , um−1 be an n-dimensional

vector sequence with um−1 6= 0. Then the sequences

r0, r1, r2, · · · , rp−1 (5)

where

r0 = u1

r1 = u2

· · ·

rm−2 = um−1

rm−1 = Am−1um−1 +Am−2um−2 + · · ·+A0u0

rj = Am−1rj−1 +Am−2rj−2 + · · ·+A0rj−m for j ≥ m

is called a generalized Krylov sequence based on {Aj} and {uj}.

Kp(A;u) = span{rm−2, rm−1, · · · , rp+j−3} (6)

is called an mth generalized Krylov subspace.

In fact, if one applies a Krylov subspace technique to (4), then an associated Krylov subspace would

naturally be

Kp(F ; v) = span{v, Fv, F 2v, · · · , F p−1v} (7)

where v is an initial vector of length n×m, and matrix F as follow.

F =




−A−1
m Am−1 −A−1

m Am−2 · · · −A−1
m A0

I 0 · · · 0
...

. . .
. . .

...

0 · · · I 0



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For notational convenience, we denote Am−1 = −A−1
m Am−1, Am−2 = −A−1

m Am−2, · · · , A0 = −A−1
m A0

and v = [uT
m−1, u

T
m−2, · · · , u

T
0 ]

T .

Then it immediately derives that the generalized Krylov vectors rj of length n defined in (4) and the

standard Krylov vectors {F jv} of length nm defined in (5) is related as the following form




rj

rj−1

...

rj−m+1



= F j−m+2v, forj ≥ m− 1 (8)

Equation (8) indicates that the subspace Kp(A;u) of C
N should be able to provide sufficient information

to let us directly work with the PEP, instead of using the subspace Kp(F ; v) for the linearized eigenvalue

problem (4).

The following procedure constructs the vectors q
(m−1)
1 , q

(m−1)
2 , · · · , q

(m−1)
p such that {q

(m−1)
1 , q

(m−1)
2 , · · · , q

(m−1)
p }

is an orthonormal basis of the subspace Kp(A;u) which can generate through the following generalized

Arnoldi procedure. The algorithm is described as follows.

Algorithm 3.1 The generalized Arnoldi iteration

(1) Start: Choose an initial unit vector β = ‖um−1‖2

(2)




q
(m−1)
1

q
(m−2)
1

...

q
(0)
1



= 1

β




um−1

um−2

...

u0




(3) For j = 1, 2, 3, · · · , p do the generalized full orthogonalization process

(4)




q
(m−1)
j+1

q
(m−2)
j+1

...

q
(0)
j+1



=




Am−1 Am−2 · · · A0

I 0 · · · 0
...

. . .
. . .

...

0 · · · I 0







q
(m−1)
j

q
(m−2)
j

...

q
(0)
j




(5) For i = 1, 2, 3, · · · , j

(6) hi,j = (q
(m−1)
i )T q

(m−1)
j+1

(7)




q
(m−1)
j+1

q
(m−2)
j+1

...

q
(0)
j+1



=




q
(m−1)
j+1

q
(m−2)
j+1

...

q
(0)
j+1



− hi,j




q
(m−1)
i

q
(m−2)
i

...

q
(0)
i




(8) End for

(9) hj+1,j = ‖q
(m−1)
j+1 ‖2

(10) If hj+1,j = 0, then stop

(11)




q
(m−1)
j+1

q
(m−2)
j+1

...

q
(0)
j+1



= 1

hj+1,j




q
(m−1)
j+1

q
(m−2)
j+1

...

q
(0)
j+1




(12) End for
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Let H̃p denote the (p+1)×p upper Hessenberg matrix whose nonzero entries hi,j(i = 1, 2, · · · , p+1, j =

1, 2, · · · , p) are defined by Algorithm 2.1. Hm is the m×m matrix obtained from H̃p by deleting the last

row.

From the generalized Arnoldi iteration, we have the following relations:

m−1∑

i=0

AiQ
(i)
p = Q(m−1)

p Hp + q
(m−1)
p+1 eTp hp+1,p (9)

Q(j)
p = Q(j−1)

p Hp + q
(j−1)
p+1 eTp hp+1,p, 1 ≤ j ≤ n− 1 (10)

where Q
(i)
p = [q

(i)
1 , q

(i)
2 , · · · , q

(i)
p ].

With H̃p, (9) and (10) can be written in the compact form:




Am−1 Am−2 · · · A0

I 0 · · · 0
...

. . .
. . .

...

0 · · · I 0







Q
(m−1)
p

Q
(m−2)
p

...

Q
(0)
p



=




Q
(m−1)
p+1

Q
(m−2)
p+1

...

Q
(0)
p+1



H̃p (11)

This relation assembles the similarity between the generalized Arnoldi iteration and the classical well-

known Arnoldi iteration[12, 21].

Bao[1] proved that the vector sequence q
(m−1)
1 , q

(m−1)
2 , · · · , q

(m−1)
p indeed is an orthonormal basis of

the generalized Krylov subspace Kp(A;u).

3.2 The generalized projection method for pseudospectra of CEPs

For simplicity, for the rest of this paper, we are concerned only with m = 3. For taking m = 3, i.e.,

the pseudospectra of CEPs, we have the following simple algorithm with memory saving.

Algorithm 3.2 The generalized Arnoldi iteration (m = 3)

(1) Start: q1 = u2/‖u2‖2; g1 = u1/‖u2‖2; f = u0/‖u2‖2

(2) For j = 1, 2, · · · , p

(3) qj+1 = A2qj +A1gj +A0f

(4) gj+1 = qj

(5) For i = 1, 2, · · · , j

• hi,j = q∗i qj+1

• qj+1 = qj+1 − hi,jqi

• gj+1 = gj+1 − hi,jgi

(6) End for

(7) hj+1,j = ‖qj+1‖2

(8) If hj+1,j = 0, then stop

(9) qj+1 = qj+1/hj+1,j ; gj+1 = gj+1/hj+1,j

f = (P (:, 1 : j)− u0H(1, 1 : j))H(2 : j + 1, 1 : j)−1ej

(10) End for

Finally, the orthogonality of the basis vectors q
(m−1)
1 , q

(m−1)
2 , · · · , q

(m−1)
j is directly obtained from the

orthogonalization inner for-loop (step 5) and normalization is step 9 of Algorithm 3.2.
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Furthermore, we have a new version of the generalized Arnoldi iteration by using the relations in

Algorithm 3.1. In view of (10), for Q
(0)
p+1 partitioned as Q

(0)
p+1 = [q

(0)
1 , Q̂(0)], we can write

Q(1)
p = Q

(0)
p+1H̃p+1 = q

(0)
1 H̃p(2 : p+ 1, :)

So we can compute the vector q
(0)
j+1 from Q

(1)
j and H(1 : j+1, 1 : j). The new procedure reduces memory

requirement by almost 1/n.

Then, we apply the generalized Krylov subspace and its orthonormal basis generated by the generalized

Arnoldi procedure to develop a projection method for computing the pesudospectra of CEPs

P (λ)x = (λ3M3 + λ2M2 + λM1 +M0)x = 0 (12)

where Mi ∈ Cn×n, (i = 0, 1, 2, 3), and x ∈ C is the eigenvector corresponding to the eigenvalue λ.

We follow the orthogonal Rayleigh-Ritz approximation procedure to derive a method for pseudospec-

tra which approximates a large-scale CEP by a small-size CEP. Following the standard derivation, to

apply Rayleigh-Ritz approximation technique based on the generalized subspace Kp(A;u) with A2 =

−(M3)
−1M2, A1 = −(M3)

−1M1, A0 = −(M3)
−1M0, we seek an approximate eigenpair (θ, z), whereθ ∈ C

and z ∈ Kp(A;u), by imposing the following orthogonal condition, also called the Galerkin condition,

(θ3M3 + θ2M2 + θM1 +M0)z⊥Kp(A;u) (13)

or equivalently,

v∗(θ3M3 + θ2M2 + θM1 +M0)z = 0, v ∈ Kp(A;u) (14)

Since z ∈ Kp(A;u), it can be written as

z = Qph

where matrix Qp of n×p is an orthonormal basis of z ∈ Kp(A;u) generated by GAR iteration (Algorithm

2.2), and h is an m-dimension vector. By (13) and (14), it yields that θ and h must satisfy the reduced

CEP

P̂ (θ)h = (θ3M̂3 + θ2M̂2 + θM̂1 + M̂0)h = 0 (15)

where

M̂j = Q∗

pMjQp, j = 0, 1, 2, 3 (16)

The eigenpair (θ, h) of (15) defines the Ritz pair (θ, z). The Ritz pair is an approximate eigenpair of

the CEP (12). We note that by explicitly formulating the matrices M̂j(j = 0, 1, 2, 3), essential structures

of M̂j are preserved. For example, if M1 is symmetric positive definite, so is M̂1. As a result, essential

spectral properties of the CEP will be preserved.

For sufficiently large p, the pseudospectra of original CEP (12) can be reasonably approximated by

the corresponding pseudospectra of reduced CEP (15) as follows

Λε(P ) ≈ Λε(P̂ )

For p ≪ n, the computation of pseudospectra of reduced CEP (15) will be O((p/n)3) times faster than

that of original problem.

Therefore, we briefly describe the generalized Arnoldi method for computing pesudospectra of CEP

(12) as follows.

Algorithm 3.2 The generalized Arnoldi method for pseudospectra of CEPs

(1) Compute the matrices M̂j = Q∗

pMjQp, j = 0, 1, 2, 3 in (16) by generalized Arnoldi iteration;
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(2) Compute the pseudospectra of the reduced CEP (15) using the methods for pseudospectra of

small dense CEP;

(3) Use a visualisation tool to display the computed pseudospectra.

4. The generalized Arnoldi method

In this section, we present some numerical experiments to illustrate the effectiveness of the method.

For simplicity, here we take some not so large matrices as examples which are from real engineering

problems and we hope to investigate more large problems in the same way in the future. Here, all the

computations are finished with MATLAB 7.1 on PC (Intel(R) Pentium(R) 4, CPU Processor 3.4GHz

3.39GHz, Memory 0.99GB ).

In the following numerical experiments, we give some comparison in terms of CUPtime (execution

time) and pseudospectra plots of the different techniques. These techniques are as following:

• Grid-SVD: the gird SVD method directly on original PEPs (Algorithm 2.1);

• Lin-Grid: the grid SVD method on the linearization form(4) of the PEPs;

• Lin-Arn(m)-Grid: the grid SVD method on projection reduced problem by Arnoldi iteration of

the linearization form (4) of the original PEP (Algorithm 2.2);

• G-Arn(m): the generalized Arnoldi method of the PEPs (Algorithm 3.2)

The starting vector u2 of the G-Arn(m) method is chosen as a vector with all components equal to 1

and u0 = u1 = 0. According to the definition of pseudospectra of PEP, the so-called exact pseudospectra

of the PEP are computed by the Grid-SVD method. And the small dense pseudospectra method of PEPs

in Algorithm 3.1 may also be chosen as the Grid-SVD method here.

Example 1: The wing problem This is a very small problems. It can show the difference of direct

method and lineariztion form methods for the pseudospectra of PEPs (here, m = 2, i.e., QEP). This

example is based on a quadratic polynomial Q(λ) = λ2M2 + λM1 +M0 from [4]. The eigenproblem for

Q(λ) arose from the analysis of the oscillations of a wing in an airstream. The matrices are

M2 =




17.6 1.280 2.890

1.28 0.824 0.413

2.89 0.413 0.725


 ,M1 =




7.66 2.450 2.100

0.23 1.040 0.223

0.60 0.756 0.658


 ,

M0 =




121.0 18.9 15.9

0 2.70 0.145

11.9 3.64 15.5




We Consider the 100× 100 grid over the complex region of min(real(e))− h ≤ Re ≤ max(real(e)) +

h,min(imag(e))− h ≤ Im ≤ max(imag(e)) + h, h = 5 and e is the set of the eigenvalues of the original

QEPs, which is bigger than the complex region of the eigenvalues of the QEP.

Figure 1 shows the boundaries of ε-pseudospectra of the original QEP of wing problem by the Grid-

SVD method with ε between 10−3 and 10−0.8. The eigenvalues are plotted as ’×’. The solid curve

marks the boundary of the ε-pseudospectra for ε = 10−0.8. The picture shows that the pair of complex

eigenvalues λ = 0.88± 8.4i are much more sensitive to perturbations than the other two complex pairs.

The eigenvalues of Q(λ) are the same as those of the linearized problem F − λI, where

F =

[
−M−1

2 M1 −M−1
2 M0

I 0

]
(19)
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Figure 2 shows boundaries of ε-pseudospectrum for this matrix F , for the same ε as in Figure 1.
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Figure 1. pseudospectra of wing problem. Pseudospectra QEP with ε ∈ [10−3
, 10−0.8] by

the Grid-SVD method .
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Figure 2. pseudospectra of wing problem. For pseudospectrum boundaries of linerization

form of QEP with ε ∈ [10−3
, 10−0.8] .

Clearly, the ε-pseudospectra of the linearized form (19) do not give useful information about the

behavior of the eigensystem of Q(λ) under perturbations. This emphasizes the importance of defining

and computing pseudospectra for the quadratic eigenvalue problem in its original form or generalized

projection with its original form, instead of linearization directly or linearization-projection.

Example 2: The damped mass-spring system We now consider the connected damped mass-

spring system illustrated in Figure 3. The ith mass of weight mi is connected to the (i+ 1)st mass by a

spring and a damper with constants ki and di, respectively. The ith mass is also connected to the ground

by a spring and a damper with constants κi and τi, respectively. The vibration of this system is governed

by a second-order differential equation

M
d2

dt2
x+D

d

dt
x+Kx = 0

where the mass matrix M = diag(m1, · · · ,mn) is diagonal, and the damping matrix C and stiffness

matrix K are symmetric tridiagonal. The differential equation leads to the quadratic eigenvalue problem

(λ2M + λC +K)x = 0

In our experiments, we took all the springs (respectively, dampers) to have the same constant κ = 5

(respectively, τ = 10), except the first and last, for which the constant is 2κ (respectively, 2τ ), and we

took mi ≡ 1. Then

C = τ ∗ tridiag(−1, 3,−1),K = κ ∗ tridiag(−1, 3,−1)
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and the quadratic eigenvalue problem is overdamped. We take an n = 50 degree of freedom mass-spring

system over a 100× 100 grids. The plots of the pseudospectra are given in Figure 4 and Figure 5.

Figure 3. An n degree of freedom damped mass-spring system.
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Figure 4. pseudospectra of damped mass-spring system by Lin-Grid method with 5

contour lines.
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Figure 5. pseudospectra of damped mass-spring system by Grid-SVD method with 5

contour lines.

In Table 1 we give the comparison in terms of CUPtime (in seconds) of the different methods. While

the precise times are not important, the conclusion is clear: in this example, the Grid-SVD method is

much faster than the Lin-Grid mehtod. (The high speed of the SVD method relative to its flop count is

attributable to MATLABs very efficient svd function.)

TABLE I: Comparison in terms of CUPtime of the different methods.

Freedom n Methods CPUtime (in seconds)

50 Grid-SVD 19.095694

Lin-Grid 79.889766

10 Grid-SVD 1.956311
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Example 3: The dynamic analysis in structural engineering We use some structural engineer-

ing matrices from the Harwell-Boeing collection in MatrixMarket[10] to compare different methods for

computing pseudospectra of cubic eigenvalue problem(CEP)(14). These matrices all represent dynamic

analysis in structural engineering.

M3 = 5I,M2 = 3tridiag(−1, 3,−1),M1 = bcsstm,M0 = bcsstk

The data of matrices pair (M1,M0) are extracted from (bcsstm01, bcsstk01), (bcsstm04, bcsstk04), and

(bcsstm06, bcsstk06), respectively. These matrices are 42× 48, 132× 132 and 420× 420 ,respectively.

We consider the 50×50 and 100×100 respectively grid over the complex region ofmin(real(eig))−h ≤

Re ≤ max(real(eig)) + h, min(imag(eig))− h ≤ Im ≤ max(imag(eig)) + h, h = 100 and eig is the set

of the eigenvalues of the original CEP. So the interesting pseudospectra region is bigger (more h) than

the complex region of the eigenvalues of the original CEP.

In Table 2, we give the comparison in terms of CUPtime (in seconds) of the different methods. While

the precise times are not important, the conclusion in this example is clear:

• The Grid-SVD method is much faster than the Lin-Grid.

• Lin-Arn(10)-Grid is much faster than the Grid-SVD.

• G-Arn(m) is much faster than the Grid-SVD.

TABLE II: Comparison in terms of CUPtime.

Methods CPUtime (in seconds)

50× 50 grid Grid-SVD 5.426956

bcsstm01 Lin-Grid 60.582968

bcsstk01 Lin-Arn(10)-Grid 0.280336

G-Arn(10) 0.439379

G-Arn(20) 1.199913

G-Arn(48) 7.723941

100× 100 grid Grid-SVD 23.332106

bcsstm01 G-Arn(10) 2.368047

bcsstk01 G-Arn(20) 5.626782

50× 50 grid Grid-SVD 58.878288

bcsstm04 Lin-Grid 1332.509283

bcsstk04 Lin-Arn(10)-Grid 1.595170

50× 50 grid Grid-SVD 1600.872610

bcsstm06 G-Arn(10) 0.830783

bcsstk06 G-Arn(50) 7.375079

G-Arn(200) 209.351960

The following plots give the comparisons of the pesudospectra of the CEP by different methods.

Obviously, we can find the conclusion clearly as following:

• The pseudopsetrca of the lineariztion form loss much sensitivity than the pseudospectra of the

original CEP. In another word, the pseudospectra of the linearized form do not give relative

exact information of the pesudospectra of original problem. This emphasizes the importance of
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defining and computing pseudospectra for the PEP in its original form or generalized projection

with its original form, instead of linearization directly or linearization-projection.

• The generalized projection method, G-Arn(m), is a fast and efficient method to compute the

pseudospectra of CEP.

• When m = n for G-Arn(m), i.e., the dimension of the generalized Krylov subspace is n , in this

case, the plots of pseudospectra by G-Arn(m) and Grid-SVD coincide completely.

• With the m of G-Arn(m) increasing, the pseudospectra by the G-Arn(m) is better and better

close to the exact pseudospectra.
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Figure 6. Comparison of plot of pseudospectra between Grid-SVD method and the Lin-

Grid over 50 × 50 gird with bcsstm01 and bcsstk01. The left two plots are made by Lin-Grid,

and right two plots are made by Grid-SVD
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Figure 7. Comparison of plot of pseudospectra between Grid-SVD method and G-Arn(10)

over 50 × 50 gird with bcsstm01 and bcsstk01. The left plot (black line) is Grid-SVD and the

right plot (blue line) is G-Arn(10).

Conclusion and remarks

In this paper, we gave a comparison of the direct approaches and linearization for computing pseu-

dospectra of PEPs. Numerical examples show the difference between the direct approaches and lineariza-

tion and give some conclusions.

There remain many problems to be studied. We will continue to investigate the condition numbers of

the PEPs and its linearizations. Also, we try to propose some structure-preserving algorithm applied to

the linearization. Those need further research.
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Figure 8. Comparison of plot of pseudospectra between Grid-SVD method (solid line)

and G-Arn(48) (dash line) over 50× 50 gird with bcsstm01 and bcsstk01. The eigenvalues are

plotted as ’×’. The plots coincide completely.
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Figure 9. Comparison of plot of pseudospectra between Grid-SVD method and G-Arn(10)

over 100× 100 gird with bcsstm01 and bcsstk01. The left plot (black line) is Grid-SVD and the

right plot (blue line) is G-Arn(10).
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Figure 10. Comparison of plot of pseudospectra between Grid-SVD method and G-

Arn(50) over 50 × 50 gird with bcsstm06 and bcsstk06. The left plot (black line) is Grid-SVD

and the right plot (blue line) is G-Arn(50).
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