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Abstract. In this paper, we introduce a modified F-contraction in S-metric space. This modified form of F-

contraction is via α-admissible mapping and we use it to examine the existence of fixed points in S-metric spaces.

Sufficient examples are also given to examine the validity of the results obtained.
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1. INTRODUCTION

In the year 2012, Wardowski [1] defined the notation of F-contraction to generalize Banach

fixed point theorem. Samet et al. [2] also introduced the notation of α-admissible mappings.

On the other hand Sedghi et al. [3] introduced the notion of S-metric space by generalizing

metric space.
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The concept of α-admissible was extended in different directions. Bubul et al. [4] extended

α-admissible mappings to (α,β )-admissible in S-metric like space. Priyobarta et al. [5] ex-

tended various forms of α-admissible in S-metric space. Bulbul et al. [6] also introduced

S− β −ψ contractive type mappings by extending α −ψ-contractive mappings in S-metric

space. There are various generalizations of α-admissible as well as F-contractions. These can

be found in the literatures [7, 8, 9, 10, 11].

In this paper, we introduce a modified F-contraction by using α-admissible mappings and

used it to examine the existence of fixed points in S-metric spaces.

2. PRELIMINARIES

In 2012, Wardowski [1] defined a new concept of F- contraction as follows.

Definition 1. [1] Let (X ,d) be a metric space. A self- mapping T : X → X is said to be an F-

contraction if there exists τ > 0 such that

d(T x,Ty)> 0⇒ τ +F(d(T x,Ty))≤ F(d(x,y)),∀x,y ∈ X

where F : R+→ R is a mapping satisfying the following conditions:

(F1): F is increasing, i.e, for all α,β ∈ R+ such that α < β , F(α)< F(β );

(F2): For any sequence {an}m
n=1 of positive real numbers, limn→∞ an = 0 if and only if

limn→∞ F(αn) =−∞;

(F3): There exists k ∈ (0,1) such that lima→0+ akF(a) = 0.

Let F be the collection of all functions F satisfying (F1), (F2).

Wardowsksi [1] generalized the Banach Contraction Mapping Principle as follows.

Theorem 1. [1] Let (X ,d) be a complete metric space and T : X → X be an F-contraction.

Then T has a unique fixed point.

Following is the definition of c-comparision function.

Let Ψ be the family of functions ψ : [0,∞)→ [0,∞) satisfying the following conditions

(i): ψ is nondecreasing;

(ii): ∑
∞
n=1 ψn(t)< ∞ for all t > 0.
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If ψ ∈Ψ, then it is called c-comparison function. It is easy to show that ψ(t) < t for all t > 0

and ψ is continuous at 0.

Definition 2. [3] Let X be a non empty set and the mapping S : X×X×X → [0,+∞) satisfies:

1.: S(x,y,z) = 0 if and only if x = y = z for all x,y,z ∈ X;

2.: S(x,y,z)≤ S(x,x, t)+S(y,y, t)+S(z,z, t) for all x,y,z, t ∈ X;

Then, the pair (X ,S) is called an S-metric space.

In 2012, Samet et al. [2] introduced the class of α-admissible mappings.

Definition 3. [2] Let α : X ×X → [0,∞) be given mapping where X 6= φ . A selfmapping T is

called α-admissible if for all x,y ∈ X, we have

α(x,y)≥ 1⇒ α(T x,Ty)≥ 1.

Priobarta et al. [5] extended α-admissible in the context of S-metric space as follows.

Definition 4. [5] Let αs : X×X×X→ [0,+∞) be a given mapping where X 6= φ . A selfmapping

T is called αS-admissible mapping if for all x,y,z ∈ X, we have

αs(x,y,z)≥ 1⇒ αs(T x,Ty,T z)≥ 1.

Aydi et al. [7] introduced the following concept.

Definition 5. [7] Let (X ,d) be a metric space. A self-mapping T : X→X is said to be a modified

F-contraction via α-admissible mappings if there exists τ > 0 such that

d(T x,Ty)> 0

⇒ τ +F(α(x,y)d(T x,Ty))≤ F(Ψ(d(x,y)))(1)

for all x,y ∈ X, where the mapping F ∈ F and ψ ∈Ψ.

If we let F(t) = In(t) for t > 0, the contraction form (1) becomes

(2) α(x,y)d(T x,Ty)≤ e−τ
ψ(d(x,y))≤ ψ(d(x,y))
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for all x,y ∈ X ,T x 6= Ty

(2) is considered as an α−ψ-contraction which was introduced by Samet et al. [2].

We extend the concept of Aydi et al. [7] in S-metric space and introduce the following

concept.

Definition 6. Let (X ,S) be an S-metric space. A self mapping T : X→ X is said to be a modified

F-contraction via αs-admissible mappings if there exists τ > 0 such that

S(T x,Ty,T z)> 0

⇒ τ +F(αs(x,y,z))S(T x,Ty,T z)≤ F((S(x,y,z))(3)

for all x,y,z ∈ X where the mapping F ∈ F and ψ ∈Ψ.

If we let F(t) = ln(t) for t > 0, the contraction from (3) becomes

(4) αs(x,y,z)S(T x,Ty,T z)≤ e−τ
ψ(S(x,y,z))≤ ψ(S(x,y,z))

for all x,y,z ∈ X , T x 6= Ty 6= T z.

(4) is considered as an αs- ψ-contraction.

In this paper, we introduce a modified F-contraction in S-metric space. This modified form

of F-contraction is via α-admissible mapping and we use it to examine the existence of fixed

points in S-metric spaces.

3. MAIN RESULTS

We prove the following theorem.

Theorem 2. Let (X ,S) be a complete S-metric space and T : X→X be a modified F-contraction

via αS- admissible mappings. Suppose that

(i): T is αs- admissible;

(ii): there exists x0 ∈ X such that αs(x0,x0,T x0)≥ 1;

(iii): T is continuous.

Then T has a fixed point.
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Proof. By assumption (ii), there exists a point x0 ∈ X such that αs(x0,x0, T x0))≥ 1. we define

a sequence xn in X by xn+1 = T xn = T n+1x0 for all n ≥ 0. Suppose that xn0 = xn0+1 for some

n0. So the proof is completed. Now, we assume that

(5) xn 6= xn+1 for all n.

Since αs(x0,x0,x1) = αs(x0,x0,T x0)≥ 1 and T is αs-admissible, we get

(6) αs(xn,xn,xn+1)≥ 1, for all n = 0,1, . . .

From (3) and (5), we have

τ +F(αs(xn−1,xn−1,xn)S(T xn−1,T xn−1,T x0)≤ F(ψ(S(xn−1,xn−1,xn))

on account of (F1) and (6), we find

τ +F(S(xn,xn,xn+1))≤ F(S(xn−1,xn−1,xn)), for all n≥ 1.

By letting Sn = S(xn,xn,xn+1), the inequality above infer that

F(Sn)≤ F(Sn−1)− τ ≤ f (s0)−nτ for all n≥ 1.

Conseqently, we obtain

lim
n→∞

F(Sn) =−∞

By the property (F2), we have

(7) lim
n→∞

Sn = 0.

Now, due to (F3), we have

lim
n→∞

Sk
n(F(Sn) = 0,

where k ∈ (0,1). By (7), the following holds for all n≥ 0.

0 ≤ Sk
nF(Sn)−Sk

n(S0)≤ Sk
n(F(S0−nτ))−Sk

nF(S0)

= −nτSk
n ≤ 0(8)

letting n→ ∞ in (8), we find that

lim
n→∞

nSk
n = 0.



6 KSHETRIMAYUM MANGIJAOBI DEVI, YUMNAM ROHEN, K. ANTHONY SINGH

So there exists n1 ∈ N such that Sn ≤ 1/n1/k for all n ≥ n1. For m,n ∈ N with m > n ≥ n1, we

have

S(xn,xn,xm) ≤ 2Sn +2Sn+1 + ...+Sn−1

≤ 2
∞

∑
i=1

1/i1/k

Since ∑
i≤1

1/i1/k converges, the sequence {xn} is Cauchy in (X ,S). From the completeness of X ,

there exists u ∈ X such that

lim
n→∞

xn = u.

Finally, the continuity of T yields Tu = u, which completes the proof. �

Theorem 2 remains true if we replace the continuity hypothesis by the following property:

(H) If {xn} is a sequence in X such that αn(xn,xn,xn+1) ≥ 1 for all n and xn → x ∈ X as

n→ ∞, then there exists a subsequence {xn(k)} of {xn} such that αs(xn(k),xn(k),x)≥ 1 for all k.

Theorem 3. Let (X ,S) be a complete S-metric space and T : X→X be a modified F-contraction

via αs-admissible mappings. Suppose that

(i): T is αs- admissible;

(ii): there exists x0 ∈ X such that αs(x0,x0,T x0)≥ 1;

(iii): (H) holds.

Then there exists u ∈ X such that Tu = u.

Proof. Following the lines in the proof of Theorem 2, we construct a sequence {xn} in (X ,S)

which is Cauchy and converges to some u ∈ X .

Suppose that there exists an increasing sequence {n(k)} ⊂ N such that xn(k) = Tu for all

k ∈ N. Letting k→ ∞, by the uniqueness of the limit, we find Tu = u. Hence, the proof is

completed. As a result, we shall assume that there exists k0 ∈ N such that xn(k) 6= Tu for all

k ∈ N with k ≥ k0. Consequently, we have T xn(k)−1 6= Tu for all k ≥ k0. Therefore, by (3), we

have

τ +F(αs(xn(k)−1,xn(k)−1,u))S(T xn(k)−1,T xn(k)−1,Tu))

≤ F(ψ(S(xn(k)−1,xn(k)−1,u))).
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Regarding α(xn(k)−1,xn(k)−1,x)≥ 1 and (F1)

S(xn(k),xn(k),Tu) = S(xn(k)−1,xn(k)−1,Tu))

≤ ψ(S(xn(k)−1,xn(k)−1,u).

Since ψ is continuous at 0 and S(xn(k)−1,xn(k)−1,u))→ 0,

lim
n→∞

ψ(S(xn(k)−1,xn(k)−1,u)) = 0.

Thus,

lim
n→∞

S(xn(k)+1,xn(k)+1,Tu)) = 0.

By the uniqueness of limit, Tu = u. �

We provide the following example.

Example 1. Take X = {0,1,2} and T : X → X such that T 0 = 0 and T 1 = T 2 = 1. Consider

αs(1,1,2) = αs(2,2,1) = αs(1,1,1) = 1.

Let x,y,z ∈ X such that Ty 6= T z, so (x,y,z) is equal to (0,0,1), (0,0,2), (1,1,0) or (2,2,0). For

these four cases, αs(x,y,z) = 0, so (4) holds. In other words, (3) holds for F(t) = ln(t) and for

any ψ ∈ Ψ and any S-metric S. It is also obvious that the hypothesis (H) is satisfied. Thus ,

applying Theorem 3, the mapping T has a fixed point. Here, we have two fixed points which are

u = 0 and u = 1.

Here, we underline the fact that the mapping considered in above examples has two fixed

points, 0 and 1. Notice also that αs(0,0,1) = 0 < 1. For the uniqueness, we need an additional

condition:

(U) For all x,y,z ∈ Fix(T ), we have αs(x,y,z) ≥ 1, where Fix (T ) denotes the set of fixed

points of T .

Theorem 4. Adding condition (U) to the hypothesis of Theorem 2 (resp. Theorem 3), we obtain

that u is the unique fixed point of T .

Proof. Suppose, on the contrary, that there exists u,v ∈ X such that u = Tu and v = T v with

u 6= v. Then Tu 6= T v, so by (3), we get

τ +F(αs(u,u,v)S(Tu,Tu,T v))≤ F(ψ(S(u,u,v)))
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that is,

τ +F(αs(u,u,v)S(u,u,v)) ≤ F(ψ(S(u,u,v)))

< F(S(u,u,v))

which is a contradiction. Thus, u = v which completes the proof. The following corollaries are

immediate. �

Corollary 1. Let (X ,S) be a complete S-metric space and T : X → X be a given mapping.

Suppose there exists τ > 0 such that

S(T x,Ty,T z)> 0

⇒ τ +F(S(T x,Ty,T z))≤ (ψ(S(x,y,z)))(9)

for all x,y,z ∈ X where F satisfies (F1)− (F2).

Then T has a unique fixed point.

Proof. It is sufficient to take αs(x,y,z) = 1 in Theorem 4 �

Corollary 2. Let (X ,S) be a complete S-metric space and T : X → X be a given mapping.

Suppose there exists τ > 0 such that

S(T x,Ty,T z)> 0

⇒ τ +F(S(T x,Ty,T z))≥ F(cS(x,y,z)),(10)

for all x,y,z ∈ X where F saties (F1)− (F3) and c ∈ (0,1).

Then T has a unique fixed point.

Proof. It follows from Corollary 1 with ψ(t) = ct

The investigation of existence of fixed points on metric spaces endowed with a partial order was

intiated by Turinici [12]. �

Definition 7. Let (X ,≤) be a partially ordered set and T : X → X be a given mapping. It is

said that T is nondecreasing with respect to ≤ if

x,y ∈ X , x≤ y⇒ T x≤ Ty
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Furthermore, a sequence xn ⊂ X is said to be nondecreasing with respect to ≤ if

xn(k) ≤ x for all k.

Definition 8. Let (X ,≤) be a partially ordered set and S be an S-metric on X. We say (X ,≤,S)

is regular if for every nondecerasing {xn} ⊂ X such that xn→ x ∈ X as n→ ∞, there exists a

subsequence {xn(k)} of {xn} such that xn(k) ≤ x for all k.

Under the set-up of partially ordered S-metric spaces, we have the following result.

Corollary 3. Let (X ,≤) be a partially ordered set and S be an S-metric on X such that (X ,S)

is complete. Let T : X → X be a nondecreasing mapping with respect to ≤. Suppose that there

exist τ ≥ 0, such that ψ ∈Ψ and F ∈ F such that

τ +F(S(T x,T x,Ty))≤ F(ψ(S(x,x,y))),

for x,y ∈ X with x≥ y and T x 6= Ty. Suppose also that the following conditions hold:

(i): there exists x0 ∈ X such that x0 ≤ T x0;

(ii): either T is continuous;

(iii): r(X ,≤,S) is regular.

Then T has a fixed point.

Example 2. Let X = [0,∞) and S(x,y,z) = |x− y|+ |y− z| for all x,y,z ∈ X. Take τ > 0.

Consider the mapping T : X → X given by

T x =


eτ(3x

4 , if x ∈ [0,1]

e−tau(3
4 , if x > 1

T is continuous in (X ,S). Define the mapping αs : X×X×X → [0,∞) by

αs(x,y,z) =


1, if x ∈ [0,1]

0, otherwise.

Consider the function ψ : [0,∞)→ [0,∞) by

ψ(t) =


3t
4 , if t ∈ [0,1],

2t
5 otherwise
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Let x,y,z ∈ X such that αs(x,y,z) ≥ 1, so x,y,z ∈ [0,1]. Then T x,Ty,T z ∈ [0,1], that is,

αs(T x,Ty,T z) = 1. Hence, T is αs-admissible. Mention that ψ ∈ Ψ and α(0,0,T 0) = 1. In

this case where x,y,z ∈ [0,1] such that Ty 6= T z, we have

α(x,y,z)S(T x,Ty,T z) = S(T x,Ty,T z)

= eτ 3
4
(|x− y|+ |y− z|)

≤ eτ
ψS(x,y,z)

In the other case where x or y or z is not in [0,1],α(x,y,z)= 0, so the above inequality is satisfied

for all x,y,z ∈ X with Ty 6= T z. Thus, (3) is satisfied with F(t) = ln(t) for t > 0. Moreover, t

is easy to satisfy the hypothesis (U) is true. Thus, applying Theorem 3, the mapping T has a

unique fixed point, which is u = 0.
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