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Abstract: In this article using nine point single cell, we report difference methods of accuracy of 
2 4( )O k h  

for the solution of two dimensional multi-harmonic elliptic equations on unequal mesh, where k>0 and h>0 are 

grid sizes in y- and x-coordinates respectively. In all cases, we use Numerov type discretization. For a fixed 

value of (k/h2), the proposed methods behave like fourth order in nature. We do not require to discretize the 

boundary conditions and the values of  2
n

u , n=1,2,… are obtained as by-product of the methods. The 

resulting matrix system is solved by using the block iterative methods. Comparative results are provided to 

demonstrate the fourth order behaviour of the proposed methods. 
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 1. Introduction 

 

       We consider the two dimensional biharmonic  and triharmonic elliptic partial differential 

equations of the form 

  

               
4 4 4

4

4 2 2 4
( , ) 2

u u u
u x y

x x y y

  
   

   
 = ( , )f x y ,       0<x,y<1                                    (1) 

and 
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6 6 6 6

6

6 4 2 2 4 6
( , ) 3

u u u u
u x y

x x y x y y

    
     

      
 = ( , )f x y ,       0<x,y<1                 (2) 

                                                                      

where ( , ) {( , ) 0 , 1}x y x y x y    with boundary   and  
2 2

2

2 2
( , )

u u
u x y

x y

 
  

 
 

represents as the two dimensional Laplacian of the function u(x,y).  

 

      Dirichlet boundary conditions of  second kind for equation (1) are given by 

 

                                   
2

11 122
( , ), ( , )

u
u g x y g x y

n


 


,  ( , )x y  ,                                    (3) 

 

     and for equation (2) are given by 

                                      

                            
2 4

21 22 232 4
( , ), ( , ), ( , ),

u u
u g x y g x y g x y

n n

 
  

 
,  ( , )x y  .             (4) 

 

where ( / )u n  is the directional derivative acting along the outward normal n̂  to the 

boundary curve of the solution region. We assume that the function u(x,y) is sufficiently 

smooth and  required higher order partial derivatives of u(x,y) exist in the solution domain  .  

      The biharmonic and triharmonic equations are fourth order elliptic partial differential 

equations, which encountered in  areas of continuum mechanics, including linear elasticity 

theory and viscous flow problems.  Different techniques for the numerical solution of the 2D  

biharmonic and triharmonic equations  have been considered in the literature. Smith [1] and 

Ehrlich [2, 3] have solved 2D biharmonic equations using coupled second order accurate 

finite difference equations. Bauer and Riess [4] have used block iterative method to solve the 

equation. Later, kwon et al [5], Stephenson [6],  Mohanty and Pandey [7], Evans and 

Mohanty [8] have developed certain second- and fourth-order finite difference 

approximations for the second biharmonic problems using 9-point compact cell. Dehghan and 

Mohebbi [9] have discussed high order accuracy methods for multi-dimensional biharmonic 

equations of second kind. Recently, using uniform mesh with equal mesh length, Mohanty 

[10,11] and Mohanty et al [12] have discussed fourth order compact finite difference schemes 

for the solution of 2D biharmonic and triharmonic equations, in which they used five function 
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evaluations. Using five function evaluations, Mohanty et al [13] have developed fourth order 

discretization for the solution of two dimensional elliptic equations on an unequal mesh. In 

this paper, we split the differential equations (1) and (2) into system of two and three elliptic 

differential equations and introduce new ideas to handle boundary conditions without 

discretizing them in the system of elliptic equations. We use only 9-point compact cell (see 

fig.1) and unequal mesh for the discretization of differential equations (1) and (2). In all case, 

we use Numerov type discretization and only three functions evaluation. The given Dirichlet 

boundary conditions are exactly satisfied and no approximations for derivatives need to be 

carried out at the boundaries. The main advantage of this work is that we require only three 

evaluations of function f, whereas in our previous work five evaluations of function f were 

required to obtain the numerical solution of u(x,y). Thus the proposed method requires less 

algebraic operations as  compared to our earlier methods. In next section,  we give the 

completely mathematical details of the methods. In section 3, we discuss the appropriate 

block iterative methods for the resulting linear systems. In order to illustrate the method and 

its fourth order convergence, we have solved  two problems in section 4. Concluding remarks 

are given in section 5.   

 

  

 

 

      

 

  

                 Fig.1: 9-point 2D single computational cell 

 

2. Numerov type discretization 

 

            We consider our region of interest, a rectangular domain   [   ]  [   ] . A grid 

with spacing     and     in the directions  - and  - respectively are first chosen, so that 

the mesh points         denoted by       are defined as       and      ,   

(xl, y m-1) 

 

(xl-1, y m) 

 

(xl+1, y m-1) (xl-1, y m-1) 

(xl-1, y m+1) 

(xl+1, y m) 
(xl, y m) 

h 

(xl, y m+1) 

 

(xl+1, y m+1) 

k 
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          ,            , where  ,   are positive integers such that         

  and         .     

           

         Let us denote the mesh ratio parameter by      ⁄    . For convergence of the 

numerical scheme it is essential that our parameter remains in the range   √     .  

 

      We define:    
2 2

2

2 2
( , ) ( , ), ( , )

u u
u x y v x y x y

x y

 
    

 
,                                          (5.1) 

                             
4 4 4

4 2

4 2 2 4
( , ) 2

u u u
u x y v

x x y y

  
    

   
 = w(x,y), ( , )x y  .              (5.2) 

  

      Note that, the Dirichlet boundary conditions for the equation (1) are given by (3). Since 

the grid lines are parallel to coordinate axes and the values of  u  are exactly known on the 

boundary, this implies, the successive tangential partial derivatives of  u  are known exactly 

on the boundary. For example, on the line y=0, the values of u(x, 0) and ( ,0)yyu x  are known, 

i.e., the values of  ( ,0)xu x , ( ,0)xxu x ,… etc are known on the line y=0. This implies the 

values of  u(x, 0) and 2 ( ,0)u x   ( ,0) ( ,0)xx yyu x u x  are known on the line y=0. Similarly 

the values of  u  and 2u are known on all sides  of the square region   . 

 

      Similarly for the differential equation (2), the values of u, 2u and 4u are known on all 

sides  of the square region   . 

 

       Thus the Dirichlet boundary conditions (3) for the equation (1) may be replaced by 

 

                                   
2

11 13( , ), ( , )u g x y v u g x y   ,  ( , )x y  ,                                (6) 

 

     and (4) for the equation (2) are replaced  by 

                                      

                
2 4

21 24 25( , ), ( , ), ( , ),u g x y v u g x y w u g x y     ,  ( , )x y  .            (7) 

 

   Then we re-write the boundary value problem (1) and (6)  in coupled form  
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2 2

2 2
( , ) , ( , )

u u
v x y x y

x y

 
  

 
,                                                      (8.1) 

                              
2 2

2 2
( , ) , ( , )

v v
f x y x y

x y

 
  

 
,                                                       (8.2) 

 

and (2) and (7) in a system of three Poisson equations of the form 

 

                                             
2 2

2 2
( , ) , ( , )

u u
v x y x y

x y

 
  

 
,                                           (9.1)   

                                            
2 2

2 2
( , ) , ( , )

v v
w x y x y

x y

 
  

 
,                                            (9.2) 

                                            
2 2

2 2
( , ) , ( , )

w w
f x y x y

x y

 
  

 
,                                          (9.3) 

 

and the exact Dirichlet boundary conditions for all above equations are given by (6) and (7), 

respectively. 

 

    At the grid point ( , )l mx y , let , , ,, ,l m l m l mU V W  and , ,,l m l mu v , ,l mw be the exact and 

approximate solution values of  u(x,y), v(x,y) and w(x,y), respectively. Let ,l mf be the exact 

value of f(x,y) at the grid point ( , )l mx y . 

 

      We need the following approximations: 

 

           2

, , 1 , , 1( 2 ) /( )yyl m l m l m l mU U U U k    ,                                                                     (10.1) 

          2

1, 1, 1 1, 1, 1( 2 ) /( )yyl m l m l m l mU U U U k        ,                                                             (10.2) 

             2

, , 1 , , 1( 2 ) /( )yyl m l m l m l mV V V V k    ,                                                                      (10.3) 

          2

1, 1, 1 1, 1, 1( 2 ) /( )yyl m l m l m l mV V V V k        ,                                                                (10.4) 

             2

, , 1 , , 1( 2 ) /( )yyl m l m l m l mW W W W k    ,                                                                   (10.5) 

          2

1, 1, 1 1, 1, 1( 2 ) /( )yyl m l m l m l mW W W W k        .                                                             (10.6) 
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      Then at each grid point ( , )l mx y , l=1(1)N, m=1(1)M, a difference method of 2 4( )O k h

for the differential equations (8.1) and (8.2) due to Numerov is given by 

 

   
2

1, 1, ,1, , 1,( 2 ) 10
12

yy yy yyl m l m l ml m l m l m

h
U U U U U U  

        

                                    = 
2

1, 1, ,10
12

l m l m l m

h
V V V    + 2 2 6( )O k h h ,  

    
2

1, 1, ,1, , 1,( 2 ) 10
12

yy yy yyl m l m l ml m l m l m

h
V V V V V V  

        

                                    = 
2

1, 1, ,10
12

l m l m l m

h
f f f    + 2 2 6( )O k h h ,  

or, 

 

               1 1, 1, 2 , 1 , 1( ) ( )l m l m l m l mU U U U        

           + 2

3 1, 1 1, 1 1, 1 1, 1 ,(24 20)l m l m l m l m l mU U U U p U        
        

                                   = 
2

1, 1, ,10
12

l m l m l m

k
V V V    + 4 2 4( )O k k h ,                               (11.1) 

  

               1 1, 1, 2 , 1 , 1( ) ( )l m l m l m l mV V V V        

           + 2

3 1, 1 1, 1 1, 1 1, 1 ,(24 20)l m l m l m l m l mV V V V p V        
        

                                   = 
2

1, 1, ,10
12

l m l m l m

k
f f f    + 4 2 4( )O k k h                                (11.2) 

 

where          

  
         

  

  
         

 

  
  . 

Similarly, a difference method of 2 4( )O k h for the triharmonic equation (9.1)-(9.3) due to 

Numerov is given by 

 

                1 1, 1, 2 , 1 , 1( ) ( )l m l m l m l mU U U U        

           + 2

3 1, 1 1, 1 1, 1 1, 1 ,(24 20)l m l m l m l m l mU U U U p U        
        

                                   = 
2

1, 1, ,10
12

l m l m l m

k
V V V    + 4 2 4( )O k k h ,                               (12.1) 
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               1 1, 1, 2 , 1 , 1( ) ( )l m l m l m l mV V V V        

           + 2

3 1, 1 1, 1 1, 1 1, 1 ,(24 20)l m l m l m l m l mV V V V p V        
        

                                   = 
2

1, 1, ,10
12

l m l m l m

k
W W W    + 4 2 4( )O k k h                               (12.2) 

 

               1 1, 1, 2 , 1 , 1( ) ( )l m l m l m l mW W W W        

           + 2

3 1, 1 1, 1 1, 1 1, 1 ,(24 20)l m l m l m l m l mW W W W p W        
        

                                   = 
2

1, 1, ,10
12

l m l m l m

k
f f f    + 4 2 4( )O k k h                                 (12.3) 

 

       For convergence, the condition which is usually imposed on equations (11.1)-(11.2), 

(12.1)-(12.3) is that      ,      and     , that is,   √     . 

       By combining the difference equations at each internal grid points, we obtain a large 

sparse system of matrix to solve. At each interior mesh point, we have unknowns u,  2u v   

and 2v w    that is, the number of bands with non-zero entries is increased, and so is the 

size of the final matrix for the same mesh size. However, by this new method, the value of 

the Laplacian, which is often of interest, is also computed. 

 3. Block iterative methods and numerical results 

        To solve  the system (11) or (12) and indeed to demonstrate the existence of a solution, 

one can use block successive over relaxation (BSOR) iterative method (see [14-21]). 

      To define BSOR method, we first write (11.1) and (11.2) in the form 

                                         1 1 A u B v 0                                                                             (13.1) 

                                         2 2 A u B v d                                                                            (13.2) 

 

where A1L = 1
12

[1, 10, 1],  A1D = 1
6

[6p
2
-1, -12p

2
-10, 6p

2
-1],  A1U = 1

12
[1, 10, 1] represent lower, 

main and upper diagonal tri-diagonal matrices of the tri-block diagonal matrix  A1 = [A1L, 

A1D , A1U ]  and     B1L = [0, 0, 0],  B1D = [1, 10, 1],  B1U =[0, 0, 0] are tri-diagonal matrices of 
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tri-block diagonal matrix B1 =
2

12

k
 [B1L, B1D , B1U ].  A2 = [ 0, 0, 0] is a zero matrix and B2L 

= 1
12

[1, 10, 1],  B2D = 1
6

[6p
2
-1, -12p

2
-10, 6p

2
-1],  B2U = 1

12
[1, 10, 1] represent lower, main and 

upper diagonal tri-diagonal matrices of the tri-block diagonal matrix  B2 = [B2L, B2D , B2U ]  , 

and d is the vector consisting of right hand side functions and associated boundary conditions.   

 

       Relative to the partitioning (13.1) and (13.2), the BSOR method is defined by  

                 A1D ( 1)k
u =  [-( A1L+A1U ) ( )k

u - B1
( )k

v ] +(1- ) A1D
( )k

u                              (14.1) 

                 B2D ( 1)k
v =  [-( B2L+B2U ) ( )k

v - A2
( 1)k

u +d] +(1- ) B2D
( )k

v                         (14.2) 

  

where 0< <2 is a relaxation parameter. The above system of equations can be solved by 

using a line solver. For  =1, the BSOR method reduces to block-Gauss Seidel iterative 

method.  In a similar manner, we can write block iterative methods for (12.1)-(12.3).  

4. Numerical results 

        The second order approximations for the coupled system of differential equations (8.1) 

and (8.2) are straightforward and can be written in a coupled manner 

        
2 2 2 4 2 2

1, 1, , , 1 , 1 ,( ) (2 2 ) ( ) ( )l m l m l m l m l m l mp U U p U U U k V O k k h           ,             (15.1) 

       
2 2 2 4 2 2

1, 1, , , 1 , 1 ,( ) (2 2 ) ( ) ( )l m l m l m l m l m l mp V V p V V V k f O k k h           ,                  (15.2) 

and the second order approximations for the system of poisons equations (9.1)-(9.3) may be 

written as 

      
2 2 2 4 2 2

1, 1, , , 1 , 1 ,( ) (2 2 ) ( ) ( )l m l m l m l m l m l mp U U p U U U k V O k k h           ,             (16.1) 

       
2 2 2 4 2 2

1, 1, , , 1 , 1 ,( ) (2 2 ) ( ) ( )l m l m l m l m l m l mp V V p V V V k W O k k h           ,                (16.2) 

      
2 2 2 4 2 2

1, 1, , , 1 , 1 ,( ) (2 2 ) ( ) ( )l m l m l m l m l m l mp W W p W W W k f O k k h           .              (16.3) 

       Note that,  the second order approximations (15.1)-(15.2) and (16.1)-(16.3) require only 

5-grid points on a single computational cell (see Fig.1). In a similar manner, we can discuss 

the block iterative methods for the systems (15.1)-(15.2) and (16.1)-(16.3).    

         In order to validate the proposed fourth order method and test its robustness, we solve 

the following two test problems in the region 0<x,y<1, whose exact solutions are known. The 
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Dirichlet boundary conditions and right hand side homogeneous functions are obtained by 

using the exact solutions. We have solved the linear systems by using block Gauss-Seidel 

iterative method. We have also compared the numerical results obtained by proposed high 

order approximations with the numerical results obtained by corresponding 2 2( )O k h  

approximations  (15.1)-(15.2) and (16.1)-(16.3).   In all cases, we have considered (0) u 0  as 

the initial approximation and the iterations were stopped when the absolute error tolerance 

( 1) ( ) 1210k k  u u  was achieved. In all cases, we have calculated maximum absolute errors 

( l -norm) for different grid sizes. All computations were performed using double precision 

arithmetic for a fixed value of 2( / )k h  . 

 

Example 1   (2D Biharmonic problem) 

                   
4 4 4

4

4 2 2 4
2 4 sin sin

u u u
x y

x x y y
  

  
  

   
,       0<x,y<1                                  (17) 

                                    

                The exact solution is  u(x,y) =sin sinx y  . 

      The maximum absolute errors are tabulated in Table 1 for a fixed value of   =20. 

 

Example 2 (2D Triharmonic problem) 

                       
6 6 6 6

6 4 2 2 4 6
3

u u u u

x x y x y y

    
   

      
 = 68 sin sinx y   ,    0<x,y<1             (18)                                                                                            

                    The exact solution is  u(x,y) =sin sinx y  . 

      The maximum absolute errors are tabulated in Table 2 for a fixed value of   =20. 

 

Table 1 

           Example 1: The maximum absolute errors ( =20) 

    h 2 4( )O k h Method 2 2( )O k h Method 

           u 

1/10   

2u  

                  0.3168(-01) 

 

                  0.3101(+00) 

                     0.3988(-01) 

 

                     0.3896(+00) 

           u                   0.2060(-02)                      0.4121(-02) 
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1/20   

2u  

 

                  0.2032(-01) 

 

                     0.4063(-01) 

           u 

1/40   

2u  

                  0.1286(-03) 

 

                  0.1269(-02) 

                     0.6427(-03) 

 

                     0.6342(-02) 

 

Table 2 

           Example 2: The maximum absolute errors ( =20) 

    h 2 4( )O k h Method 2 2( )O k h Method 

             

          u 

 

1
10

 2u  

 

     4u  

                  

                  0.4792(-01) 

 

                  0.6255(+00) 

 

                 0.6123(+01) 

 

                      

                  0.6045(-01) 

 

                  0.7873(+00) 

 

                  0.7691(+01) 

 

             

          u 

 

1
20

 2u  

 

     4u  

                  

                  0.3091(-02) 

 

                  0.4066(-01) 

 

                  0.4011(+00) 

 

                      

                  0.6188(-02) 

 

                  0.8135(-01) 

 

                  0.8021(+00) 

 

             

           u 

 

1
40

 2u  

 

     4u  

                  

                  0.1929(-03) 

 

                  0.2539(-02) 

 

                 0.2506(-01) 

 

                      

                  0.9642(-03) 

 

                  0.1268(-01) 

 

                  0.1251(+00) 
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5. Conclusions 

 

      In this paper, we discuss a class of new compact finite difference discretizations of order 

two in y- and four in x-directions for the solution of 2D  biharmonic  and triharmonic partial 

differential equations. The methods are derived on a 9-point compact stencil using the values 

of  u, 2u  and 4u  as unknowns. We have obtained the numerical solution of 2u  and 

4u  as by-product of the solution, which are quite often of interest in many applied 

mathematics problems. We have solved biharmonic and triharmonic problems and obtained 

high accuracy solutions with great efficiency. We have shown that for a fixed value of (k/h
2
), 

the proposed methods are fourth order accurate. We are currently working to extend this 

technique to solve non-linear biharmonic and triharmonic elliptic and time dependent 

parabolic partial differential equations.   
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