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Abstract. A topological space X is called CC-regular if there exists a regular space Y and a bijective function

f : X→Y such that f|C : C→ f (C) is homeomorphism for any countably compact subspace C of X . We investigate

this definition. Some relations with weaker versions of regularity have been studied, as L-regular and C-regular

spaces.
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1. INTRODUCTION

In his visit to Saudi Arabia, Arhangel’skii defined the new concept of C-normality in a semi-

nar in the Department of Mathematics at King Abdulaziz University in 2012. By the definition,

a space X is C-normal if there exists a normal space Y and a bijection f : X → Y such that

f|C : C→ f (C) is homeomorphism for any compact subspace C of X . In 2017, AlZahrani and

Kalantan investigate C-normal property [1]. In the same year, CC-normality [5] has been pre-

sented as a weaker version of normality but stronger than C-normality. After that, C-regular is

defined in [2]. We use the idea of this definition to introduce another new weaker version of

regularity and we call it CC-regularity. We investigate some topological properties of this space
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and we study the relationships between CC-regular spaces and other spaces such as C-regular,

L-regular, and submetrizable spaces. Also, some examples are presented to show that there is

no relation between CC-regular spaces and CC-normal spaces.

We provide a necessary condition which is important to prove that every L-regular space is

CC- regular space. Also, it is proved that if X is submetrizable then X is CC-regular. We present

some examples to show that there is no relation between CC-regularity and CC-normality.

Moreover, some properties of CC-regularity have been investigated in this paper.

2. CC-REGULARITY

First, we recall the definition of C-regular spaces.

Definition 2.1. [2] A space X is called C-regular if there exists a regular space Y and a bijective

function f : X → Y such that f|C : C→ f (C) is homemorphism for any compact subspace C of

X .

Now, we define a new topological property CC-regularity as follows which is analogous to

the above definition.

Definition 2.2. A space X is called CC-regular if there exists a regular space Y and a bijective

function f : X → Y such that f|C : C → f (C) is homeomorphism for any countably compact

subspace C of X .

It is clear that by taking X = Y and the identity function on X in the above definition, we

deduce that any regular space X is CC-regular. The converse is not true in general. The half-

disc topology [?] is defined on X = P∪ L where P = {(x,y) ∈ R2 : y > 0} equipped by the

Euclidean metric topology on P and L = {(x,y) ∈ R2 : y = 0} where the neighborhood of any

point (x,0) ∈ L is given by { (x,0)} ∪ (P∩U) where U is an open set with respect to the

Euclidean metric topology. The half-disc topology is not regular but it is submetrizable the it

is CC-regular by Theorem 2.5. On the other hand, every CC-regular space is C-regular and

that is clear because every compact subspace is countably compact. Obviously, any countably

compact CC-regular is regular.
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Definition 2.3. [5] A space X is called CC-normal if there exists a normal space Y and a

bijective function f : X → Y such that f|C : C → f (C) is homeomorphism for any countably

compact subspace C of X .

The following examples show that CC-normality and CC-regularity are independent.

Example 2.1. Let (R,L) be the left ray topological space. Since there are no non-empty disjoint

closed sets in (R,L), then (R,L) is normal space and so it is CC-normal. In [2], it is proved

that (R,L) is not C-regular and so it is not CC-regular.

Example 2.2. Let M = G×H, where G =
∏

α∈ω1

D where D = {0,1} given with the discrete

topology, and H is the set of all points of G with at most countably many non-zero coordinates.

We consider H as a subspace of G. The space M is Tychonoff. Thus M is regular and so it is

CC-regular. It is proved that M is not C-normal in [2]. Thus it is not CC-normal.

Theorem 2.1. If X is countably compact non-regular space, then X can not be CC-regular.

Proof. Let X be countably compact non-regular space. Assume that X is CC-regular. Then

there is a regular space Y and a bijective function f : X → Y such that f|C : C→ f (C) is home-

omorphism for any countably compact subspace C of X . Since X is countably compact, then X

is homeomorphic to Y . This contradicts the fact that X is not regular and Y is regular. So by

contradiction, the space X is not CC-regular. �

As a result of the above theorem, and since the co-finite topological space (R,C) is countably

compact non-regular, then (R,C) is not CC-regular.

The following theorem gives a condition to answer the question when the C-regular space is

CC-regular.

Theorem 2.2. If X is C-regular and every countably compact subspace of X is contained in a

compact subspace, then X is CC-regular.

Proof. Let X be a C-regular and every countably compact subspace of X is contained in a

compact subspace of X . Then there is a regular space Y and a bijective function f : X →Y such
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that any restriction of f with respect to any compact subspace is homeomorphism. Now if C is

countably compact subspace of X then by assumption, C is contained in a compact subspace G

such that f|G : G→ f (G) is homeomorphism and this completes the proof. �

Recall that a space X is called L-regular if there is a regular space Y and a bijective function

f : X → Y such that f|L : L→ f (L) is homeomorphism for any Lindelöf subspace L of X [2].

The proof of Theorem 2.3 and the proof of Theorem 2.4 are similar to Theorem 2.2.

Theorem 2.3. If X is CC-regular and every Lindelöf subspace of X is contained in a countably

compact subspace, then X is L-regular.

Theorem 2.4. If X is L-regular and every countably compact subspace of X is contained in a

Lindelöf subspace, then X is CC-regular.

Lemma 2.1. [3] If a function f : X → Y is continuous and bijection where X is a countably

compact space, and Y is a first countable Hasudorff space, then f is a homeomorphism.

Recall that a topological space (X ,τ) is submetrizable if there exists a topology τd on X

generated by a metric d such that τd ⊆ τ see [4].

Theorem 2.5. Every submetrizable space is CC-regular.

Proof. Let (X ,τ) be submetrizable. Then there is a metrizable topology τd on X such that τd ⊆

τ . Since (X ,τd) is metrizable then it is regular. Now, if C is a countably compact subspace of

(X ,τ) and id : (X ,τ)→ (X ,τd) is the identity function on X then id|C : C→ id(C) is continuous

and bijection. Since (X ,τd) is metrizable, the subspace id(C) is first countable Hasudorff. So,

id|C is homeomorphism by Lemma 2.1. Thus (X ,τ) is CC-regular. �

Remark 2.1. Countably compactness and compactness are coincide in metrizable spaces.

It is noted from the proof of Theorem 2.5, id(C) is continuous image of a countably compact

and so id(C) is a countably compact in a metrizable space (X ,τd), which means that id(C) =C

is compact in (X ,τ).
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As a direct proof of Theorem 2.5, it is proved in [2] that every submetrizable is C-regular.

By Remark 2.1, every countably compact subset is compact in submetrizable, then every sub-

metrizable is CC-regular.

The converse of Theorem 2.5 is not true in general. Take the modified Dieudonné Plank

example [6]. We apply Theorem 2.4 to show that the example is CC-regular. In the example,

X = ((ω1 + 1)× (ω0 + 1))\{〈ω1,ω0〉}. See that (ω1 + 1)×{0} ⊆ X where (ω1 + 1)×{0} ∼=

(ω1 +1) and (ω1 +1) is not submetrizable. Since submetrizability is hereditary, then X is not

submetrizable. Now, write X = A∪B∪N, where A = {〈ω1,n〉,n <ω0}, B = {〈α,ω0〉,α <ω1},

and N = {〈α,n〉,α < ω1,n < ω0}. The basic open sets of 〈α,n〉 ∈ N are given by B(〈α,n〉) =

{{〈α,n〉}}, the basic open sets of 〈ω1,n〉 ∈ A are B(〈ω1,n〉) = {(α,ω1]×{n} : α < ω1} and

the basic open sets of 〈α,ω0〉 ∈ B are B(〈α,ω0〉) = {{α}× (n,ω0] :n<ω0}. A subset C is

countably compact if C satisfies all of these conditions: 1) C∩A and C∩A are finite, 2) {〈α,n〉 ∈

C∩N : 〈ω1,n〉 ∈C∩A} is finite and 3) {〈α,n〉 ∈C∩N : 〈α,ω0〉 /∈C∩B, 〈ω1,n〉 /∈C∩A} is

finite. This proves that any countably compact subspace is countable and so Lindelöf. Now,

take Y = X = A∪B∪N where the basic open sets on B∪N are the same as in X but we modify

the basic open sets of 〈ω1,n〉 ∈ A by B(〈ω1,n〉) ={{〈ω1,n〉}}. The space Y is paracompact

so it is T4 . By taking id : X −→ Y , it was proved in [6] that X is L-normal but in the same

technique we get X is L-regular that because Y is T4 and so regular. By Theorem 2.4, we get

that X is CC-regular.

We know that if A ⊆ X , then any countably compact subspace of A is countably compact

subspace of X . So, the proof of the following theorem is clear and so it is omitted.

Theorem 2.6. CC-regularity is hereditary property.

Theorem 2.7. CC-regularity is topological property.

Proof. Let X be a CC-regular and X ∼= Z. From the definition of the CC-regularity, there is

a regular space Y such that and a bijective function f : X → Y such that f|C : C → f (C) is

homeomorphism for any countably compact subspace C of X . Since X ∼= Z, then there is a

homeomorphism g : Z → X . So, f ◦ g : Z → Y is bijective. Let K be a countably compact



6 ZUHIER ALTAWALLBEH

subspace of Z. Now g|K : K→ g(K) is homeomorphism being g : Z→ X is homeomorphism.

Since K is countably compact subspace of Z and countably compactness is topological property,

then g(K) is countably compact subspace of X . Thus f ◦g : Z→ Y is bijective and ( f ◦g)|K =

f|g(K) : K → ( f (g(K)) is homeomorphism for every K is a countably compact subspace of Z.

Thus Z is CC-regular. �

The proof of the following theorem is clear and so it is omitted.

Theorem 2.8. CC-regularity is an additive property.

Recall that a space X is Fréchet if for any A ⊆ X and x ∈ Ā, then there exists a sequence

{an}n∈N such that an→ x where an ∈ A ∀n ∈N [3]. The proof of the following theorem is clear

and so it is omitted.

Theorem 2.9. If X is CC-regular Fréchet space, then any function f witnessing it’s CC-

regularity is continuous.

Also, it is noted that any first countable space is Fréchet, so we get the following result.

Corollary 2.1. If X is CC-regular, first countable space and a function f witnessing it’s CC-

regularity, then f is continuous.
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