Available online at http://scik.org

J. Math. Comput. Sci. 2023, 13:11

https://doi.org/10.28919/jmcs/7827

ISSN: 1927-5307

ANALYSIS OF SOLUTION OF FIRST ORDER NONLINEAR FRACTIONAL **DIFFERENCE EQUATION**

VIJAY S. THOSARE^{1,*}, KIRANKUMAR L. BONDAR², PANDIT U. CHOPADE³

¹P. G. Department of Mathematics N.E.S. Science College, Nanded - 431602, (MH), India

²P.G. Department of Mathematics, Government Vidarbha Institute of Science and Humanities, Amravati -

444601, Maharashtra, India

³Department of Mathematics, D. S. M.'s Arts, Commerce and Science College, Jintur Dist - Parbhani - 431509,

(MH), India

Copyright © 2023 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we study the analysis of solution of First Order Nonlinear Fractional Difference Equation

with nonlocal condition in cone metric space. The result is obtained by using some extensions of Banach contrac-

tion principle in complete cone metric space. Finally an application of the established result is demonstrated.

Keywords: fractional difference equation; existence of solution; cone metric space; Banach contraction principle.

2020 AMS Subject Classification: 39A05, 54E50, 45N05, 47G20, 34K05, 47H10.

1. Introduction

The purpose of this paper is to study the analysis of solution of inhomogeneous First Order

Nonlinear Fractional Difference equation with nonlocal condition in cone metric space of the

form:

 $\Delta^{\alpha} x(t) = A(t)x(t) + f(t,x(t)), \qquad t \in J = [0,b]$ (1.1)

*Corresponding author

E-mail address: vijaythosare91@gmail.com

Received November 16, 2022

1

$$x(0) + g(x) = x_0, (1.2)$$

where A(t) is a bounded linear operator on a Banach space X with domain D(A(t)), the unknown $x(\cdot)$ takes values in the Banach space $X; f: J \times X \times X \to X, k: J \times X \to X, g: C(J,X) \to X$ are appropriate continuous functions and x_0 is given element of X.

Many authors have studied the problems of existence, uniqueness, continuation and other properties of solutions of these type or special forms of the differential equations, integral equations and Integro-differential equations using different techniques studied in [2, 9, 12, 15, 16] and the references given therein. Later K.L. Bondar et al. studied existence and uniqueness of some difference equations and summation equations [3, 4, 5, 6, 7, 8]. The objective of the present paper is to study the existence and uniqueness of solution of the evolution equation (1.1)-(1.2) under the conditions in respect of the cone metric space and fixed point theory.

In Section 2, we discuss the preliminaries. Section 3, deals with study of existence and uniqueness of solution of Summation- Difference equation with nonlocal condition in cone metric space. Finally in Section 4, we give example to illustrate the application of our result.

2. DEFINITIONS AND PRELIMINARIES

Let us recall the concepts of the cone metric space and we refer the reader to [1, 10, 11, 13, 14, 17] for the more details.

Definition 2.1. Let *E* be a real Banach space and *P* is a subset of *E*. Then *P* is called a cone if and only if,

- 1. P is closed, nonempty and $P \neq \{0\}$.
- 2. $a, b \in \mathbb{R}, a, b \ge 0, x, y \in P \Rightarrow ax + by \in P$.
- 3. $x \in P$ and $-x \in P \Rightarrow x = 0$.

For a given cone $P \in E$, we define a partial ordering relation \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. We shall write x < y to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y - x \in intP$. Where int P denotes the interior of P. The cone P is called normal if there is a number K > 0 such that $0 \leq x \leq y$ implies $||x|| \leq K||y||$, for every $x, y \in E$. The least positive number satisfying above is called the normal constant of P.

In the following way, we always suppose E is a real Banach space, P is cone in E with int $P \neq \phi$, and \leq is partial ordering with respect to P.

Definition 2.2. Let X a nonempty set. Suppose that the mapping $d: X \times X \to E$ satisfies:

- (d_1) $0 \le d(x,y)$ for all $x,y \in X$ and d(x,y) = 0 if and only if x = y
- (d_2) d(x,y) = d(y,x), for all $x, y \in X$;
- $(d_3) d(x,y) \le d(x,z) + d(z,y)$, for all $x, y \in X$.

Then d is called a cone metric on X and (X,d) is called a cone metric space. The concept of cone metric space is more general than that of metric space. The following example is a cone metric space.

Example 2.1. Let $E = \mathbb{R}^2$, $P = \{(x,y) \in E : x,y \ge 0\}$, $X = \mathbb{R}$, and $d : X \times X \to E$ such that $d(x,y) = (|x-y|, \alpha |x-y|)$, where $\alpha \ge 0$ is a constat and then (X,d) is cone metric space.

Definition 2.3. Let X be an ordered set. A function $\Phi: X \to X$ is said to a comparison function if every $x, y \in X, x \leq y$, implies that

$$\Phi(x) \le \Phi(y), \Phi(x) \le x$$
 and

$$\lim_{n\to\infty} \|\Phi^n(x)\| = 0, \quad \forall \ x \in X.$$

Example 2.2. Let $E = \mathbb{R}^2$, $P = \{(x,y) \in E : x,y \ge 0\}$, it is easy to check that $\Phi : E \to E$ with $\Phi(x,y) = (ax,ay)$, for some $a \in (0,1)$ is a comparison function. also if Φ_1,Φ_2 are two comparison function over \mathbb{R} , then

$$\Phi(x,y) = (\Phi_1(x), \Phi_2(y))$$

is also a comparison function over E.

3. MAIN RESULTS

Let X is a Banach space with norm $\|.\|$. B = C(J,X) be the Banach space of all continuous function from J into X endowed with supremum norm

$$||x||_{\infty} = \sup\{||x(t)|| : t \in [0,b]\}$$

Let $P = \{(x,y) : x,y \ge 0\} \subset E = \mathbb{R}^2$, and define

$$d(f,g) = (\|f - g\|_{\infty}, \alpha \|f - g\|_{\infty})$$

for every $f, g \in B$, then it is easily seen that (B, d) is a cone metric space.

Definition 3.1. The function $x \in B$ satisfies the summation equation

$$x(t) = x_0 - g(x) + \sum_{s=0}^{t-1} K^{\alpha}(s-t)A(s)f(s,x(s)), \quad t \in J = [0,b]$$
(3.1)

is called the solution of the Fractional Difference equation (1.1) - (1.2).

We need the following theorem for further discussion:

Lemma 3.2.[14] Let (X,d) be a complete cone metric space, where P is a normal cone with normal constant K. Let $f: X \to X$ be a function such that there exists a comparison function $\Phi: P \to P$ such that

$$d(f(x), f(y)) \le \Phi(d(x, y))$$

for very $x, y \in X$. Then f has unique fixed point.

We list the following hypothesis for our convenience:

 (H_1) A(t) is a bounded linear operator on X for each $t \in J$, the function $t \to A(t)$ is continuous in the uniform operator topology and hence there exists a constant P such that

$$P = \sup_{t \in J} ||A(t)||.$$

- (H_2) Let $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ be a comparison function
- (i)There exist continuous function $p: J \to \mathbb{R}^+$ such that

$$(\|f(t,x) - f(t,y)\|, \alpha \|f(t,x) - f(t,y)\|) \le p(t)\Phi(d(x,y)),$$

for every $t \in J$ and $x, y \in X$

(ii) There exists a positive constant G such that

$$(\|g(x) - g(y)\|, \alpha \|g(x) - g(y)\|) \le G\Phi(d(x, y)),$$

for every $x, y \in X$.

$$(H_3) \sup_{t \in I} \{G + K^{\alpha}(2b)P\sum_{s=0}^{t-1} p(s)\} = 1.$$

Our main results are given in the following theorem:

Theorem 3.3. Assume that hypotheses $(H_1) - (H_3)$ hold. Then the

evoluation equation (1.1) - (1.2) has a unique solution x on J

Proof: The operator $F: B \rightarrow B$ is defined by

$$Fx(t) = x_0 - g(x) + \sum_{s=0}^{t-1} K^{\alpha}(s-t)A(s)f(s,x(s)), \quad t \in J = [0,b].$$
(3.2)

By using the hypothesis $(H_1) - (H_3)$, we have

$$(\|Fx(t) - Fy(t)\|, \alpha \|Fx(t) - Fy(t)\|)$$

$$\leq \left(\|g(x) - g(y)\| + \sum_{s=0}^{t-1} \|K^{\alpha}(s-t)\| \|A(s)\| \left[\|f(s,x(s)) - f(s,y(s))\| \right], \right.$$

$$\alpha \|g(x) - g(y)\| + \alpha \sum_{s=0}^{t-1} \|K^{\alpha}(s-t)\| \|A(s)\| \left[\|f(s,x(s)) - f(s,y(s))\| \right] \right)$$

$$\leq (\|g(x) - g(y)\|, \alpha \|g(x) - g(y)\|)$$

$$+ \sum_{s=0}^{t-1} K^{\alpha}(2b)P(\|f(s,x(s)) - f(s,y(s))\|, \alpha \|f(s,x(s)) - f(s,y(s))\|)$$

$$\leq G\Phi(\|x-y\|, \alpha \|x-y\|) + \sum_{s=0}^{t-1} K^{\alpha}(2b)Pp(s)\Phi(\|x(s) - y(s)\|, \alpha \|x(s) - y(s)\|)$$

$$\leq G\Phi(\|x-y\|_{\infty}, \alpha \|x-y\|_{\infty}) + \Phi(\|x-y\|_{\infty}, \alpha \|x-y\|_{\infty}) \sum_{s=0}^{t-1} K^{\alpha}(2b)Pp(s)$$

$$\leq G\Phi(d(x,y)) + \Phi(d(x,y)) \sum_{s=0}^{t-1} K^{\alpha}(2b)Pp(s)$$

$$\leq \Phi(d(x,y)) \left\{ G + K^{\alpha}(2b)P \sum_{s=0}^{t-1} p(s) \right\}$$

$$\leq \Phi(d(x,y))$$
(3.3)

for every $x, y \in B$. This implies that $d(Fx, Fy) \le \Phi(d(x, y))$, for every $x, y \in B$. Now an application of Lemma 3.1, the operator has a unique point in B. This means that the equation (1.1)-(1.2) has unique solution.

4. APPLICATION

In this section, we give an example to illustrate the usefulness of our result discussed in previous section. Let us consider the following evolution equation:

$$\Delta x(t) = \frac{140}{16}e^{-t}x(t) + \frac{te^{-t}x(t)}{(9+e^t)(1+x(t))}, \quad t \in J = [0,2], \ x \in X; \quad (4.1)$$

$$x(0) + \frac{x}{8+x} = x_0. {(4.2)}$$

Therefore, we have

$$A(t) = \frac{140}{16}e^{-t}, \ t \in J,$$

$$f(x,x(t)) = \frac{te^{-t}x(t)}{(9+e^t)(1+x(t))}, \ (t,x) \in J \times X,$$

$$g(x) = \frac{x}{8+x}, \ x \in X.$$

Now for $x, y \in C(J, X)$ and $t \in J$, we have

$$\begin{split} (\|f(t,x)-f(t,y)\|, \alpha \|f(t,x)-f(t,y)\|) \\ &= \frac{te^{-t}}{9+e^t} (\|\frac{x(t)}{1+x(t)} - \frac{y(t)}{1+y(t)}\|, \alpha \|\frac{x(t)}{1+x(t)} - \frac{y(t)}{1+y(t)}\|) \\ &= \frac{te^{-t}}{9+e^t} (\|\frac{x(t)-y(t)}{(1+x(t))(1+y(t))}\|, \alpha \|\frac{x(t)-y(t)}{(1+x(t))(1+y(t))}\|) \\ &\leq \frac{te^{-t}}{9+e^t} (\|x(t)-y(t)\|, \alpha \|x(t)-y(t)\|) \\ &\leq \frac{te^{-t}}{9+e^t} (\|x-y\|_{\infty}, \alpha \|x-y\|_{\infty}) \\ &\leq \frac{te^{-t}}{9+e^t} d(x,y) \\ &\leq \frac{t}{10} \Phi(d(x,y)), \end{split}$$

where $p(t) = \frac{t}{10}$, which is continuous function of J into \mathbb{R}^+ and a comparison function Φ : $\mathbb{R}^2 \to \mathbb{R}^2$ such that $\Phi(d(x,y)) = d(x,y)$.

Similarly, we can have

$$\begin{split} (\|g(x) - g(y)\|, \alpha \|g(x) - g(y)\|) \\ &= 8(\frac{\|x - y\|}{(8 + \|x\|)(8 + \|y\|)}, \alpha \frac{\|x - y\|}{(8 + \|x\|)(8 + \|y\|)}) \\ &\leq \frac{8}{64}(\|x - y\|, \alpha \|x - y\|) \\ &\leq \frac{1}{8}(\|x - y\|_{\infty}, \alpha \|x - y\|_{\infty}) \\ &\leq \frac{1}{8}\Phi(d(x, y)), \end{split}$$

where $G = \frac{1}{8}$, and the comparison function Φ defined as above. Hence the condition (H_1) holds with $K = \frac{140}{16}$.

Moreover,

$$\sup_{t \in J} \left\{ G + K \sum_{s=0}^{t-1} p(s) \right\} = \sup_{t \in J} \left\{ \frac{1}{8} + \frac{140}{16} \sum_{s=0}^{t-1} \frac{s}{10} \right\}$$

$$= \sup_{t \in J} \left\{ \frac{1}{8} + \frac{140}{16} \left[\frac{s^2}{20} \right]_0^t \right\}$$

$$= \sup_{t \in J} \left\{ \frac{1}{8} + \frac{140}{16} \left[\frac{t^2}{20} \right] \right\}$$

$$= \sup_{t \in J} \left\{ \frac{1}{8} + \frac{140}{16} \left[\frac{t(t-1)}{20} \right] \right\}$$

$$= \left[\frac{1}{8} + \frac{140}{16} \times \frac{1}{10} \right]$$

$$= \left[\frac{1}{8} + \frac{7}{8} \right] = 1.$$

Since all the conditions of Theorem 3.1 are satisfied, the problem (4.1)-(4.2) has a unique solution x on J.

5. CONCLUSION

In this paper, we studied the existence for inhomogeneous First Order Nonlinear Difference type equation in cone metric space and proved that solution of this result is unique. Moreover we also has given an application of above result.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.

REFERENCES

- [1] M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), 416–420.
- [2] T.A. Burton, Volterra integral and differential equations, Academic Press, New York, 1983.
- [3] K.L. Bondar, Existence and uniqueness of results for first order difference equations, J. Modern Methods Numer. Math. 2 (2011), 16–20.
- [4] K.L. Bondar, Uniqueness results for first order difference equations, Int. J. Appl. Sci. Technol. 4 (2011), 57–62.
- [5] K.L. Bondar, A.B. Jadhao, Local and global existence of solutions for summation equation, Int. J. Pure Appl. Sci. Technol. 13 (2012), 1–5.
- [6] K.L. Bondar, On some summation-difference inequalities, Int. J. Math. Arch. 2 (2011), 1608–1611.
- [7] P.U. Chopade, K.L. Bondar, Existence of solutions to boundary value problem of functional difference equation, Int. J. Math. Anal. 5 (2011), 643–650.

- [8] G.C. Done, K.L. Bondar, P.U. Chopade, Existence and uniqueness results on mixed type summation-difference equations in cone metric space, J. Math. Comput. Sci. 10 (2020), 956–963.
- [9] E.A. Coddington, An introduction to ordinary differential equations, Prentice-Hall of India, Private Limited, New Delhi, (2003).
- [10] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), 1468–1476.
- [11] D. Ilic, V. Rakocevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl. 341 (2008), 876–882.
- [12] A. Karoui, On the existence of continuous solutions of nonlinear integral equations, Appl. Math. Lett. 18 (2005),299–305.
- [13] M.K. Kwong, On Krasnoselskii's cone fixed point theorems, Fixed Point Theory Appl. 2008 (2008), 164537.
- [14] P. Raja, S.M. Vaezpour; Some extensions of Banach's contraction principle in complete cone metric spaces, Fixed Point Theory Appl. 2008 (2008), 768294.
- [15] B.G. Pachpatte, On a nonlinear Volterra integral-functional equation, Funkcialaj Ekvacioj, 16 (1983), 1–9.
- [16] S.G. Deo, V. Lakshmikantham, V. Raghavendra, Text book of ordinary differential equations, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2nd Edition, (2003).
- [17] S.H. Vaezpour, R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal. Appl. 345 (2008), 719–724.