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Abstract. In this paper, the contact problem in integral form, which describes the contact potential force between

two rigid surfaces under certain conditions with respect to pressure and moment, is considered. A numerical

simulation for the solution of the contact problem is presented. The technique depends on the properties of some

orthogonal polynomials. The optimal simulation of potential function and the estimated error are calculated using

Maple programming. Also, the potential function in some special cases are plotted.
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1. INTRODUCTION

The theory of contact problems have closed contacts with many different areas of the math-

ematical sciences. Many of the problems of continuous media, fluid dynamics, viscoelastic-

ity, biology, and medicine represent the important shapes of contact problems; see [1], [2],

[3], [4], [5],and [6]. The solution to these kinds of problems were the larg intested ariea of
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the authors’s extensive research . In [41- [7]] , many different numerical methods are em-

ployed to obtain the solution of the Fredholm integral equation (FIE) with many kinds of ker-

nels [7], [8], [7], [9], [10], [11], [12]

In [7] , Abdou discussed the solution of an integral equation (IE) of the first kind in one, two,

and three dimensions. Abdou in [8] applied the regular and singular asymptotic methods in one,

two, and three dimensions to obtain the solution of IE.

Abdou [7], discussed the spectral relationships that have many important applications in as-

trophysics for the IE of the first kind, when the kernel takes asingulor form. Abdoi and Nasr

in [9] used the Chebyshev polynomial to obtain the solution of IE when the kernal takes a

logarthmi form.

The relation between the contact problem and the integral equation in three dimensions were

obtained by Abdou and Moustafa in [10].Abdou and Salama obtained in [11], the spectral re-

lationships for the IE of the first kind. Bukhari, in [12], solves some problems of IE with a

singular kernel in fluid dynamics by using the Toeplitz matrix and the product Nystrom method.

Alharbi in [13] discussed the solution of an integral equation in two dimensions using spectral

relationships. The numerical solutions of contact problems of integro-differential types with

smooth and singular kernels are discussed in [8].

In this work, the existence of a unique solution of FIE with a potential kernel is proved

by using Banach fixed points on a free surface, which is reduced to a linear system of FIE

that enhances a unique solution under specific certiae condition.Then, the relation between the

integral system and the Jacoby polynomials and Lamma functions equation is used to obtain an

ifinite linear system of algabric. The optimal sumulation of contact problem errors is computed

with a lower error rate.

2. FORMULATION OF THE CONTACT PROBLEM

Consider the FIE of the second kind,

(2.1) φ(x,y) = f (x,y)+λ

∫
Ω

k(x−ξ ,y−η)φ(ξ ,η)dξ dη

under the certain conditions:
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(2.2)

∫
Ω

φ(x,y)dx dy = M∫
Ω

xy φ(x,y)dx dy = N

Figure 1

where, Ω is the domain of integration. The equation (2.1) is investigate from the contact

problem of two rigid surfases having two elastic materials occupying the domain Ω . where

f (x.y) ∈ L2(Ω) and difined as : f (x,y) = f1(x,y)− f2(x,y)− γ describing the two surfaces as

shown in figure (1).

If the upper surface is impressed onto the lower one by a constant force M, causes a rigid

displacement γ = constant. In absene of body forces and when the forces of friction in the

domain of contact between the two surfaes are so small such to be neglected. In equation

(2.1), the unknown function φ(x,y) represent the unknown normal stresses between the two

surfaces. λ is the coefficients bed of the compressible materials that depend on their geometry

and physical properties.

Here:
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(i) k(x−ξ ,y−η) is the kernel of integral equation and satisfies the discontinuouty condition

(Fredholm condition) in the space L2(Ω)(∫∫
Ω

∫∫
Ω

k2(x−ξ ,y−η)dξ dη
)1/2

6 c, c is constant.

(ii) φ(x,y) is the unknown function and satisfies Lipschitz conditions

‖φ(x1,y1)−φ(x2,y2)‖6 ‖(x1,y1)− (x2,y2)‖

(iii) f (x,y) is the given function which called the free term and it is continuous in the space

L2(Ω) and its norm can be defined as:

‖ f (x,y)‖=
(∫

Ω
f 2(x,y)dxdy

)1/2
6 H , H is constant.

3. EXISTENCE A UNIQUE SOLUTION OF THE PROBLEM

Theorem 3.1. The integral equation (2.1) under the conditions (i)-(iii) has a unique solution in

the space L2(Ω) which the constant λ satisfy the condition. |λ |< 1
c

Proof:

To prove the existence of a unique solution of the integral equation (2.1) we must use Banh

fixed point theorem. For this, we write the integral equation (2.1) in the form of integral operator

as:

(3.1) wφ = kφ

where

(3.2) kφ = λ

∫∫
Ω

k(x−ξ ,y−η)φ(ξ ,η)dξ dη

then we prove the normality and continuity of the integral operator (3.1).

(a) For the normality

‖wφ‖ ≤ |λ |
∫∫

Ω

k(x−ξ ,y−η) φ(ξ ,η) dξ dη

By using cauchy-shwarz inequuality we have,

‖wφ‖ ≤ |λ |
∥∥∥∥(∫∫

Ω

|k(x−ξ ,y−η)|2dξ dη

)1/2(∫∫
Ω

φ
2(ξ ,η)dξ dη

)1/2∥∥∥∥
then

‖wφ‖ ≤ |λ | c ‖φ‖
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Therefore, ‖wφ‖≤ β ‖φ‖ , β = |λ | c< 1. Hence, w is a norm operator that lead directly

the normality of equation (2.1) after using condition (ii).

(b) For discussion the continuty of integral operator w we assume the two potential function

φ1(x,y) , φ2(x,y) satisfies equation (2.1) , then

‖w(φ1−φ2)‖ ≤ |λ |
∥∥∥∥∫∫

Ω

k(x−ξ ,y−η)(φ1(ξ ,η)−φ2(ξ ,η))dξ dη

∥∥∥∥
using Cachy-shwarz inequality we have,

‖w(φ1−φ2)‖ ≤ |λ |
∥∥∥∥(∫∫

Ω

|k(x−ξ ,y−η)|2dξ dη

)1/2(∫∫
Ω

|φ1−φ2|2 dξ dη

)1/2∥∥∥∥
by applying the conditions (i)-(ii) to obtain

(3.3) ‖w(φ1−φ2)‖ ≤ β ‖φ1−φ2‖,β is a constant

So, w is a continuous operator then w is a contraction operator when β < 1 and

equation (2.1) has a unique solution.

4. LINEAR INFINITE SYSTEMS

The solution of (2.1) depends on the kernel and the surface fm(u) when the initial and the

tangent points of the surface are in contact with the origin 0 , we can expand fm(u) in Maclaurin

expansion near u0 = 0 as:

(4.1) fm(u)∼= fm(0)+ f
′
(0)u+

f
′′
m(0)
2!

u2 +
f
′′′
m (0)
3!

u3 + . . .+
f n
m(0)
n!

un + . . .=
∞

∑
k=0

f (k)(0)
k!

uk

which gives the degree of displacements of the surface for any degree. In general we write,

(4.2) fm(u) = A2mu2m, A2m =
f (2m)
n (0)

n!
, A2 =

f
′′
m(0)
2!

where m is the order harmonic of the contact problem. Hence the function gm(u) taken the form:

(4.3) gm(u) = (A2mu2m)
√

u

The last equation (4.3) represents a polynomial of degree (2m+1)/2 and the solution of equa-

tion (2.1) depend on the kernel and equation (4.3). so, rewrite equation (4.3) to take the follow-

ing form:
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(4.4) Pm(u)−
∫ a

0
km(u,v)Pm(v)dv = u3m+1/2

The integral equation (4.4) is reduced to

(4.5) Pm(r)−λ

∫ a

0
km(r,ρ) Pm(ρ) ρ dρ = fm(r)

Using the following notation in equation (4.5)

r = au, ρ = av, ψm(r) =
√

r Pm(r), gm(r) =
√

r fm(r)

to obtain,

(4.6) ψm(u)−λ

∫ 1

0
km(u,v)ψm(v) dv = gm(u)

The formula (4.6) has a unique solution under the condition,

(4.7) |λ | ≤ 1[∫ 1
0
∫ 1

0 |km(u,v)|2 du dv
]1/2

To solve equation (4.6), we are write the kernel in the form, see [1,2,3]

(4.8) Km(u,v) =
c√
2
(uv)m+1/2

∞

∑
j=0

Γ2( j+m+1/4) Pm
j (u) Pm

j (v)

Γ2( j+1+m)(2 j+m− (2/u))−1

where

(4.9) Pm
j (u) = P(m−1/u)

j (1−2u2)

Here P(m,n)
j (x) is the Jacobi polynomial. Hence the solution of equation (4.4) with the kernel

(4.8) is equivalent to the solution of the linear system:

(4.10) Xi− c
∞

∑
j=0

Ai Bi j X j = fi

where:

(4.11)

fi = (2i+m+3/u)1/4
∫ 1

0
u3m+3/2 Pm

i (u) du

A j =
1√
2

Γ2( j+m+3/u)(2 j+m+3/u)1/4

Γ2( j+m+1)

and,

Bi j = (2 j+m+3/u)(2i+m+3/u)
∫ 1

0
u2m+1Pm

i (u) Pm
j (u) du
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The infinte linear system (4.10) is solvable under the condition

(4.12)
∞

∑
j=0

(A j Bi j)<
1
c

5. NUMERICAL RESULTS

Application(1) :

In this application, we discuss the solution when m = 0.1,m = 1.1,m = 2.1,m = 3.1, see

figure 2.

x φ(0.1)(x) φ(1.1)(x) φ(2.1)(x) φ(3.1)(x)

0 0 0 0 0

0.1 0.02355491 -0.096040408 -0.460864946 -1.881035834

0.2 0.070945328 -0.061099933 -0.565180665 -2.698056093

0.3 0.133130791 -0.061097864 -0.430057873 -2.744258047

0.4 0.206921072 -0.040800863 -0.143295052 -2.240550375

0.5 0.290466121 0.002424569 0.220891753 -1.368553023

0.6 0.382482701 0.072515562 0.591412264 -0.294248409

0.7 0.481954183 0.175606053 0.887671122 0.805424896

0.8 0.587931387 0.322699522 0.994096396 1.69256361

0.9 0.69918895 0.539817922 0.672136328 1.90069542

1 0.807995006 1.066293998 -2.121792378 -2.444723197



8 F.M. ALHARBI, F.H. OTHIP

Application(2) :

In this application, we discuss the solution when m = 0.5,m = 1.5,m = 2.5,m = 3.5, see

figure 3

x φ(0.5)(x) φ(1.5)(x) φ(2.5)(x) φ(3.5)(x)

0 0 0 0 0

0.1 0.00858467 0.073771508 -1.008563 -2.945441257

0.2 0.035079639 0.199775635 -1.376159412 -4.347537315

0.3 0.070550641 0.341387521 -1.292507933 -4.613037336

0.4 0.111832889 0.472315021 -0.900550453 -4.047855322

0.5 0.156996772 0.568878012 -0.31932275 -2.901067046

0.6 0.204525642 0.605913424 0.340018889 -1.396661216

0.7 0.252905337 0.551329324 0.955512494 0.231858866

0.8 0.300128402 0.354041088 1.35799347 1.678367092

0.9 0.342224623 -0.099306785 1.207197158 2.355537501

1 0.345852459 -1.819072528 -2.36770855 -2.54797181

Application(3):

In this application, we discuss the solution when m =−0.1,m =−0.3,m =−0.5,m =−0.7,

see figure 4.

x φ(−0.1)(x) φ(−0.3)(x) φ(−0.5)(x) φ(−0.7)(x)

0 0 0 0 0

0.1 0.041938292 0.066304542 0.082092951 0.073435514

0.2 0.112826359 0.167229384 0.201934187 0.182395245

0.3 0.203356005 0.293090559 0.349594947 0.317082385

0.4 0.310149922 0.440225021 0.521216074 0.473734201

0.5 0.431251081 0.606469841 0.714477045 0.650093189

0.6 0.565363981 0.790406101 0.927834513 0.844641837

0.7 0.711599772 0.991128371 1.160291874 1.056357294

0.8 0.869409888 1.20826027 1.411425972 1.284692378

0.9 1.03875853 1.442456216 1.681943547 1.529952337

1 1.224828513 1.706619992 1.986024392 1.80210116
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Figure 2

Figure 3

Figure 4
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