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Abstract. We introduce the tensor product of besselian sequences and besselian Schauder frames in tensor product
of separable Banach spaces. We prove that the tensor product of two besselian sequences (resp. besselian Schauder
frames) is a besselian sequence (resp. a besselian Schauder frame) if one of the two sequences is rectangular. On
the other hand we give an example for which the tensor product of two besselain Schauder frames is not besselain
Schauder frame.

Keywords: tensor product; Schauder frames; besselian Schauder frames.

2020 AMS Subject Classification: 47A80.

1. INTRODUCTION

In 1946, Gabor [7] performed a new method for the signal reconstruction from elementary
signals. In 1952, Duffin and Schaeffer [5] developped, in the field of nonharmonic series, a
similar tool and introduced frame theory for Hilbert spaces. A frames for a Banach space was
introduced in (1991) by Grochenig [13]. In light of the works of Cassaza, Han and Larson [17]
(1999), Han and Larson [4] (2000). Cassaza [16] (2008) introduced the notion of Schauder
frame of a given Banach space. In 2021 Karkri and Zoubeir [23] introduced the notion of

besselian Schauder frame of Banach spaces.
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In 1956 Grothendieck [8] Developed in his interesting paper a theory of tensor products on
Banach spaces. Gelbaum and Gil de Lamadrid [3] proved that the tensor product of basis (resp.
unconditional basis) in tensor product of Banach spaces is a basis (resp. is not necessarily
an unconditional basis). The tensor product of frames in tensor product of Hilbert spaces is
introduced by Khosravi and Asgari in 2003 [1].
In this paper, we introduce the notion of tensor product of besselian sequences and besselian
Schauder frames in tensor product of separable Banach spaces. We prove also, that the tensor
product of two besselian sequences (resp. besselian Schauder frames ) is a besselian sequence

(resp. a besselian Schauder frame ) if one of the two sequences is rectangular.

2. MAIN DEFINITIONS AND NOTATIONS

Let X and Y be separable Banach spaces on K € {R,C} and X*, Y* (resp. X™*, Y*) its

topological dual (resp. bidual).

(1) The Banach space X is said to be weakly sequentially complete if for each sequence
(xn)nen+ of X such that nErJrrlwx* (xn) exists for every x* € X*, there exists x € X such
that ngwa* (xn) = x*(x) for every x* € X* [22, page 218, definition 2.5.23] [6, pages
37-38].

(2) We denote by By the closed unit ball of X :

By :={xeX:|x[y <1}

(3) We denote by L (X) the set of all bounded linear operators f : X — X . It is well-known
that L (X) is a Banach space for the norm |||y defined by the formula:

1 llLex) = sup [If (x)]lx

xEBy
(4) We denote by B(X xY) the set of all bounded bilinear forms B: X x Y — K . Tt is

well-known that B(X x Y) is a Banach space for the norm ||-|| gy y) defined by the

formula:

”B||B(X><Y) = sup  [B(x,y)|
(x.y)EBx xBy
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(5) We denote by X ®, Y the linear space of linear functionals on B(X,Y) endowed with

the projective norm 7. That is

X®7Y :=span{x®y: (x,y) eX xY}
where

x®y:B(X,Y) =K

B (x®y)(B) = B(x,y)

and
n n
w(u) =inf{ Y iyl u=Y xj®y,
j=1 j=1

(6) We denote by X @),TY the completion of X @ Y.

(7 If Se L(X) and T € L(Y), we denote by S ®, T the unique bounded operator of
L(X®7Y) such that S®,; T(x®y) = S(x) @ T(y) for every x € X,y € Y [2, page 18,
Proposition 2.3].

(8) If f € X* and g € Y*, we denote by f ®7 g the bounded operator of (X QY )* such that
f@rg(x®y) = f(x)g(y) forevery x e X,y €Y.

(9) A sequence .F = ((X4,¥5)),en+ C X X X* is called a paire of X.

(10) The paire .# of X is called a Schauder frame (resp. unconditional Schauder frame ) of
X if for all x € X, the serie )y (x)x, is convergent (resp. unconditionally convergent)
in X to x.

(11) If .# is a Schauder frame of X, we denote by K & the finite quantity

Kz := sup
x€BEg, neN*

(12) ((x4,¥)) en+ is said to be a besselian paire of X if there exists a constant A > 0 such

n

Zbi (x) ax
k=1

that
Zlyn MY ()l < Allxlg [y x-
for each (x,y*) € X ><X*.

(13) ((xn,¥5)),en- 1s said to be a besselian Schauder frame of X if it is both a Schauder frame

and a besselian paire.
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(14) Let 0 : N* — N* x N* be the bijective mapping defined by:

(61(n),0,(n)) = (k,k), if n=k*
0(n) =< (61(n),0:(n)) = (n—k2k+1), if 2 <n<k*+k+1
(61(n),8,(n)) = (k+1,(k+1)24+1—n), if +k+1<n< (k+1)?

Then the order 0(1),0(2),... is called the square ordiring in N* x N*.
(15) We denote by /!(K) the K-vector space of sequences A := (A,),y- such that A, € K
for each n € N* and Y |4,,| < +oo. It is a classical result that /! (K) is a Banach space

for the norm:
Il = 1K) —RY
~+oo
() pers — Y 12
n=1

(16) We denote by /!(X) the K-vector space of sequences x := (x, ), such that x,, € X for
each n € N* and Y7 [|xn||xy < -+oo. It is a classical result that /! (X) is a Banach space

for the norm:

ey s 1'(X) — RF
o0

(xn)neN* — Z [E15%
n=1

(17) We denote by L; (1,R) the Banach space of equivalence classes of Lebesgue integrable

functions f : [0, 1] — R, with the norm

1
17l = [ 1f1an

(18) A function f : [0,1] — X is said to be p-measurable simple function if there is a par-
tition of [0, 1] into disjoint measurable subsets Ay, ..., A, and distinct nonzero elements

X1, ..., Xp of X such that f(®) = x; if ® € A;. We may then write
n
F=Y xax;j
j=1

(19) Let f = Z?:1 Xa;xj be a -measurable simple function and suppose that each of the set

E; has finite u-measure. The integral of f over a measurable subset A C [0, 1] is defined
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to be
[ fau=Y ua;nan,
=1

(20) A function f : [0,1] — X is said to be p-measurable function if there is a functions
(f)n of w-measurable simple functions that converges almost everywhere to f.
(21) A function f: [0,1] — X is said to be Bochner integrable if there is a functions (), of

u-measurable simple functions that converges almost everywhere to f and satisfing

1
tim_ [ 115~ flld =0

n—r—+oo

The Bochner integral of f over a measurable subset A of [0, 1] is

[ fau= tim_ | pdp

n——+oo JA
(22) We denote by L; (i,X) the Banach space of equivalence classes of Bochner integrable

functions f : [0, 1] — X, with the norm

1
Ry

Remark 1. For a besselian paire % of X, the quantity

Ly:=  sup (Zlyn )V (xn |>

(M,V*)EBX XBX* n=1

is finite and for each (x,y) € X x X*, the following inequality holds

Zlyn Y ()l < Lz [Ixllx 1y [|x-

The quantity L is then called the constant of the besselian paire .F .

For all the material on Banach spaces, Hilbertian frames or tensor product of Banach spaces,

one can refer to [22], [11], [12], [20], [19], [9], [15], [18], [10], [4], [24], [2] and [14].

3. TENSOR PRODUCT OF SCHAUDER FRAMES

Definition 1. Let (Ey,|.||g,) and (Ea,|.||E,) be two Banach spaces over K and F#, =
((an,b}))pens and Fs := ((Xn,¥y))pen+ be Schauder frames of Ey and E, respectively. The
sequence <<a9] (n) ®x92(n)7b21 (n) O ygz(n)>> . is called the tensor product of #| and %,

ne
(in this order) under the square ordering and is denoted by 7| @ F>.
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The sequence <<a91 (n) ®Xg,(n)5 b"él (n) R yzz(n)) ) e is represented as in [2, page 88] by the

following diagram:

(a1 ®x1,b] @z y}) = (a1 ®x2,b] @z y3) (a1 ®x3,b7 @z y3) (a1 ®x4,b] @z y;)
{ { +

(a2 ®x1,05 @ y) + (a2 ®x2,b5 Rz y3) (a2 @x3,b5 @7 y3) (a2 @x4,b5 Rz 1)
1 1

(a3 @x1,05 @7 y}) ¢ (a3 @x2,05 Rz y5) (a3 ®x3,b5 D7 y3) (a3 ®x4,05 Rz ;)
1

(a3 @x3,b5@75) < (aa®x4,b5@7y};)

Thus the square ordering is: (a; ®@x1,b] ®zy}), (a1 ®x2,0]@zy3), (a2 @x2,b5 Rz y5),
(@2 @x1,05@2y1),  (a1©x3,0]@2¥3),  (@@x3,b502y3), (a3 ®x3,05®73),
(a3 ®x2,b5 ®ny§), (a3 ®x1,b5 ®ﬂy’1‘), (a1 ®x4,b7 @7 y}), (a2 @x4,05 @7 Y}3),..

We denote, for each n € N*, by 7,1 and T, the linear mappings T, : E; — E; and

T,> : Ey — E; defined by the formulas:
n
Toi(x) = .Zlb}f(x)aj, x€E;
J:
n
Tha(y) = LY (»)xj, y€E2
J:
For each n € N*, we denote by

0n = ((a1 @ x1,b] @z ¥]), (a1 @x2,b] @7z ¥3) , (a2 @X2,b05 Rz y5) ,...)
= ((aj ®xk’b§ ®7fylt))(j7k)e1n

the intervall of the previous square ordering which consists of the n first comples. It follows
from [2, page 18, Proposition 2.3] that: for each n € N*, the operator 7, : E \@rEry — E1R4E>
defined by:

Toi= Y (bi®a;)®x(y®x)
(jvk)eln

is continuous. As in [2, page 88], we have for each n € N*:
Ty @z Tros if n=Kk
Th = Ti1 @ Trp+ Tn—kz,l Qx (szrl ®7;Xk+1) , if k> <n < K+k+1
Tii11 @ Teyr2— (bjy ) On 1) Ox Ty 12—nos if B +k+1<n< (k+1)?

where k € N*,
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Proposition 1. Let E| and E, be Banach spaces and F := ((an,b})),cn+ and Fp =
((X2,3))pen= be Schauder frames of Ei and E; respectively. Then the paire F| @n F, is a
Schauder frame of E; @nEz.

Proof: Firstly we denote for each n € N by r,, the closest integer to y/n. We subdivide the

proof of the theorem into 4 steps:

(1) Proof that: For each u; € E; and u, € E,, we have for each n € N*:

7 (Tu(w) @uz) = T, 1 (1) @ T, 2(2)) < Kz |t |, (|7, 41 (2)0, 41|

+Kz, |ullg, |07, (un)ar, ||,

Indeed, there exists three cases for n € N*:
(a) If n = k* with k € N*. Then k = /n, that is k = r,, = \/n. It follows that:
ey =7 [(Ti1 ®2 Ti2) (w1 @ uz) = Tt (1) @ Tia ()]

=0

< Kz, i gy 1951 (02)50 1|, + Koy Nty 155, G,

Hence the inequality (1) holds in this case.
(b) If k> < n < k? +k+ 1 with k € N*. Then k = r,. It follows that:
T [h(u Qua) — Ty, 1 (u1) @ Ty, 2(u2)]
7 ([T, ey 90 0 ©5e01)] 1 9]
= HTn—k2,1(“1)HE] | (V1 ®xes1) (MZ)HEZ
= 1Tz ), (ks (w2,

But

n—k?

Y. bi(u)a;
=

HTnka,l(ul)HEl =

E,

<Kz |[uillg,
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It follows that:

T [Tn(ul X uz) — T 1 (ul) & Trmz(uz)]

< Kz, ||lui HE1 Hyz+l(u2>xk+1HE2

< K% ||”1HE1 Hy;(,,—i-l(”ﬁxrﬁ-lHEz +K<g’2 H”ZHEZ “bjn(ul)arn E

Hence the inequality (1) holds in this case.
(c) If K> +k+1<n < (k+1)* with k € N*. In this cas r,, = k+ 1. It follows that:
T [Tn(ur @uz) — T, (1) @ T, (u42)]
=T H(blt+1 ®ary1) ®T(k+1)2—n,2] (1 ®M2)}
= HT(kH)Zn,z(”Z)HE2 HbZH(”l)akH HEI

But

(k+1)2—n
= ;i (u2)x;
j=1

T
H (et 1)2—n2 (12) .

E;

<Kz, |luallg,
It follows that:

T [Tn(ul X uz) — Trn(ul) ® Trn(uz)]

<Kgz, H”2HE2 HbZH(”l)akH HE]

S K@z ||u2HE2 Hbjn(ul)arn E,

<K, lwr ||, |95, 41 (2)xn, 41| g, + Kz, w2l |7, (ur)a, ||,

Hence the inequality (1) holds in this case.
Consequently, the inequality (1) holds for each n € N*, u; € E| and u; € E».
(2) Proof that the following relation holds in (E| ®y E;, ) for every u € E| @z E»:

lim T,(u) =u

n—y oo
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Indeed, for each u € E| ®5 E,, there exists N € N* and u,...,uy in E, vi,...,vy in E»

such that

N
u= Zvj®wj
J=1

Hence we have for each n € N*:

,|\.|1
M=

E[Tn(u)—u] (Tn(Vj®Wj)—Vj®Wj)

~.
Il
—_

T [Tn (Vj@Wj) —vj®wj}

IN
™=

~.
I
—_

T[T (viow)) =T, 1(v) @ T, 2(w))]

IN
M=

~.
Il
_

T [Trn,l("j) ® Trn,Z(Wj) —V;j ®wj]

_|_
M=

~.
Il

IN
™=

Kz ijHEl ‘yjn+1<wj)xrn+ll|E2

~.
I
—_

+
M=

sz HW]HE2 | bjn(vj>Xrn E;

.
I
-

T [(T1(vj) =vj) @ T, 2(wj) +v; @ (T, 2(w)) —wj)]

_|_
M=

.
I
—_

IN
M=

3 9l 05 o,
=
N

+ ZK% HWJ'HEZ | by, (vj)xr, E

1

.
Il

o (wj) = wi|l )

(!

But we have, for eachn € N* and j € {1,...,N}:

Trn,Z(Wj)HEz + ijHEl ’

+
M=

Trn,l<vj) - VJ)HEI ‘

.
Il
R

1T2 00|, < K [lwi s,
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It follows that:

717 —u

F1 HV-]HEI | yrn"‘l(w-] Xr+1 HE2

E,

(K2 9l 15 0 = vl g, 113l g, | T 200) = w3 )

N
<Yk
x
2 bl )
N
L

But we know that:

lim r, = +oo

n—y—+oo
nl—l;Tm‘yjn(wj)xrn Ezznl—lj—ﬁr—loo”b V/)ar" E; =0
nl_lﬁ_lm’ Trml(vj) _ijEl :nl—l>’:'0—1°°||Tr 2 Wj) WjHE2 =0

where j € {1,...,N}. Consequently, we have

lim w[T,(u) —u] =0, u € E;®@zE;

n—r+oo

(3) Proof that the following inequality holds for each n € N* and u € E| ® E>:
@) 7 [T (u)] < 9K 5, K., 7(u)

Indeed, let u € E| @7 E> and let;

N
u= Zvj®nwj, viEE,sw; € Ep
Jj=1

be an arbitrary representation of u. We have then for each n € N* thanks to the compu-

tation of stap 2:
7 [Tn(u)] < 7(u) + 70 [T (u) — u]

But we have

.

yjn+1(wj)xrn+l HE2 <2Kgz, HWJ'HE2
biﬁl("j)arﬁlHEl <2Kg, HVJ'HEl

il (V) = )| g, < 2K, |||,

n2W) = willlp, < 2K7 Kz, |[wil

\
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It follows that

N
7 [Tu(w)] < m(u) +8K 7Kz, ) [[vill g, [will,
j=1

Taking the infinum over all the possibel representations of # we obtain that:
7T, )] < () + 8K 5, K 7,0(u)

(4) Letu € E\®7E and (&) men: C E1 @5 Ea such that lim &, = u. For each n € N* and

m——+oo
m € N* we have:

7 (1o () —u] < [T () = To(Gm)] + T [T0(Gm) — Em] + 7 [Em — u]
< 7 [Tn(u = Gm)] + T [T1(Gm) — &) + T[S — u]
< 10K 7 K 7,7 [Gn — u] + 7 [Tn(&m) — G
It follows that:

lim (T, (u) —u) < 10Kz Kz, 7 (& — u]

n—r+oo
Hence

lim [T, (u) —u] =0,

n—y—4-oo

that is,

lim w[T,(u) —u] =0.

n—4oo

Consequently, .7 ®x %, is a Schauder frame of E | BrE>.

4. TENSOR PRODUCT OF BESSELIAN PAIRES

Definition 2. Let S := (yn),cn+ be a sequence of vectors of a Banach space (E, ||.||g). We say
that S is a rectangular sequence of E if there exists a constant C > 0 such that the following

condition holds for each n € N* and (@, ..., o) € K":

j=n j=n
3) ZI\O‘J'\HYJHESC Z,lajyj
Jj= j=

E

Example 1. It is clear that the sequence (e,) e+ of vectors of 1' (K) defined by ey, := (8 ) men

is a rectangular sequence of I' (K).
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Proposition 2. Let (Ey,||.||r,) and (Ea,|.||g,) be Banach spaces over K and F#, =
((an,b})) pen and Fy = ((Xn,¥5)) pen- be besselian sequences of Ey and E; respectively. We
assume that one of the sequence S| = (ap)nen+ 0 S = (Xp)nen+ is a rectangular sequence in its
ambiant Banach space. Then <<a9] (n) ®x92(n),bzl (n) @ y”éz (n)>>n€N* is a besselian sequence
of E\QEx.

Proof: To make our reasoning clear, we assume that S5 is such a rectangular sequence. Let
B be a continuous linear form on E{&E,. Then, accorging to [2, page 22, Theorem 2.9], there

exists a continuous bilinear form B : £y x E» — K such that:

~

(1) B()C@y) :B(xvy)a erhy EEZ

(2) *(B) = HEHB(EMEZ)

For each x € Ey,y € E», the mapping:
B(.y): E — K

z — B(z,y)

is a continuous linear mapping on E;. It follows that:

—+oo

)}

n=1

~

by(0)B(an)| < L, |,

lN?(w)‘ .

Hence, we obtain that:

~+o0

4 b (x)B(ap, ’<$, §H

@ X [picoBtan )| < L el ol [B] o

So we can write, by means of (4)
o0 +o0 +oo +oo ~
Y Y 16 @ay) (@] 1B @ @) < ¥ Y B30 0B (anx)
n=1m=1 n=1m=1

+oo +oo -
< Y 0| X 1530 |B(an.)
m=1 n=1

+oo ~
< 5 1509125 o,
< ¥ 0500125, e, Lol B,

o0

Y O Hxmll g,

< Zz |Ixllg, BHB(E1><EZ) 1
"
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But S = (x,)men+ 18 a rectangular sequence in E», hence there exists a constant C(S;) > 0 such

that:
—+o0 —+o0

®) Y Y l(bp@zyy) (x@y)| B (an @x)| < L7,C(82) x| g, ¥z, 7* (B)
n=1lm=1

~ too ~
Now let u € E\®zE>, u= Y, u; ® v be an arbitrary tensor of £ ®7E>. Using the ineqality (5)
1

n—=

we have:
+o0 oo +o0 Ho0 oo
Y Y (B @ayy) @[Blan®@xa) < Y Y Y (B @z ) ((uj©v;)) | 1B (an @ xm)]
n=1lm=1 Jj=ln=1m=1

~+oo
<7 B)LACE)L [wlle, [Ville,
=
—+oo
Y uj®@vj of u, we

Taking the infimum of J)r:m || £, vl g, over all the representation u =
=1 j=1

obtain the following inequality

oo o0
Y Y (B @x ) (W)l 1B (an @xm)| < Lz, C(S2)w(u)m" (B)

n=1m=1

O

Corollary 1. Let E be a Banach space with a besselian Schauder frame. Then the Banach

space ' (E) has a besselian Schauder frame.

Proof:

(1) Firstly we prove that the paire ((e,,e})),cn- (Where ey, (e,) = Oy for each m and n in
N*) is a besselian Schauder frame of the Banach space [!(K) [23]. indeed, let y* €
(1! (K))* and x = (x,),cy- € I (K). We have:

Furthermore we have :
oo +oo
* * *
Y len I (el < X bl I ey el

< [lellr ey 15 1 iy y*

It follows that ((ey,€};)),cy is a besselian Schauder frame of /! (K).
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(2) Since (ey),cy- is rectangular sequence in /!(K), it follows thanks to the propositions
(1) and (2) that the Banach space ! (K)@)ﬂE has a besselian Schauder frame. But we

know, according to [2, page 20] that there exists an isometric isomorphism
J: INK)&,E — [(E)

It follows that the Banach space /! (E) has a besselian Schauder frame.

0

Example 2. Let X be a separable Banach space with a Schauder frame ((x,,y3)),en- The

Banach space Ly (1, X) has a Schauder frame.

Proof. We known that L; (1, R) has a Schauder basis [22, page 359, Example 4.1.27]. Then
L; (1, R) has a Schauder frame ((an,b},)),cn-- The proposition (1) implies that the sequence
<<a91 (n) ®x92(n),bgl ) ®,ry};2(n)>> N is a Schauder frame of L; (t,R) ®,;X. According to

neN*

[2, page 29], there is an isometry
J:Li(14,R)®7X — Ly (u,X)

such that J(f ® x)(®) = f(w)x, foreach f € L; (u,R) and x € X.

* * —1 .
Then ((J (ae1 (n) ®x92(,,)) , <b91 (n) ®ﬂy92(n)> oJ >)n€N* is a Schauder frame of L; (i, X). In-
deed, let f € L; (1,X) then there exists u € L; (i, R) ®.X such that f = J(u)

+oo
f=J (Z <b21(n) ®7ryzz(n)> (u) ag, (n) ®X(P2(”)>

n=1

oo

o

(88,0 @ 58,0) () (a0,01) @0, 00)

3
I
—_

+

oo

(bzl (n) ®”y22(’1)> o/ (f)J (ael (n) ®x92(n))

3
Il

Lemma 1. [23] We assume that E is a weakly sequentially complete Banach space and that
F = ((an,b},)) pen+ s a besselian paire of E. Then for each x € E, the series Y. by (x)ay is

unconditionally convergent in E.
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Proof. For each x € E, y* € E* we have:

o0 il
Y Iy (B () an) =Y by (x)y* (an)|
n=1 k=1

< Zg |Ix[lg 1yl -

< oo

Hence the series Y b} (x)a, is weakly unconditionally convergent. Then, since E is weakly
sequentially complete, the well-known Orlicz’s theorem (1929) [20, Proposition.4 ,page 59 and

page 66], entails that the series Y b (x) a, is unconditionally convergent. []

Proposition 3.
Let X and Y be Banach spaces such that X is weakly sequentially complete. If % =

((An,BE)) en- is a besselian Schauder frame of X®@zY then, X has a besselian Schauder frame.

Proof. Let (x,y) €X x Y, f € X* and g € Y* such that g(y) = 1. We have x®y € X®,Y and
forg€ (X®.Y)".

(1) Assume that ((A,, B})),cn iS @ besselian paire of X®7Y. Then

Joo
Y 1B (x| ©)(An)| < Zrm(x3) | f D8l o,

n=1

< Zz |Ixlix Iylly [1£1lx- llglly-

Let n € N*. According to [2, page 21] there exists sequences (x7 ), in X and (7)o

in Y such that

oo w
A, = Zx?@)y? and Z 7 I 17 ]y < oo
~ i=1

1=
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consequently, we have
+o0
fog(An) =) f(&)g0))
i=1
+o0
=Y f(gNA})
i=1

+oo
=f (Zg(y?)X?>
=1

= f(an)
i

where a, = ;l g(y?)x?. Finally, if b}, is the linear form B;(.,y) on X then

1

~+oo +o0
Zl B £ (@) = Y 1B x @) |(f @2 8)(An)]

n=1

< (Zz Iylly llglly) [l 11

That is, ((an,b;)),cn- is @ besselian paire of X.
(2) Assume that ((A,,B;)),cn iS @ Schauder frame of X®zY. Since ((an,b})),cn- i a
besselian paire of X then accorging to the lemma 1, the series Y b (x)a, is uncondition-

ally convergent in X. Consequently we have

=fRr8(x®Yy)

=f®ng (E',OBZ(My)An)

n=1
~+oo
= BZ(x@y)f@,rg(An)

n=1

- gbZ(X)f(an)

~+oo
=f < ;b}i (x)an>

That is, ((an,b;)),cn+ is @ Schauder frame of X.



TENSOR PRODUCT OF SCHAUDER FRAMES AND BESSELIAN SCHAUDER FRAMES 17

0

Proposition 4. Let ((an,b},)),cn- (resp. ((xn,Y5))pen+) @ besselian Schauder frame of a Banach
space X (resp. of a Banach space Y). The sequence #| Qr %, is not necessarily a besselian

Schauder frame of X@yY.

Example 3. Let F = ((en,uy)),en+ be the standard orthonormal basis for I(K). 7 is
a besselian Schauder frame of 1,(K) but .7 ®p F is not a besselian Schauder frame of

L(K)®1zh (K).

Proof. Thanks to Q. Bu and J. Diestel [21] the Banach space lg(K)@nlz(K) is weakly se-
quentially complete. Assume that .7 @ .7 is a besselian Schauder frame of I (K)® /5 (K). Ac-
cording to lemma 1, .7 ®.% is a besselian unconditionally Schauder frame of I, (K)&/ (K).

which would contradict the fact that the basis .# @z .# is not unconditionally [2, page 90].
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