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Abstract. In this study, Legendre and Chebychev collocation method are presented to solve numerically

the Fredholm Integral Equations with Abel kernel. This method is based on replacement of the unknown

function by truncated series of well known Legendre and Chebychev expansion of functions. This lead to

a system of algebraic equations with Legendre and Chebychev coefficients. Thus, by solving the matrix

equation, Legendre and Chebychev coefficients are obtained. Some numerical examples are included to

demonstrate the validity and applicability of the proposed technique.
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1. Introduction

An integral equation is an equation in which an unknown function appears within an

integral, just as a differential equation is an equation in which an unknown function

appears within a derivative. Just as the solution to a differential equation is a function,

so too is the solution to an integral equation a function.
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This paper look for the Fredholm integral equation of the second kind with the Abel

kernel:

(1) ψ(x)− λ
∫ 1

−1
|x− y|−αψ(y)dy = f(x), −1 ≤ x ≤ 1

with α ∈]0, 1[. The elements K(x, y) = |x − y|−α is the Abel kernel. The kernel is

unbounded at x = y, so we have a weak singularity.

Every integral equation has a kernel. Kernels are important because they are at the

heart of the solution to integral equations. There are many methods used to solve the

Fredholm integral equation. In [2], the authors solve a Volterra Integral Equations using

Laguerre Polynomials. The Volterra equations has been solved by many numerically

methods. In [3, 4] the authors used Bernstein polynomials in approximation techniques

and in [5] the author solved the probleme by Block-Pulse functions and Taylor expansion.

Let us recall, that the Lagrange and Chebychev interpolation polynomial plays an

important role in functional approximation and in many numerical methods, such as

numerical integration, numerical solutions for differential equations, and so on. We know

that the Lagrange interpolation polynomial does not converge to arbitrary continuous

function f uniformly. An example for which the Lagrange interpolation does not converge

is provided by f(x) = |x| in the interval [−1, 1], for which equidistant interpolation

diverges for 0 < |x| < 1 as has been proved by Bernstein. In 1930’s, Bernstein gives some

methods for improving the uniform convergence of the known Lagrange interpolation

polynomial, see [1]. Thereafter, many works based on these methods are presented, see

for example [6, 7, 8, 9, 10, 11, 12, 13, 14].

Here, we will give an approximate method for solving (1) using Legendre and Cheby-

chev polynomials. We will consider a polynomial approximation problem of finding a

polynomial close to a given (true) function ψ and have the freedom to pick up the target

points {x0, x1, . . . , xN}. we will think about how to choose the target points for better

approximation, rather than taking equidistant points along the x-axis. Noting that the

error tends to get bigger in the parts close to both ends of the interval when we chose the
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equidistant target points, it may be helpful to set the target points denser in the parts

close to both ends than in the middle part.

2. Legendre Methods

2.1. Fundamental

Orthogonal polynomials are widely used in applications in mathematics, mathematical

physics, engineering and computer science. One of the most common set of orthogo-

nal polynomials is the Legendre polynomials. The Legendre polynomials Pn satisfy the

recurrence formula:

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), n ∈ N∗

P0(x) = 1,

P1(x) = x(2)

An important property of the Legendre polynomials is that they are orthogonal with

respect to the L2 inner product on the interval [−1, 1]:∫ 1

−1
Pm(x)Pn(x) dx =

2

2n+ 1
δmn

where δnm denotes the Kronecker delta.

2.2. Approximate solution

We choose xk, k ∈ [[0, n]] the zeros of the Legendre polynomial of degree equal n + 1,

Pn+1. We determine a suitable interpolating elements φj(x), j = 0, 1, . . . , n, such that

(3) ψn(x) =
n∑
j=0

φj(x)ψ(xj)

is the unique interpolating polynomial of degree n, which interpolates ψ at the points

xi, i = 0, 1, . . . , n.

The elements φj(x), j = 0, 1, . . . , n are called the basic functions associated with the

Legendre interpolation polynomial and they satisfy φj(xi) = δij.
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Then we get an approximation of the exactly integral, let say:

(4) In(ψ) =

∫ 1

−1
K(x, y)ψn(y)dy

This type of approximation must be chosen so that the integral (4) can be evaluated

(either explicitly or by an efficient numerical technique).

The functions P0(x), P1(x), . . . , Pn(x) will be called interpolating elements. In this dis-

sertation, the interpolating function ψn will be assumed to be the interpolating polynomial

(5) ψn(x) =
n∑
j=0

βjPj(x)

where Pj are Legendre polynomials of degree j, n is the number of Legendre polyno-

mials, and βj are unknown parameters, to be determined.

The coefficients βj are obtained by multiplying both sides of Eq. (5) by Pm,m ≤ n

(as weight functions), and integrating the resulting equation with respect to x over the

interval [−1, 1] to obtain

∫ 1

−1
Pm(x)ψn(x)dx =

n∑
j=0

βj

∫ 1

−1
Pm(x)Pj(x)dx = βm

2

2m+ 1

Therefore,

(6) βm =
2m+ 1

2

∫ 1

−1
Pm(x)ψn(x)dx

Here the integrand Pmψn is a polynomial of degree n+m ≤ 2n then its integration in

(6) can exactly be obtained from just n + 1 point Gauss-Legendre method, by using the

following formula

(7) βm =
2m+ 1

2

n∑
j=0

wjPm(xj)ψ(xj)

where wj, j = 0, . . . , n are the (n+ 1)-point Gauss-Legendre weights.

The n+ 1 grid points (xi ) of Gauss Legendre integration in formula (7) giving us the

exact integral of an integrand polynomial of degree n +m ≤ 2n can be obtained as the
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zeros of the n+1-th-degree Legendre polynomial. Then, given the n+1 grid point xi, we

can get the corresponding weight wi of the i point Gauss Legendre integration formula

by solving the system of linear equations. Now, the interpolating polynomial ψn can be

written as:

ψn(x) =
n∑

m=0

(2m+ 1

2

n∑
j=0

wjPm(xj)ψ(xj)
)
Pm(x)

=
n∑
j=0

(
wj

n∑
m=0

2m+ 1

2
Pm(xj)Pm(x)

)
ψ(xj)(8)

Using (3) and (8) we get

(9) φj(x) = wj

n∑
m=0

2m+ 1

2
Pm(xj)Pm(x), j = 0, . . . , n

Substituting ψn into Eq. (1) and collocating at the points xi, we obtain:

(10) ψ(xi)− λ
n∑
j=0

ψ(xj)

∫ 1

−1
K(xi, y)φj(y)dy = f(xi), i = 0, . . . , n

2.3. Matrix Form

To simplify the presentation let us define

(11) ai,j =

∫ 1

−1
K(xi, y)φj(y)dy

Then a (n+ 1)× (n+ 1) linear system is obtained:

(12) (Id− λA)ψ = F

whereA = (ai,j)(i,j)∈[[0,n]]2 is square matrix, ψ = (ψ(x0), . . . , ψ(xn))
T and F = (f(x0), . . . , f(xn))

T ,

capital T indicate the transpose. Obviously, the system (12) has a unique solution if the

determinant of the matrix Id− λA is nonzero, which also depends on the choice of collo-

cation point.

Substituting (9) into (11) we obtain
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ai,j = wj

n∑
k=0

2k + 1

2
Pk(xj)uk(xi)

where uk(xi), (i, k) ∈ [[0, n]]2 are defined

uk(xi) =

∫ 1

−1
|xi − y|−αPk(y)dy

The constants uk(xi), (i, k) ∈ [[0, n]]2, can be evaluated from the recurrence relation:

(k + 3− α)uk+2(xi) = (2k + 3)xiuk+1(xi)− (k + α)uk(xi), k = 0, . . . , n

with the starting values for this recurrence relation are:

u0(xi) =
1

1− α

(
(1− xi)1−α + (1 + xi)

1−α
)

(13)

u1(xi) = xiu0(xi) +
1

2− α

(
(1− xi)2−α + (1 + xi)

2−α
)

(14)

3. Chebyshev Methods

Like Legendre Methods, we will use here the Chebyshev polynomials Tn of the first

kind given by the formula

(15) Tn(x) = cos(n arccos(x)),∀x ∈ [−1, 1]

Explicit algebraic expressions for Tn are obtained from the recurrence

T0(x) = 1

T1(x) = x

Tn+2(x) = 2xTn+1(x)− Tn(x), n ∈ N∗, x ∈ [−1, 1]

The polynomial Tn+1 has n + 1 zeros in the interval [−1; 1], which are located at the

points
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(16) xk = cos(
2k + 1

2n+ 2
π), k ∈ [[0, n]]

The Chebyshev polynomials of the first kind of degree n, Tn, satisfy discrete orthogo-

nality relationships on the grid of the (n + 1) zeros of Tn+1(which are referred to as the

Chebyshev nodes):

(17)
N∑
k=0

Ti(xk)Tj(xk) =


0 : i 6= j

N + 1 : i = j = 0

N+1
2

: i = j 6= 0

For an arbitrary interval [a, b], we can find a mapping that transform [a, b] into [−1,+1]:

yk =
b− a
2

xk +
a+ b

2
=
b− a
2

cos(
2k + 1

2n+ 2
π) +

a+ b

2
, k ∈ [[0, n]]

and the Chebyshev nodes defined by Eq (16) are actually zeros of this Chebyshev poly-

nomial.

Based on the discrete orthogonality relationships of the Chebyshev polynomials, various

methods of solving linear and nonlinear ordinary differential equations [16] and integral

differential equations [17] were devised at about the same time and were found to have

considerable advantage over finite-differences methods. Since then, these methods have

become standard [15]. They rely on expanding out the unknown function in a large series

of Chebyshev polynomials, truncating this series, substituting the approximation in the

actual equation, and determining equations for the coefficients. In our approach we follow

closely the procedures like Legendre Method. Let us say, that similar procedures can be

applied for a second grid given by the extremas of Tn as nodes.

It is important to stress that our goal is not to approximate a function f on the interval

[−1; 1], but rather to approximate the values of the function f corresponding to a given

discrete set of points like those given in equation (16).
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Here, let (T0, T1, T2, . . . , Tn) the interpolating elements. The equation (5) becomes

(18) ψn(x) =
n∑
j=0

′

βjTj(x)

where the prime indicates that the first term is to be halved (which is convenient for

obtaining a simple formula for all the coefficients βj). The function ψn interpolates ψ at

the n + 1 Chebyshev nodes, we have at these nodes ψ(xk) = ψn(xk). Hence, using the

discrete orthogonality relation (17) we get

(19) βj =
2

n+ 1

n∑
k=0

ψ(xk)Tj(xk), j = 0, 1, . . . , n

Now, we get

ψn(x) =
n∑
j=0

′

βjTj(x)

=
n∑
j=0

′

2

n+ 1

n∑
k=0

ψ(xk)Tj(xk)Tj(x)

=
n∑
k=0

2

n+ 1

( n∑
j=0

′

Tj(xk)Tj(x)
)
ψ(xk)(20)

Using (3) and (20) we get:

φk(x) =
2

n+ 1

n∑
j=0

′

Tj(xk)Tj(x)(21)

Now,the same system like (12) is obtained with

aij =
2

n+ 1

n∑
j=0

′

vk(xi)Tk(xj)

where vk(xi), (i, k) ∈ [[0, n]]2 are defined

vk(xi) =

∫ 1

−1
|xi − y|−αTk(y)dy

The constants vk(xi), (i, k) ∈ [[0, n]]2, can be evaluated from the recurrence relation:

(
1+

1− α
m+ 1

)
vm+1(xi)−2xivm(xi)+(1− 1− α

m− 1
)vm−1(xi) =

2

1−m2

(
(1−xi)1−α−(−1)m(1+xi)1−α

)



FREDHOLM INTEGRAL EQUATIONS WITH ABEL KERNEL 663

with the starting values for this recurrence relation are:

v0(xi) =
1

1− α

(
(1− xi)1−α + (1 + xi)

1−α
)

(22)

v1(xi) = xiu0(xi) +
1

2− α

(
(1− xi)2−α − (1 + xi)

2−α
)

(23)

v2(xi) = 4xv1(xi)− (2x2i + 1)v0(xi) +
2

3− α

(
(1− xi)3−α + (1 + xi)

3−α
)

(24)

4. Numerical Implementation

In this section, to achieve the validity, the accuracy and support our theoretical dis-

cussion of the proposed method, we give some computational results. The computations,

associated with the example, are performed by MATLAB 7. Consider the weakly singular

Fredholm Integral equation of second kind with:

Example 1. f(x) = x2 − 1
π

(
w1 + w2)

where

w1 =
1

1− α
x2(1 + x)1−α − 2

2− α
x(1 + x)2−α +

1

3− α
(1 + x)3−α

w2 =
1

1− α
x2(1− x)1−α + 2

2− α
x(1− x)2−α + 1

3− α
(1− x)3−α

λ = 1
π
and α ∈]0, 1[ then the exact solution is ψ(x) = x2.

In our computation we will take α = 1
2
. The Figure 1 shows the exact and approxi-

mate solutions using Legendre polynomials with n = 50. We notice that the approximate

solutions coincide with the exact solutions even a few of the polynomials are used in the

approximation which are shown.

The error is defined as the difference between the exact solution and approximate so-

lution. The plot of log10 ||Error||∞ with respect to n (see Figure. 2) shows that using

Legendre or Chebychev polynomials with n = 2 is necessary in order to reach ||Error||∞ ≤
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10−15. This means that the infinity norm of the error decrease until n ' 2 and it reaches

the threshold of machine precision. It can also be seen that increasing the number of the

Legendre or Chebychev nodes or, equivalently, increasing the degree of Legendre or Cheby-

chev polynomials makes a substantial contribution towards reducing the approximation

error.

Example 2. f(x) = x3 − 2
π

(
c1 + c2)

where

c1 = x3(1 + x)1/2 − x2(1 + x)3/2 +
3

5
x(1 + x)5/2 − 1

7
(1 + x)7/2

c2 = x3(1− x)1/2 + x2(1− x)3/2 + 3

5
x(1− x)5/2 + 1

7
(1− x)7/2

then the exact solution is ψ(x) = x3.

Here, we take α = 1
2
. The Figure 3 shows the exact and approximate solutions using

Legendre polynomials with n = 50. We notice that the approximate solutions coincide with

the exact solutions even a few of the polynomials are used in the approximation which are

shown.

The error is defined as the difference between the exact solution and approximate so-

lution. The plot of log10 ||Error||∞ with respect to n (see Figure. 4) shows that us-

ing Legendre and Chebychev polynomials with n = 10 is necessary in order to reach

||Error||∞ ≤ 10−15.
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Figure 1. Case ψ(x) =

x2. Exact and approxi-

mate solution with n =

50.
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Figure 2. Case ψ(x) =

x2. Infinity Norm of the

Error for n ∈ [[1, 100]].
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Figure 3. Case ψ(x) =

x3. Exact and approxi-

mate solution with n =

50.
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Figure 4. Case ψ(x) =

x3. Infinity Norm of the

Error for n ∈ [[1, 100]].
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6. Conlusion

• The Legendre and Chebychev polynomials basis has been developed to solve sin-

gular Fredholm integral equations.

• Numerical results have been obtained with great accuracy.

• This method may be applied to solve Volterra Fredholm integral equations with

singular Kernels and a nonlinear Volterra integral equation.

• Other type of singular Kernels can be investigate using the same method.

• Don’t take a big n: as the size of the matrix grows, the round-off errors are apt

to accumulate and propagated in matrix operations.
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