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Abstract. The study of conformal bi-slant submersions from cosymplectic manifolds onto Riemannian manifold
are the subject of this article. We deal with the integrability of slant and anti-invariant distributions and investigate
each distribution’s totally geodesicness condition as well. Additionally, we identify the conditions for the maps to
be totally geodesic. There are also some decomposition theorems for total space and fibers addressed.
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1. INTRODUCTION

The concept of Riemannian submersion is an anlogue of isometric immersion which was
initially proposed by B. O’Neill [21] and also researched over same time period by A. Gray
[12]. Later, in 1976, B. Watson [30], considered the submersion between almost Hermitian
manifolds and called it, “Almost Hermitian submersions”. Riemannian submersions have sev-
eral uses in both mathematics and physics including in super gravity and superstring theories
([16], [20]), Yang-Mills theory ([6], [31]), Kaluza-Klein theory ([17], [20]). While exploring
the Riemannian manifold with differentiable structure, Riemannian submersions are powerful
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tool in differential geometry. B. Sahin, in [24], presented the idea of anti-invariant Riemannian
submersions from almost Hermitian manifold onto a Riemannian manifold. He studied fibres,
base space and total space with differential geometric point of view. Later, several other kind of
Riemannain submersions such as semi-invariant submersion [25], semi-slant submersions [23]
and generic Riemannian submersions[5] etc. are defined. For the detailed study of Riemannian
submersions and its applications, readers may through [27], where B. sahin has presented a col-
lective study of different kind of Riemannian submersions. Furthermore, the notion of almost
contact Riemannian submersions from almost contact manifold was introduced by D. Chinea in
[7].

As a generalization of Riemannain submersion, B. Fuglede [11] and T. Ishihara [18] sepa-
rately studied horizontally conformal submersions. Number of scholars later explored several
new types of conformal Riemannian submersion from almost Hermitian as well as from con-
tact metric manifold onto a Riemannian manifold such as conformal anti-invariant submersions
([1], [24]), conformal slant submersions ([4], [14]), Conformal semi-slant submersions ([3],
[13]) and conformal hemi-slant submersions [19] etc.

As a generalization of conformal semi-slant submersion [3] and conformal hemi-slant sub-
mersion [19], in this paper, we investigate conformal bi-slant submersion from a cosymplectic
manifold onto a Riemannian manifold. The paper has the following structure: Section 2
presents the fundamental information and definitions of conformal Riemannian submersion
and contact metric manifolds, particularly cosymplectic manifolds with properties relevant to
this paper. In section 3, we define the conformal bi-slant submersion and obtain some basic
results. Section 4 contains the main research findings of this paper such as the condition of
integrability and totally geodesicness of the distributions. Decomposition theorems for the

fibres as well as for the total manifolds are covered in section 5.

Note: We will use abbreviation CBSS- conformal bi-slant submersion, throughout the paper.
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2. PRELIMINARIES

A (2n+ 1)-dimensional manifold M which having an almost contact structures (¢,&, 1),

where a (1, 1) tensor field ¢, a vector field & and a 1-form 1 satisfying

(1) ¢*=—-I+nN®E $E=0,1M00=0,N(&) =

where [ is the identity tensor. If N@®dn ® & = 0, with Nijenhuis tensor N related to ¢ then

almost contact structure turns into normal. There is also a Riemannian metric g which holds

2) g(QU,¢V) = g(U,V)—n(U)n(V),n(U) =g(U,3).

Then (¢, &, n, g)-structure is called an almost contact metric structure. An almost contact metric

manifold with almost contact structure (¢,&,7,g) is called a cosymplectic manifold if

3) (Vuo)V =

where V is the Levi-Civita connection of g. From above formula, we have for cosymplectic

manifold
4) Vyé =0.

The covariant derivative of ¢ defined as

5) (Vu)V = VgV — 9V V.
Example 2.1. Consider R***! with Cartesian coordinates (x;,y;,z) (i = 1,...,n) and its usual
contact form

n =dz.

The characteristic vector field & is given by a% and its Riemannian metric g and tensor field ¢

are given by

0 & 0
g= Z(dxl dyl))+(dz)2, ¢=1] -& 0 0 [, i=1....n
i=1
0 0 O

It can easily be seen that the structure (¢,&,1,g) defines a cosymplectic structure on R*"1,
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Now, we provide a definition for conformal submersion and discuss some useful results that

provide background for our discussion.

Definition 2.2. A smooth map ¢ from (M, gy) onto (N, gy) where M and N are Riemannian
manifolds with m; and m; be the dimensions of manifolds respectively, is called horizontally

weakly conformal or semi-conformal at p € M if, either

(i) ¢, =00r

(i) @, is surjective and there always have a number Q(p) # 0 satisfying

gN((P*pU, (p*pv) = Q(p)gM(U7 V)7

for any U,V € ['(ker¢.)".

In this case, we label a point p satisfying type (i) as a critical point and rank of ¢, pis 0 at
this point and type (ii) as a regular point at which the rank of ¢, p 18 my. Also, the number Q(p)
is called the square dilation. Its square root A(p) = 1/Q(p) is called the dilation. If the map
¢ is horizontally weakly conformal at each point on M, it is referred to as horizontally weakly
or semi-conformal on M. If ¢ has no critical point, it is said to be a (horizontally) conformal
submersion.

Let ¢ : M — N be a submersion. A vector field X on M is called a basic vector field if

X € T'(ker ¢,)* and @-related with a vector field X on N i.e ¢.(X(q)) = X¢(q) for g € M.

The given formulae provide (1,2) tensor fields .7 and .o/ are

(6) T (Er\,Ey) = TgEo = HVyp, VE, +VVyp, HE,,

@) JZf(EhEz) = JZfElEz = ,VV%EI%EZ +%V%E1 VE,,

for any E|,E, € T'(TM).
Note that a Riemannian submersion ¢ : M — N has totally geodesic fibers if and only if .7

vanishes identically. From equations (6) and (7), we can deduce

(8) VoV =V +VyV,
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) VuX = TyX + #VyX,
(10) VxU = @/xU + V' VxU,
(11) VxY = VyxY + oY,

for any U,V € [(kerg,) and X,Y € I'(kerg, )+, where ViV = ¥ Vy V. It is clear that .7 and

o/ are skew-symmetric, i.e.,
(12) g(%XEl,EZ) - _g(Ela'/Q{XEZ)7 g(%EhEZ) = _g(E17 %EZ)a

for all Ey,E, e T'(T,M).

The following results holds for the particular case, where ¢ is horizontally conformal:

Proposition 2.3. Let ¢ : M — N be horizontally conformal submersion with dilation A and

XY € l"(ker(p*)L, then

1

(13) AxY = )

(V[X,Y]— A%gm(X.Y) grady (

N —

The second fundamental form of smooth map ¢ is given by the formula
(14) (Vo) (X,Y) =V30.Y — @, VxY

and the map be totally geodesic if (V¢,)(X,Y) =0forall X,Y € I'(T,M), where V and V? are

Levi-Civita and pullback connections.

Lemma 2.4. Let M and N be Riemannian manifolds and ¢ be horizontal conformal submersion.

Then, for any vector fields X,Y € 1"(ker(p*)L and U,V € I'(ker@,), we have

@ (Vo) (X,Y) =X(InA)p.(Y)+Y(Ind) . (X) — gm(X,Y)@.(gradInd ),
(i) (Vo) (U,V) =-0.(TV),
(i) (V@.)(X,U) = -0 (VYU) = - (o U).
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3. CONFORMAL BI-SLANT SUBMERSIONS

Definition 3.1. Let ¢ be a conformal submersion from a cosymplectic manifold (M, ¢,&,1n,gum)
onto Riemannian manifold (N, gy). Then ¢ defines a conformal bi-slant submersion (CBSS) if
D% and D% are slant distributions with corresponding slant angles 6; and 65, respectively, such

v/
that kerg, = D% @ D% @ &, If 6, 6, are neither equal to 0 nor > then ¢ is proper.

Now, let m and n be the dimensions of D and D%, respectively, then we observe that

(i) If m=0and 6, = % then @ is a conformal anti-invariant submersion,
(i) If m,n#0,6, =0and 6, = % then ¢ is a conformal semi-invariant submersion.
(iii) f myn=#£0,0, =0and 0 < 6, < % then ¢ is a conformal semi-slant submersion.

@iv) If myn=#£0, 6, = g and 0 < 6, < % then @ is a conformal hemi-slant submersion.

We now give the following example of proper CBSS from a cosymplectic manifold to a

Riemannian manifold using the same structure (¢,&,1,g) as in Example 2.1.
Example 3.2. Define a conformal Riemannian submersion @ : R% — R* as follows:
@ (x1,...,x3,2) = ' (x1, (cos &t)xy + (sin &)x4, (— cos B)xs + (sin B)x7,x6) ,
where (x1,...,xg,z) are natural coordinates of R?. Then, by the direct calculation, we obtain
Do = {Vl = %,Vg = sinﬁ&i)CS +cosﬁaix7}
D% = {V3 = aixg’w = sinocaix2 —cosaaim} and
d
=3
Thus, @ is conformal bi-slant submersion with the slant angels 0, 6, as B and o, respectively.,

where dilation is ', It can be seen that the vector field & is vertical.

Now, for CBSS from cosymplectic manifold (M, ,&,1n,gp) onto a Riemannian manifold

(N,gn),ie., @: (M,0,E,n,8mu) — (N,gn), take U € T'(kere,.), we can write
(15) U=PU+P,U+nU)E,

where P\U € T'(D%) and P,U € T(D%).
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Also, for U € I'(ker¢,.)
(16) oU = yU + U,
where YU € I'(ker@,) and oU € I'(ker,)*. For any X € I'(ker¢,)", we have
(17) OX =tX + fX
where tX € I'(kerg,) and fX € I'(kerg.)*. On using equations (15), (16) and (17), we have
(18) yD% = D% yp®% = p% 1wD% = DY t0wD% = D%.
)t

The horizontal distribution (ker¢, ) is decomposed as

(19) (ker@,)t = @D® & wD% & p,

where u is distribution which is complementary to ®D% @ wD? in (ker¢,)*.

Lemma 3.3. Let (M, 9,&,1M,8um) be cosymplectic manifold and (N, gn) be a Riemannian man-

ifold. If ¢ : M — N is a conformal bi-slant submersion, then we have
orX + 32X = —X, yiX +1fX =0,
U +toU = -U+nU)E, oyU + foU =0
for U € T'(ker@x) and X € T'((ker,)™b).

Proof. On using equations (1), (16) and (17), we get the desired results. ]

Lemma 34. Let (M, ¢,&,1M,8m) be cosymplectic manifold and (N, gn) be a Riemannian man-

ifold. If ¢ : M — N is a conformal bi-slant submersion, then we have

(20) xtY + VX fY = fFAVXY + 095Y,
1) YVxtY + oy fY =t VXY + yakY,

(22) VVxyV +axoV =tadxV+y?VVxV,
(23) xYV + 7VxoV = fatxV 4+ oV ViV,

24) FtX + Ay X = 0Ty X + fAVYX,
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(25) K fX+VVytX =y X+t VyX,
(26) VYVyyU+ FHyoU =t U+ y?V'VyU,
27 FyyU+ 7 VyoU = fFHU+ oV VyU,

forany U,V € T (kere,) and X,Y € T'(kerg«)*.

Now we define the following:

(28) (Vuw)V =7 VyyV —y¥VyV,
(29) (Vyo)V =#VyoV —o¥'VyV,
(30) (Vxt)Y =V VxtY —t7'VxY,

(3D (Vxf)Y = ANV fY — fAVXY,

for any U,V € I'(kere+) and X,Y € I'(kergs)=,.

Lemma 3.5. Let (M, ¢,&,1M,8m) be cosymplectic manifold and (N, gn) be a Riemannian man-

ifold. If @ : M — N is a conformal bi-slant submersion, then we have

(Vow)V =tV — JyoV,

(VU CO)V = fﬂUV — yy l//V,
(Vxt)Y = yatxY — o fY,

(fo)Y = w.axY + 2xtY,

forany U,V € T'(ker+) and X,Y € T'((kerg,)™ .

Proof. On using equations (3), (5) with (8)- (11) and equations (28)-(31), we get the result of

lemma. L]
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If the tenors ¥ and o are parallel with respect to the connection V of M, then we have
tyV = JyaV,
fV = Tyyv,
forany U,V € I'(TM).

Theorem 3.6. Let ¢ : (M, 9,E,1m,8m) — (N,gn) be CBSS from cosymplectic manifold onto a

Riemannian manifold with slant angel 6, and 6,. Then we have
(32) vrP=—cos?Q(I-n®E), i=1,2.

4. INTEGRABILITY AND TOTALLY GEODESICNESS

We will start the integrability of slant distributions as follows:

Theorem 4.1. Let ¢ be the CBSS from the cosymplectic manifold (M, ¢,&,n,gym) onto a Rie-

mannian manifold (N, gy) with slant angles 6, and 6,. Then
(i) the distribution D% is integrable if and only if
27 2en (Vo) (U, 0V), 9.0W) =gy (Ty oyU — Ty oyV, W)
+emu(TyoV —TyoU,yW)
+A 72N (Vo) (V, 0U), 9. 0W)
+ A %en (Vi o0V, 9. 0W)
— A %gn (VY p.0U, p.0W),
(ii) the distribution D% is integrable if and only if
27 2en (Vo) (Z,0W), p.0U) =gy (Tz0yW — Ty @yZ,U)
+gm(TywZ — T;0W,yU)
+272en((Ve)(Z,0W), 9. 0U)
+A2gn(VEp.0W, p.0U)
— A 2N (Vi 0.0Z, ¢.0U),

forU,v e T(D%) and Z,W € T(D%).
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Proof. (i). For any vector fields U,V € I'(D;) and W € I'(D,) and on using equations (2), (3)

and from (16), we have
gu([U,V],W) = gu(Vv U, W) — gu(Vuy’V, W)
—gmu(VuoyV, W)+ gu(VyoyU,W)
+egu(VyoV,oW) — gy (VyoU, pW).
Considering Theorem 3.6, we have
sin® 0, gy ([U, V], W) = —gu(Vy owV, W) + gy (Vy owU, W)
+gu(VyoV,oW) — gy (VyoU,pW).
On using equation (9), we obtained
sin® 01 gy ([U, V], W) = g (Fy owlU — Ty owV,W)
—emu( Ty oV — HoU,yW)
+em(HVyoV — VyoU,oW).
Now considering Lemma 2.4 and equation (14), we get
sin® 01gy ([U, V], W) = gu(H oyU — TyoyV,W)
—gn(FyoV — FoU,yW)
~ 272N (Vo) (U, 0V), p.0W)
+A 72N (Vo) (V. 0U), . 0W)
+ A 2N (Vi p.0V, 0. 0W)
— A 2gn (VY 9. 0U, p.0W)
For part (i) the calculation is same as (i). O
Theorem 4.2. Let ¢ be the CBSS from the cosymplectic manifold (M, ¢,&,n,gym) onto a Rie-

mannian manifold (N, gn) with slant angles 8, and 6,. Then the distribution D% defines totally

geodesic foliation if and only if

A 2en (Vo) (U, 0V), 9.0Z) = gu( Ty oV, ¥Z) — gu( Ty oyV,Z)
(33)
+ Aing(V[q;(P* oV, O G)Z),
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and
A 2em(V3@.0U, 0.0V) =sin’01gy ([U,X],V) + gu (o oyU,V)
+gm(gradind X)) gy (U, V)
(34) +gm(gradin A, 0U)gy (X, ®V)

—gm(gradin A, 0V )gy (X, oU)
—gm(Fx U, yV),
forU,vV e (D), Z € T(D%) and X € ((kerg.)"b).
Proof. For U,V € T'(D%) and Z € T'(D%) with using equation (2), (3) and (16), we have
su(U,V,2) = gu(VyoV,9Z) — gu(VuowV,Z) — gu(Vuy?V,2).
From Theorem 3.6, we can write
sin® 0,21 (VuV,Z) = —gu(VuowV,Z) + gy (Vy oV, §Z)
On using (9), we have
sin 0,21 (Vo V, Z) = gm( Ty @V, wZ) — gu( Ty oV, Z)
+gu(HVyoV,0Z).
Considering equation (14) and Lemma 2.4, we obtain
sin 012y (Vo V, Z) = gm( Ty oV, wZ) — gy ( Ty oV, Z)
—2%en((Ve.) (U, 0V), 9.0Z)

+A %en (V) 9.0V, 0.0Z)

which is the first part of Theorem 4.2.

On the other hand, U,V € I'(D;) and X € I'(kerg,) with using (2), (3) and (16), we can

write
gm(VuV,X) = —gu([U.X],V) +gu(oVxwU,V) — gu(VxoU, V).

Considering Theorem 3.6, we obtained

sin 0, g1 (VyV,X) = —gu([U,V],X) + gu(VxowU,V) — gu(VxoU,9V).
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On using equation (11), we have
sin® 0, ga(VyV,X) = sin? 0,gy (U, X],V) 4 gu (tx owU, V)
— gm(x ©U, yV) — A gn(9.Vx0U, 9. 0V).

Using Lemma 2.4, we yields

sin® 0, g1 (VyV,X) = sin? 0,gy (U, X],V) + gu (tx owU, V)
— 272N (VE 9. 0U, p.0V)
+gm(gradin A, X)gy(oU, wV)
+gm(gradln A, 0U)gy (X, wV)
—gm(gradlnd, 0V )gy (X, oU)
—gm(xoU,yV)

This completes the proof of the Theorem. 0J

Theorem 4.3. Let ¢ be the CBSS from the cosymplectic manifold (M, ¢,&,n,gym) onto a Rie-
mannian manifold (N, gn) with slant angles 8, and 6,. Then the distribution D% defines totally

geodesic foliation if and only if

A2en (Vo) (W, 0Z), 0.0U) = —gyu( Ty owZ,U) + gy ( FwoZ, yU)

(35)
+A 2 en (VY 0. 0Z, 9. 0U)
and
2 2en(VEQ. oW, 0.0Z) = sin® 8y ([W,X],Z) + gu(Hx 0yW,Z)
+gm(gradin X, X) gy (oW, 0Z)
(36) +gm(gradin AW )gy (X, 0Z)

—gm(gradInd, 0Z)gu (X, oW )

—gM(@/Xa)W, I//Z),

for Z,W € T(D%),U € T(D%) and X € ((kerg.)").
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Theorem 4.4. Let ¢ be the CBSS from the cosymplectic manifold (M,¢,E.1n,gy) onto a
Riemannian manifold (N,gy) with slant angles 0, and 6,. Then horizontal distribution

[ ((ker,)') defines totally geodesic foliation if and only if
A 72N (VS 00U, @.fY) = A *gn(gradin A, X)gu (U, fY)

+gum(gradin A, 0U) gy (X, fY)
—gu(gradin A, fY)gu (X, 0U)
+gm(gradin A, X)gy(0yU,Y)

(37)
+gu(gradlnd, oyU)gu(X, fY)
—gm(gradinA,Y) gy (X, 0ypU)
— AN (V3 0.0yU,9.Y)

—gm(x U tY).

ﬂ,_ng(V;?q)*wV, 0.fY) = l_ng(gradlnl,X)gM(a)V,fY)
+gm(gradlnd, wV)gy (X, fY)
—gm(gradln A, fY)gu (X, V)
+gm(gradinA X)) gy (oyV,Y)
(38)

+gm(gradin A, 0wV )gy (X, fY)
—gm(gradlndY )gy (X, 0oyV)

— AN (VEp.0yV,.Y)

—gM(%XwV,tY),

for X,Y € T((ker@,):),U € T(D%) and V € T(D%).
Proof. For X,Y € T'((kere,)*) and U € T'(D%) with using (2), (3) and (16), we have

eu(VxY,U) = gu(VxoyU,Y) — gu(VxoU,9Y).



14 TANVEER FATIMA

Taking into account of the fact from Theorem 3.6, we can write
sin? 01w (VxY,U) = —gu(VxowU,9Y) — gu(VxoU,Y).

From (11), we can obtain

sin? 016y (VxY,U) = —gu(x 0U, 1Y)
- ling(q)*VX(DUa @ fY)

— A7 7en(@.Vx 0y, 9.Y).
Considering Lemma 2.4, we have

sin® 01 gy (VxY,U) = A 2gn(gradIn A, X) gy (U, fY)

+gm(gradin A, 0U)gy (X, fY)
—gm(gradin A, fY)gu(X, 0U)
+gm(gradinA X)) gy (oyU,Y)
+gu(gradin A, oyl ) gy (X, fY)
—gm(gradinA,Y) gy (X, 0yU)

— 272N (VR 9. 0yU, .Y)

— AN (VR 9.0U, 9. fY)

—gM(JZ{x(DU,tY)

Similarly, for X,Y € I'((ker¢,)*) and V € T'(D,), we have

sin’ 0,gm(VxY,V) = l_2gN(gradln7L,X)gM(a)V7fY)
+gm(gradlnd, wV)gy (X, fY)
—gm(gradln A, fY)gu(X,0V)

+gm(gradlin A, X)gy(0yV,Y)
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+gm(gradin A, 0yV)gu (X, fY)
—gm(gradInA,Y) gy (X, 0yV)
— 1 %en (VR . 0YV, 0.Y)

— AN (V3 0.0V, 0. fY)
—gu(xwV,tY).

O

Theorem 4.5. Let ¢ be the CBSS from the cosymplectic manifold (M, ¢,&.1,gy) onto a Rie-
mannian manifold (N, gy) with slant angles 0; and 6. Then vertical distribution (ker,) de-

fines totally geodesic foliation if and only if
2 2gn(VE0.0U,9.0V) = (cos® 6; —cos” 6,) gy (Vx U, V)
—|—gM(,Qfxl//V, O)U) — gM(%XV, COI[/U)
+gm(gradln A, X)gy(oU,wV)
(39)
+gm(gradln A, 0U)gy (X, V)
—gm(gradind,oV)gu (X, wU)

—sin® 6y gu([U,X],V) —n(VxU)n(V),

for U,V € T'(kerg,) and X € T'(kerg,)™*.

Proof. On taking U,V € I'(ker@,) and X € I'(ker@,)* with using (2), (3) and (16), we have
gm(VuV,X) = —gu([U,X],V) +gu(VxoyU,V)
—gm(VxoU,¢V)—n(VxU)n(V).
On using decomposition (15) and Theorem 3.6, we obtained
gm(VuV.X) = —gu([U,X],V) —cos’ 61 gu(VxPiU,V)
—cos® 6y gu(VxPoU, V) + gu(VxoyU,V)
—gu(VxoU,yV) —gy(VxoU, V)

—n(VxU)n(v)
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With taking account the fact of equation (11), we can write
sin’ 01gm(VuV,X) = (cos2 6, — cos? 02)gm(VxPU,V)
—sin® 6, g([U,X],V) +gu(xwV,0U)
—gm(xV,09U) —gu(HVxoU,oV)

—n(VxU)n(v).
Using equation (14), we yields

sin® 6, em(VuV,X) = (0052 6, — cos’ 0:)gm(VxPU,V)
+em(x YV, 0U) — gy (xV,0ypU)
+ 27 2gn (Vo) (X, 0U), ¢, V)
~ AN (V390U 9. 0V)
—sin® 0y gu([U,X],V)

—-n(VxU)n(v).

Considering Lemma 2.4, have
sin® 6; em(VyV,X) = (cos2 6, — cos? 0,)gm(VxPU,V)

+em(xyV,0U) — gy (#xV,0ypU)
+gm(gradin A, X) gy (U, ®V)
+gm(gradin A, 0U)gy (X, ®V)
—gum(gradin A, 0V )gy (X, oU)
— A %gn (V0. 0U, 0. 0V)
—sin® 6, gy ([U,X],V)

—n(VxU)n(v).

This completes the proof of the Theorem. U

Theorem 4.6. Let ¢ be the CBSS from the cosymplectic manifold (M, ¢,E. 1, gy ) onto a Rie-

mannian manifold (N, gn) with slant angles 6, and 6. Then @ is totally geodesic map if and

only if
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(i)
)fng(Vggo*a)l//V, 0. X) = (cos2 0, — cos? 0:)gm(VuPV,X)
+gm(gradinA,U)gy(oyV,X)
—gm(gradin A, U)gy(0V, fX)
~A7%n (Vi P 0wV, 9.X)
—gu(FyoV,X),
(ii)

lfng(V;’;(p*a)U, 0. fY) = (cos® 0, — cos? 0;) gy (et PLU,Y)
+en(tX, UNY)+ gu(FxoU, 0Y)
—gm(gradin A, X)gy(0owU,Y)
—gm(gradin A, 0yU)gy(X,Y)
+gm(gradnA,Y)gy (X, oyU)
+gm(gradin A, X) gy (U, fY)
+gm(gradind, 0U)gy (X, fY)
+gm(gradlnd, fY)gu(X,0U)

+ ;L_ng(Vﬁ P 0YU,9.Y),

for U,V € T(kerg,) and X,Y € T((ker@,)").
Proof. For U,V € T'(kerg,) and X € I'((kerg,)") with using equation (14), we can write
(40) ling((V(p*)(U,V),(p*X> =gu(VuV,X)

From equations (2), (3) and (16), we have

em(VuV,X) = gu(VuoV,0X) —gu(VuoyV,X)

17
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Considering Theorem 3.6 and decomposition (15), we obtained
sin® 0) gy (VyV,X) = (cos? 6, — cos® 0) ) gy (Vu P2V, X)
41
o +am(VooyV,X) +gu(VuoV, ¢Xx).
From equation (41) and (40), we get
sin® 6; A*ZgN((V(p*)(U, V), X) = (cos2 6, — cos? 01)gm(VuPV,X)
+eu(VooyV,X)+gu(VyoV, 0X).
On using equations (8) and (9), we have
sin? ) A 2gn (V) (U,V), 0.X) = (cos? 6, — cos® 01 ) gy (Ty P2V, X)

+emu(HVyoyV,X)+gu( Ty oV,tX)
+em(HVyoV, fX).

From equation (14) and Lemma 2.4, we get

sin® 61 A 7gn (V@) (U,V), 0.X) = 2 %gn(U(In 1) 9. 09V, 9.X)
+A 2N (V) 0. 09V, 0.X)
+A gy (U (InA) @0V, 9. fX)
+2A 2N (V] 0.0V, 0. 1X).

On the other hand, for U € T'(ker,) and X,Y € T'((kerg,)"*), we get
42) 272N ((Ve.)(X,U),0.Y) = gu(VxU.Y).
On using (2), (3) and (16), we have

gm(VxU,Y) = —gu(VxoyU.Y) + gu(Vx U, ¢Y)

With the help of decomposition (34) and Theorem 3.6, we obtain

Sin2 91 gM(VxU,Y) = (COS2 92 —COS2 Ql)gM(VXplU,Y>
(43)
+gM(VXa)U,¢Y) —gM(VXa)wU,Y)
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From (42) and (28), we can write
sin® 6, l_ng((V(p*)(X, U),p.Y) = (cos2 6, — cos’ 01)gm(VxPU,Y)

+em(VxoU,9Y) —gu(VxoyU,Y).

From equation (10) and (11), we have

sin?0) A 2gn (V) (X,U),9,Y) = (cos® 6 — cos? 0y ) gy (#x PLU,Y)
+gm(xoU,tY) — gy (A VxoywU,Y)
+em(HVxoU,Y).
Considering Lemma 2.4 with equation (14), we yields
sin? 04 2gn (V. ) (X,U), 9.Y) = (cos® 8 — cos® 0)) g (<#x PLU,Y)

—gm(gradlnA, X) gy (owU,Y)

—gm(gradln A, 0oyU)gy(X,Y)

+gm(gradinA.Y )gu (X, oyU)

+gm(gradin A, X)gu(wU, fY)

+gm(gradlnd, wU)gy (X, fY)

—gm(gradinA, fY)gu(X, 0U)

+ A 2gn(VRQ.0WU,Y) + gy (e @U,tY)

—A%en (V3 0.0U, .fY).

Finally we show that A is constant on I'(D;). For U;,U, € T'(D;) and from Lemma 2.4. we

obtain
(Vo,)(0oU,,0U,) = oU;(Ind) @, 0U; + oU(Ind) o, wU,;
—gu(0U;,0U,) @, (gradlnl).
Replacing U; by U; in above equation, we get
(Vo.)(oU;,0U;) = 20U, (In1) . 0U,

(44)
— gm(@Uy, ®U)) s (gradln ).
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Taking inner product with ¢, U in (44), we can write
2gm(gradIn, ®Ur)gn (@ 0Uy, 9. 0U1)
—gm(0U, 0U)gn(@:gradIn A, Uy ) =0,

which shows that 2 is constant on T'(D%'). Similarly, we can show that A is constant on I'(D%)

and ['(1t). This completes the proof of the Theorem. O

5. DECOMPOSITION THEOREMS

In this section, we give some decomposition theorems with the help of previous results. We

start as follows:

Theorem 5.1. Let ¢ be the CBSS from the cosymplectic manifold (M, ¢,E. 1, gy ) onto a Rie-
mannian manifold (N,gn) with slant angles 6y and 6,. Then vertical distribution (ker,) is
locally Riemannian product Mpe, X My, if and only if equation (33)-(36) holds where M,

and M e, are integral manifolds of distributions D% and D% respectively.

Theorem 5.2. Let ¢ be the CBSS from the cosymplectic manifold (M, ¢,E, 1, gy ) onto a Rie-
mannian manifold (N, gn) with slant angles 6, and 6. Then the total space Mpe, X Mpe, x
M((ker(p*)L) is locally product if and only if equation (33)-(38) are holds, where Mo, ,M )6, and
M

kerg,) ) are integral manifolds of the distributions DY D% and ((ker@,)") respectively.

Theorem 5.3. Let ¢ be the CBSS from the cosymplectic manifold (M, ¢,E, 1, gy ) onto a Rie-
mannian manifold (N, gy) with slant angles 0y and 6,. Then the total space Mierg, X M((ker(p*)L)
is locally product if and only if equation (37)-(39) are holds where Myero, and M((ker(p*)L) are

integral manifolds of the distributions (ker,) and ((kerg,)™") respectively.
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