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Abstract: In this paper, we combine the classical method of unconstrained optimization, the methods for solving 

linear programming problems and the orthogonal projection technique to evolve a new algorithm for solving 

quadratic programming problems. We solve the quadratic programming problem ignoring the constraints using the 

classical method to obtain the unconstrained optimum. The unconstrained optimum is then tested for feasibility in 

the original quadratic programming problem. Feasibility of the unconstrained optimum implies that it is optimal 

solution to the original problem. If the unconstrained optimum is infeasible we then make moves to search for the 

feasible optimal solution by projecting it orthogonally on the hyper-plane of each of the violated constraints. 

Feasibility of any of the projected points indicates optimal solution, while infeasibility indicates that the optimal 

solution is at extreme point of the feasible region and is obtained by solving linear approximation of the quadratic 

programming problem. From the computational results, our proposed algorithm performed well to solve quadratic 

programming problems. 

Key words: Quadratic programming, unconstrained optimum, feasible region, boundary point, extreme point, 

orthogonal projection, optimal solution, linear approximation 

 

1. Introduction 

A Quadratic Programming Problem (QPP) is a mathematical program in which a quadratic 

objective function is being optimized subject to a set of linear constraints. It is a Non-Linear 

Programming Problem which differs from the linear programming problem (LPP) with a non-

linear objective function (consisting of terms involving the square of a variable or product of two 
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variables) and a linear constraint(s). Quadratic programming, especially convex quadratic 

programming, plays important role in optimization. In one sense it is a continuous optimization 

problem and a fundamental subroutine frequently employed by general nonlinear programming. 

The optimality conditions of quadratic programming are linear equalities and inequalities and 

this make it one of the challenging combinatorial problems.  

QPP arises naturally in a variety of applications such as Portfolio selection, Martin et al (1955); 

structural analysis, Atkociunas (1996); and many Economic and Business problems like 

Elasticity of demand, manufacturing companies and Spatial Equilibrium Analysis, Sharma 

(2008).  

Several solution techniques have been developed to solve quadratic programming problems, see 

Wolf (1959), Fiacco and Cormick (1968), Fletcher (1981), Griffith and Stewart (1961), Nesterov 

(1999), Cottle et al (2009), Zontendijk (1960), Rosen (1960), Kozlou, et al (1970), Huynh (2008).  

The current method of solving quadratic programming problem is the interior point method. The 

interior point method starts from an initial feasible point and make progress through the feasible 

region toward the optimal solution in a polynomial time, Karmarkar (1984). This method which 

is considered to be the most efficient method for solving both linear and quadratic programming 

problems has some pitfalls. It is computationally demanding and takes too much iteration to 

converge at the approximate optimal solution. 

We are motivated by the fact that it is easier to solve linear programming problems and the 

unconstrained convex optimization problems than to solve constrained convex quadratic 

programming problems. We are further motivated by the fact that the unconstrained optimum is 

the centre of the concentric parabolic curves described by the quadratic objective function, and 

that the objective function increases in values as we move away from the centre towards the 

feasible region. The first point of contact of the curve with the feasible region yields the optimal 

solution to problem. This point could be a boundary point or an extreme point, and could be 

determined easily either by solving a linear programming approximation of the QPP or by the 

orthogonal projection technique. 
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In this paper, we combine the classical method of unconstrained optimization, the methods of 

solving linear programming problems and the orthogonal projection technique to evolve a new 

algorithm for solving quadratic programming problems.  

 

2. Preliminaries 

2.1 General Quadratic Programming Problems 

The generic quadratic programming problem (QPP) as given in Sharma (2008) is 

 Minimize 
j

n

1i

n

1j
iij

n

1j
jj

xxq
2

1
  xc  Z 

 

    1(a) 

 Subject to:   

   i

n

1j

jij b  xa 


; i =1,2,...,m    1(b) 

                       xj  
0;  j = 1,2,...,n.    1(c) 

 It is also written in matrix notation as :  

          Minimize Z   Cx + ½ x
T
Qx     2(a) 

          Subject to:  

   Ax   b      2(b) 

              x 0      2(c) 

 Where x  (x 1, x2 ,...,xn  )
T
  ; C (C1,C2,...,Cn); 

 b  (b1,b2,...,bn)
T
 ; Q  n  n symmetric matrix and  A  m n matrix. 

2.2. The classical theory of unconstrained optimization 
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Given a function of n – variables, f(x1, x2, . . . , xn) which is convex and has continuous partial 

derivatives, then the minimum point is the solution of the following system of equations 

 0  
x

f
 ,  0,  

x

f
  0,  

x

f

n21















     (3) 

2.3. Linear Programming approximation of Quadratic Programming 

Let y be any feasible solution of a quadratic programming problem. Here y might be determined 

by phase 1 of the simplex method or the modified simplex splitting algorithm, see Effanga, et al 

(2012). 

Given the quadratic objective function, 1(a) or 2(a), then its linear approximation at the feasible 

point y
 
is obtained through 

 Z’ = Z
0
 + m ( x – y)      (4) 

Where Z
0
 is the value of Z evaluated at the point y, m is the slope, or partial derivative, of Z with 

respect to x, evaluated at the point y, Magnanti, et al (1977) 

That is,  

 m = c + y
T
Q       (5) 

Now, since Z
0
, y and m are fixed, minimizing Z’ in (4) is equivalent to minimizing 

 Z’’ = mx        (6) 

So the linear programming approximation of the quadratic programming is 

 Min Z’’ = (c + y
T
Q)x      (7a) 

 Subject to: 

   Ax ≤ b      (7b) 

     x ≥ 0      (7c) 
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2.4. The orthogonal projection 

The perpendicular distance d of the point x
0
 from the hyper-plane Aix = bi is given by 

 
T

i
A

i
A

i
b - 0x

i
A

  
i

d       (8) 

Where Ai = (ai1, ai2, . . . , ain) is a vector normal to the i
th

 hyper - plane 

The orthogonal projection of x
0
 onto the hyper-plane Aix = bi is therefore define through 

  Âd -  xx T
i

0i
i

      (9) 

Where 
i

Â is a unit vector normal to the i
th

 hyper – plane. 

2.5. Geometrical consideration of solution for QPP 

The optimal solution of a quadratic programming problem can occur at any of the following 

points of the feasible region 

(a) Interior of the feasible region; 

(b) On the binding hyper plane;  

(c) At the extreme point of the feasible region. 

 

 

 

 

 

 

X0 

X0 

X0 

(b) (c) (a) 
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If the constraints of a QPP are ignored, then the unconstrained problem can easily be solved by 

the classical unconstrained optimization method.  If the unconstrained optimum coincides with 

any of the above points, then it is optimal for the original quadratic programming problem, 

otherwise it is not optimal and so we have to search for the optimal solution. 

The unconstrained optimum x
0
 is the centre of the concentric parabolic curve described by the 

quadratic objective function. As we move away from this centre the objective function increases 

in value. Thus if the unconstrained optimum is infeasible in the original QP the optimum solution 

will be located at the first point the objective function curve come in contact with the feasible 

region. See Eiselt, et al (1987). 

 If the unconstrained optimum x
0
 violate any of the constraints and the optimum solution to the 

original problem lies on the binding hyper-plane, then the orthogonal projection of x
0
 on the 

violated hyper-plane yields the optimum solution. But, if the optimum solution to the original 

problem is at the corner of the feasible region, then a linear approximation of the QPP at the 

unconstrained optimum yields the optimum solution to QPP. See figure below. 

 

 

 

 

 

  

 

Clearly, x
*
 is an orthogonal projection of x

0
 on the violated hyper plane 

 

 

 

X0 

X* 

Z* 

Z1 

Z2 
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In the above figure, x
0
 violates two constraints (I and II). The orthogonal projections of x

0
 on I 

and II, respectively, are infeasible, so the optimum solution x
*
 is located at the extreme point of 

the feasible region. 

 From our geometrical considerations the following observations are made. 

Observation 1: 

 If the unconstrained minimum x
0
 of QP violates the i

th
 constraint,  i.e. Aix

0
 > bi, i = 1, 2, . . . , p, 

then the set S of all projections x
i
 of x

0
 on the hyper-plane of the violated constraints such that 

Aix
i
 ≤ bi is either empty or singleton. This is true because the feasible region is a convex set. 

Observation 2: 

If S is empty, then the optimal solution of QP is an extreme point solution. 

Observation 3: 

 If S is non-empty, then the optimal solution of QP is on the binding hyper-plane. 

 

xo 

x* 

I 

II 

III 
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Observation 4: 

Linear approximation of the quadratic objective function at any feasible point y, is parallel to the 

tangent to the parabolic curve described by the quadratic function at the optimal solution of the 

quadratic programming problem.  

 

 

 

 

 

 

 

 

 

In the figure above, the feasible region is bounded by four hyper-planes, I, II, III and IV. The 

dotted line through the point y is a linear approximation of the curve with centre at x
0
 and is 

parallel to the tangent to the curve at x
*
  

Observation 5: 

If the optimal solution of a quadratic programming problem is an extreme point solution, then it 

is equal to the optimal solution of its linear programming approximation. 

That is, the optimal solution of the linear programming problem (7) and the optimal solution of 

the quadratic programming problem (1) or (2) are the same provided it is an extreme point 

solution. 

I 

II 

III 
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x*   

z*  

z1  

y  

x0 

Decreasing 

Z = f(x) 
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3. Our Proposed algorithm 

Step 0. Ignoring the constraints, find the unconstrained minimum x
0
 of the quadratic 

 programming problem. 

Step 1. Testing x
0
 for feasibility in the original QPP. 

 Is Ax
0
 ≤ b? 

 Yes: x
0
 is the optimal solution to QPP. Go to step 7 

 No: Go to step 2. 

Step 2. Computing distances of x
0
 from the violated hyper-planes. 

 Compute di for all Aix
0
 > bi, i = 1, 2, . . . , p through 

  
T

ii

i

0

i

AA

b - xA
  d

i
  

Step 3. Projecting x
0
 on each of the violated hyper-plane 

 Project x
0
 on the violated hyper-plane through 

  Âd -  xx T
i

0i
i

  

Step 4. Testing the projected points for feasibility. 

 Form the set S = {x
i
: Ax

i
 ≤ b, i = 1, 2, . . . , s} 

Step 5. Is S empty? 

 Yes: Go to step 6 

 No: set x
*
 = x

i
 ɛ S. Go to step 7. 

Step 6. Using any existing method, solve the LP problem  

 MinZ = (c + y
T
Q)x 
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 Subject to: 

   Ax ≤ b 

     x ≥ 0 

 Go to step 7. 

Step 7. Stop 

4. Illustrations of the algorithm 

To examine the workability of our proposed algorithm, we picked four quadratic programming 

problems and solved. We code the algorithm in MATLAB 6.5 and all the problems solved on a 

Pentium IV 600 CPU with 320 MB RAM Windows XP computer. 

In order to assess the quality of the optimal solution obtained by our algorithm, we solved the 

same problems using an OPTIMIZER, existing software for solution of both linear and quadratic 

programming problems.  

Example 1 

 
2
221

2
121

2x  x2x - 3x  8x - 26x-  Min Z 
 

 Subject to: 

   x1 + 2x2 ≤ 6 

    x1 – x2 ≥ 1 

   x1 ≥ 0, x2 ≥ 0 

Differentiating Z with respect to x1 and x2, respectively, and equating to zero, we have 

  3x1 – x2 = 13 

  -x1 + 2x2 = 4 

Solving simultaneously we have x1 = 6 and x2 = 5. So the unconstrained minimum is x
o
 = (6, 5).  
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This solution is infeasible and does not satisfy the first constraint. So we project it on the hyper 

plane. 

52  
5

6 - 10  6
  

22  21

6 - 
5

6
2) (1,

  0
1

d 















  

1) (4,  )
5

2
 ,

5

1
(52  5) (6,  x1   

x
1
 is feasible,  so x

*
 = (4, 1) is optimal solution for the constrained problem with the objective 

function value of Z
*
 = -70 

Example 2 

    Min Z = -16x1 – 10x2 + x1
2
 + x2

2
 

   Subject to : 

   -2x1 + 4x2 ≤ 8 

      x1 + x2 ≤ 6 

    X2 ≤ 3 

   x1 ≥ 0, x2 ≥ 0 

Differentiating Z with respect to x1 and x2, respectively, and equating to zero, we have 

 2x1 – 16 = 0 

  2x2 – 10 = 0 

Solving simultaneously we have x1 = 8 and x2 = 5. So the unconstrained minimum is x
o
 = (8, 5).  

This solution is infeasible and does not satisfy the second and the third constraints. So we project 

it on the two hyper planes. 
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2

7
  

2

6 - 5  8
  

21  21

6 - 
5

8
1) (1,

  d0
1

















  

2  
1

3 - 5  0
  

21  20

3 - 
5

8
1) (0,

  d0
2

















  

1.5) (4.5,  )
2

1
 ,

2

1
(

2

7
  5) (8,  x1   

3) (8,  )1 ,0(2  5) (8,  x2   

x
1
 is feasible and x

2
 is infeasible,  so x

*
 = (4.5, 1.5) is optimal solution for the constrained 

problem with the objective function value of Z
*
 = -64.5  

Example 3 

 2
221

2
121

 x x x- 0.5x   x-  x-  Min Z   

 Subject to :   

     

    

    

Differentiating Z with respect to x1 and x2, respectively, and equating to zero, we have 

 x1 – x2 = 1 

 x1 + 2x2 = 1 

Solving simultaneously we have x1 = 3 and x2 = 2. So the unconstrained minimum is x
o
 = (3, 2).  

This solution is infeasible and does not satisfy the first constraint. So we project it on the hyper 

plane.  
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 2  
2

3 - 2  3
  

21  21

3 - 
2

3
1) , (1

  d0
1

















  

 1) (2,  )
2

1
 ,

2

1
(2 - 2) (3,  x1   

x
1
 is infeasible.  

The set S is empty, so the optimal solution is an extreme point solution.  

We now linearize the objective function at the point y = (1, 2) as  

 Z = -2x1 + 4x2 

The LPP approximation of the QPP is therefore the following problem. 

 Min Z = -2x1 + 4x2 

 Subject to: 

    

   

   

The optimal solution to this problem is x1 = 1.5, x2 = 1.5 with Z = 1.5 

Hence the optimal solution to the quadratic programming problem is x1 = 1.5, x2 = 1.5 with Z = - 

1.875 

 

Example 4 

2
221

2
121

5x - x4x   x-4x  10x  Max Z   

  Subject to:       
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    x1 + x2  6 

      4x1 + x2  18 

       x1 ≥ 0, x2 ≥ 0 

Changing the sense of optimization, we solve the following problem 

 2
221

2
121

5x  x4x -  x4x  10x-   Z)Min(-   

  Subject to:       

    x1 + x2  6 

      4x1 + x2  18 

       x1 ≥ 0, x2 ≥ 0 

Differentiating Z with respect to x1 and x2, respectively, and equating to zero, we have 

  2x1  - 4x2  =  10 

     4x1    – 10x2  =   –4 

Solving simultaneously we have x1 = 29 and x2 = 12. So the unconstrained minimum is x
o
 = (29, 

12).  

This solution is infeasible and does not satisfy both constraints. So we project it on the two hyper 

planes. 

 
2

35
  

2

6 - 12  29
  

21  21

6 - 
12

29
1) (1,

  d0
1 


















 

17

110
  

17

18 - 12  116
  

21  24

18 - 
12

29
1) (4,

  d0
2 

















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)
2

11
- ,

2

23
(  )

2

1
 ,

2

1
(

2

35
  12) (29,  x1   

)
17

94
 ,

17

53
(  )

17

1
 ,

17

4
(

17

110
  12) (29,  x2   

x
1
 and x

2
 are infeasible. 

The set S is empty, so the optimal solution is an extreme point solution.  

We therefore linearize the objective function at the point (2, 2) as 

  c1 = 2x1 - 4x2 – 10 = -14 

     c2 =  -4x1  + 10x2 - 4 = 8 

 Z = -14x1 + 8x2 

The LPP approximation of the QPP is therefore the following problem. 

 MinZ = -14x1 + 8x2 

  Subject to:       

   x1 + x2  6 

     4x1 + x2  18 

   x1 ≥ 0, x2 ≥ 0 

The optimal solution to this problem is x1 = 4.5, x2 = 0 with Z = -63 

Hence the optimal solution to the quadratic programming problem is x1 = 4.5, x2 = 0 with Z = 

24.75  
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9. Computational Results Using Different methods 

Problem No. Optimizer Propose 

1 (4, 1), 

Z = -70 

(4, 1) 

Z = -70 

2 (4.5, 1.5) 

Z = -64.5 

(4.5, 1.5) 

Z = -64.5 

3 (1.5, 1.5) 

Z = -1.875) 

(1.5, 1.5) 

Z = -1.875) 

4 (4.47, 0.12) 

Z = 25.04 

(4.5, 0) 

Z = 24.75 

 

5. Conclusions 

This paper proposes a new algorithm for solving quadratic programming problems. We use 

classical technique of unconstrained optimization to first determine the unconstrained optimum 

which is then tested for feasibility in the constrained problem. When the unconstrained optimum 

is infeasible in QPP we use the method of orthogonal projection to project it on the hyper-plane 

of each of the violated constraints. Where one of the projected points is feasible yields the 

optimal solution to the QPP. In the case where all the projected points are infeasible we adopt the 

technique of linear programming approximation to obtain the optimum solution. The proposed 

algorithm in our test problems performs excellently well and competes favorably with the 

available techniques.   
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