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Abstract. Monkeypox is a significant health concern due to its potential for morbidity and occasional mortality.

Vaccination and effective contact tracing play pivotal roles in controlling infectious diseases, including monkey-

pox. This study aims to contribute to our understanding of monkeypox dynamics by developing a comprehensive

mathematical model that incorporates key factors such as vaccination, quarantining, and contact tracing. Through

rigorous sensitivity analysis, we explore the impact of varying vaccination coverage and contact tracing on the

disease’s dynamics. In particular, we investigate the dynamics of the disease in relation to variable vaccination

coverage and contact tracing. Our findings highlight the critical role of vaccination and contact tracing in reduc-

ing monkeypox transmission. Higher vaccination coverage, combined with effective contact tracing and other

control measures, leads to increased stability of the disease-free equilibrium and a decreased likelihood of sus-

tained outbreaks. These findings emphasize the need for continued efforts in promoting vaccination programs and

strengthening contact tracing capabilities to effectively manage and contain monkeypox transmissions.
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1. INTRODUCTION

Monkeypox is a contagious disease that can be transmitted between animals and humans. It

is similar to smallpox and has been a significant worry for a long time. It was initially identified

in monkeys at the State Serum Institute in Copenhagen, Denmark, in 1958 [1]. This marked

the first known instance of the disease being observed in monkeys. Since then, outbreaks have

occurred in humans, primarily in Central and West Africa, specifically in countries like Nigeria,

Cameroon, Liberia and Sierra Leone [2, 3].

Throughout history, outbreaks of monkeypox have been documented in different primate

species, exhibiting distinct skin eruptions and lesions. However, in the 1970s, it became evi-

dent that the virus could also infect humans, leading to concerns as it emerged in areas where

smallpox had already been eliminated. The transmission dynamics of the virus include zoonotic

transmission from animals, human and potentially environmental factors [4].

Monkeypox virus primarily spreads to humans from wild animals like rodents and primates,

and human-to-human transmission is also common. The transmission among humans is associ-

ated with respiratory droplets, contact with bodily fluids, contaminated environments or items,

and direct contact with skin lesions of infected individuals [5]. Since the eradication of small-

pox, monkeypox virus has become the most prevalent orthopoxvirus [6]. Its infection manifests

with symptoms typically appearing 7 to 14 days (incubation period) after exposure, as noted

in a study by Emeka et al. [7]. Common symptoms include fever, headache, swollen lymph

nodes, chills and fatigue. These manifestations are often experienced by individuals who have

contracted the disease. Although monkeypox has a lower fatality rate compared to smallpox,

it can still cause significant harm, particularly among vulnerable populations. Furthermore, the

absence of a specific treatment or vaccine for monkeypox poses additional challenges in con-

taining and preventing its transmission. With the rise in monkeypox cases in recent years, there

is an urgent requirement to investigate and comprehend its transmission dynamics.

Mathematical modeling has emerged as a valuable approach in understanding infectious dis-

eases and devising effective control measures. It has a number of benefits since it enables re-

searchers to model and examine the complex dynamics of disease transmission while taking into

account a range of variables like population demographics, disease traits, and treatment options.
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This offers a methodical and quantitative approach for investigating the effect and transmission

of diseases. Also, mathematical models make it possible to explore many situations and do

“what-if” evaluations, which can help with decision-making and direct the creation of the best

control plans. Researchers can evaluate the potential efficacy of various control strategies and

prioritize resource allocation by modifying model parameters and evaluating alternative inter-

vention scenarios.

In the past, monkeypox has received limited attention, resulting in a lack of comprehensive

understanding regarding its transmission mechanisms. The quest to understand the mechanism

of monkeypox has been a subject of extensive research to date. A significant number of research

have focused in particular on developing models to explain the transmission dynamics. Notably,

Bhunu and Mushayabasa [2] conducted a transmission analysis of monkeypox virus, serving as

a valuable resource for understanding the dynamics of pox-like diseases. Another study by

Usman and Adamu [8] focused on examining the dynamics of monkeypox virus in human hosts

and rodents, along with stability analysis. Furthermore, significant contributions can be found

in studies by Olumuyiwa et al. [4], Madubueze et al. [9], Bankuru et al. [10], and Grant et

al. [11]. Collectively, these studies have advanced our understanding of monkeypox and its

transmission dynamics.

It has a number of benefits since it enables researchers to model and examine the intricate

dynamics of illness transmission while taking into account a range of variables like population

demographics, disease traits, and treatment options. This offers a methodical and quantitative

approach for investigating the effect and transmission of illnesses.

While the existing research is limited, a few mathematical models have been developed to

investigate monkeypox transmission, with a specific emphasis on quarantine and vaccination

strategies. The success of vaccination in eradicating smallpox has led to the recognition of its

potential in controlling closely related orthopoxviruses, including monkeypox. Furthermore,

the implementation of quarantine measures has proven effective in mitigating the spread of in-

fectious diseases by reducing contact between infected individuals and susceptible populations

[9]. This highlights the necessity for in-depth research and the application of control strategies

to effectively control the transmission of monkeypox.
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As a result, our study aims to conduct sensitivity analyses to examine the impact of crucial

parameters, including vaccination coverage, transmission probability and effective contact trac-

ing, on the control of monkeypox. This analysis will provide insights into the significance of

these factors in shaping the dynamics of the disease transmission and offer valuable informa-

tion for the development of strategies to prevent and control the disease. By investigating the

stability and sensitivity of monkeypox transmission in relation to vaccination and quarantine

interventions, our research will contribute to the expanding knowledge on effective measures

against monkeypox.

2. MODEL FORMULATION

A comprehensive understanding of the disease under consideration is crucial in developing

a mathematical model for the disease. Additionally, during the formulation of the model, it is

essential to recognize that as the infection disseminates among the population, the population

is divided into distinct compartments that do not overlap. The constructed mathematical model

should effectively depict the dynamics of each compartment, considering how they evolve over

time, as described by Madubueze et al. [9].

Drawing inspiration from the fundamental concept and framework of mathematical model-

ing in epidemiology [12], our model encompasses the dynamics of ten distinct sub-populations.

Specifically, we consider susceptible (Sh), exposed (Eh), vaccinated (Vh), quarantined (Qh),

infected (Ih), treated (Th), and recovered (Rh) individuals within the human population. Ad-

ditionally, the model incorporates susceptible (Sr), exposed (Er), and infected (Ir) individuals

within the rodent population.

The total human population at time t, denoted as Nh(t), is the sum of the individual human

sub-populations:

(1) Nh(t) = Sh(t)+Vh(t)+Eh(t)+Qh(t)+ Ih(t)+Th(t)+Rh(t)

Likewise, the total rodent population at time t, denoted as Nr(t), is calculated by summing the

corresponding sub-populations:

(2) Nr(t) = Sr(t)+Er(t)+ Ir(t)
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The entry of susceptible individuals into the human population is facilitated by immigration or

birth, with a constant rate denoted as Π. The susceptible human population, decreases due to

vaccination at a rate π , while it increases through the loss of vaccine-acquired immunity among

vaccinated individuals at a waning rate χ . As a result, a vaccinated human who loses immunity

becomes susceptible with no vaccine protection. The transmission of monkeypox infection to

susceptible humans occurs through effective contact with either infectious rodents or infectious

humans. The force of infection, denoted as λh, measures the probability of susceptible humans

contracting monkeypox infection upon exposure to infectious rodents or infectious humans. It

represents the combined impact of both infectious rodents and infectious humans in transmitting

the virus to susceptible humans, and it is defined by Equation 3.

λ̄h =
θrIr(t)+θhIh(t)

Nh(t)
(3)

where θh and θr are transmission probability from infectious humans to susceptible humans and

infectious rodents to susceptible humans respectively.

The population of exposed humans consists of susceptible individuals who contract the virus

at a rate λ̄h. Subsequently, some of these individuals transition to the quarantine compart-

ments at a rate η , as a result of contact tracing and quarantine measures implemented after

the incubation period. Quarantine aims to isolate exposed individuals and prevent further virus

transmission. For the exposed individuals who do not enter Qh(t), a proportion of β progresses

to the infected class, representing the rate at which they become capable of transmitting the

virus. Once individuals enter Ih(t), they become infectious and can transmit monkeypox to sus-

ceptible individuals. The infected human population also experiences an additional death rate,

δ , which accounts for the potential mortality associated with monkeypox infection. Individu-

als in the quarantined and infected classes will enter the treatment class at a rate of φ and α

respectively, after obvious symptoms appear and they are diagnosed eventually. Fraction of the

treated individuals recover and progress to the recovered class at a rate of ρ .

For the rodents population, the susceptible rodents class, Sr(t), is recruited at a constant rate

Λ, and is decreased through acquiring infection following substantial contact with infectious
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rodents at a rate λ̄r, defined by Equation 4.

λ̄r =
θ Ir(t)
Nr(t)

(4)

where, θ is the transmission probability from infectious rodents to susceptible rodents.

The population of exposed rodents, denoted as Er(t), is formed through interactions between

susceptible rodents and infected rodents. Within this population, a proportion of κ subsequently

transitions to the infected rodent class, signifying the rate at which susceptible rodents become

infected.

It is important to note that both the human and rodent populations experience a homogeneous

natural death rate. For the human population, this rate is denoted as µh, while for the rodent

population, it is denoted as µr.

The entire transmission dynamics is depicted in Figure 1 below.

FIGURE 1. Flow diagram for monkeypox transmission dynamics with control

measures
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Table 1 presents a comprehensive overview of the parameters in the model. Building upon

the model description, we derive the system of differential equations as follows:

(5)



dSh

dt
= Π+χVh− (λ̄h +π +µh)Sh

dVh

dt
= πSh− (χ +µh)Vh

dEh

dt
= λ̄hSh− (β +η +µh)Eh

dQh

dt
= ηEh− (φ +µh)Qh

dIh

dt
= βEh− (α +δ +µh)Ih

dTh

dt
= αIh +φQh− (ρ +µh)Th

dRh

dt
= ρTh−µhRh

dSr

dt
= Λ− (λ̄r +µr)Sr

dEr

dt
= λ̄rSr− (κ +µr)Er

dIr

dt
= κEr−µrIr

It is assumed that all the model parameters are non-negative.
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TABLE 1. Description of Model Parameters

Parameter Description Value Reference

Π Recruitment rate into susceptible human population 0.029 [2]

Λ Recruitment rate into susceptible rodent population 0.020 [2]

π Proportion of vaccinated humans 0.1-1 Varied

χ Proportion of unsuccessful vaccinated humans 0.1-1 Varied

φ Treatment rate of quarantined humans 0.3 Assumed

β Proportion of exposed human to infected state 0.2 [9]

α Treatment rate of infected humans 0.2 Assumed

ρ Recovery rate of infected humans due to treatment 0.83 [2]

κ Proportion of exposed rodents to infected rodents 0.3 [8]

θ Rodent-to-rodent transmission probability 0.0027 [2]

θr Rodent-to-human transmission probability 0.00025 [2]

θh Human-to-human transmission probability 0.00006 [2]

δ Monkeypox-induced death rate of humans 0.2 [4]

η Proportion of effective contact tracing for exposed humans 0.1-1 Varied

µr Natural death rate of rodents 0.3 [9]

µh Natural death rate of humans 0.2 [9]

3. MODEL ANALYSIS

In this section, we performed a quantitative analysis to investigate the key properties of the

model. Specifically, we focused on examining the feasibility of the system and ensuring the

positivity of its solutions. The model system described by equation 5 was studied within a

biologically feasible region, denoted as Ω, which can be further divided into two regions: Ω =

Ωh×Ωr.

3.1. Boundedness of the Model. The system described by the model in 5 is considered to be

well-posed and meaningful when its global solution remains within a positive invariant region.

This region is characterized by non-negative variables and parameters for all time t ≥ 0 [13].

This condition ensures that the variables and parameters involved in the model have realistic

interpretations and maintain non-negative values throughout the dynamics of the system. The
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concept of a positive invariant region provides confidence in the validity and significance of the

model’s implications, as it guarantees the system’s behavior aligns with the expected properties

of the studied phenomenon.

Theorem 3.1. The solution set {Sh,Vh,Eh,Qh, Ih,Th,Rh,Sr,Er, Ir} ∈ R10
+ of the model system

5 is contained in the feasible region Ω.

Proof : Under non-negative initial conditions, the model system described by 5 has a single

non-negative solution for all time t ≥ 0, which remains within a specific region. By follow-

ing the methods proposed by Asamoah et al. [13] Busenberg and Cooke[14] and Stuart and

Humphries[15], we differentiate Equations 1 and 2 to achieve the following results.

dNh

dt
= −µhNh−δ Ih +Π(6)

dNr

dt
= −µrNr +Λ(7)

Now, assuming that there is no monkeypox-induced death rate in the infected human compart-

ment, it implies that 6 becomes

dNh

dt
=−µhNh +Π(8)

Suppose that dNh/dt ≤ 0, dNr/dt ≤ 0, Nh ≤ Π/µh and Nr ≤ Λ/µr, and then imposing the

theorem used in [13] on differential inequality results in 0 ≤ Nh ≤ Π/µh and 0 ≤ Nr ≤ Λµr.

Therefore, Equations 7 and 8 becomes

dNh

dt
≤ −µhNh +Π(9)

dNr

dt
≤ −µrNr +Λ(10)

Solve 9 and 10 using the integrating factor method. After some algebraic manipulation the

feasible solution of the rodents and human population in model system 5 is in the region

Ω =

{
(Sh,Vh,Eh,Qh, Ih,Th,Rh) ∈ R7

+ : Nh ≤
Π

µh
, (Sr,Er, Ir) ∈ R3

+ : Nr ≤
Λ

µr

}
(11)

Therefore, the feasible solutions are contained in Ω. Hence the human population size Nh →

Π/µh as t → ∞. Similarly, the total rodents population size Nr→ Λ/µr as t → ∞. This means

that the infected state variables of the two populations tend to zero as time goes to infinity.
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Therefore, the region Ω is attracting all the solutions in R10
+ . Hence, the model is mathematically

well posed and epidemiologically meaningful.

3.2. Positivity of the Solutions. We demonstrate that all the state variables in the mathe-

matical model of monkeypox transmission dynamics remain non-negative for all t > 0. This

indicates that the model has epidemiological significance and is mathematically well-defined.

We present and provide a proof for the following theorem:

Theorem 3.2. Given the initial conditions {Sh0,Vh0,Eh0,Qh0, Ih0,Th0,Rh0,Sr0,Er0, Ir0 ≥ 0} ∈

R10
+ . Then the solution set for the model in 5, {Sh,Vh,Eh,Qh, Ih,Th,Rh,Sr,Er, Ir} are positive for

all t ≥ 0.

Proof : Using the approach of Chinwendu et al. [9], it follows from the first equation of the

system that

dSh

dt
= Π+χVh− (λ̄h +π +µh)Sh

=⇒ dSh

dt
≥ − (λ̄h +π +µh)Sh(12)

Using the method of separation of variables to simplify further, we have

(13) Sh ≥ Ce−(λ̄h+π+µh)t

From the initial condition, we have that

(14) Sh ≥ Sh0e−(λ̄h+π+µh)t

which is positive, given that Sh0 is also positive.

Similarly, this can be demonstrated for the remaining state variables in the model. This

observation is supported by the fact that exponential functions and initial solutions are non-

negative. Thus, the solution set remains non-negative for all time periods t ≥ 0.

4. EQUILIBRIUM POINTS AND BASIC REPRODUCTION NUMBER

4.1. Disease-Free Equilibrium Point. The disease-free equilibrium, DFE refers to a state

in which the population remains free from the disease. Mathematically, DFE is obtained by

setting all equations of the model to zero and substituting the corresponding values of the state
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variables. Let E0 =
(
S0

h,V
0
h ,E

0
h ,Q

0
h, I

0
h ,T

0
h ,R

0
h,S

0
r ,E

0
r , I

0
r
)

be the disease-free equilibrium of 5.

For the developed model, we have

(15) E0 =

(
Π(π +µh)

µh(χ +π +µh)
,

Ππ

µh(χ +π +µh)
,0,0,0,0,0,

Λ

µr
,0,0

)
4.2. Basic Reproduction Number. In infectious disease epidemiology, the basic reproduc-

tion number, R0, is arguably a significant threshold. It is the main determinant of whether a

possible outbreak of a disease can generate into an epidemic or not. R0 can be thought of as

the average number of new cases of infection caused by one normal infected individual in a

completely susceptible population [16]. It helps to determine the stability of the disease-free

and endemic equilibrium points in the model.

The computation of R0 in this study follows the approach proposed by Diekmann et al. [16].

This method involves considering the rates of new infection (fi) and transitional terms (vi) in

each compartment of the model. By applying this approach to the monkeypox model, described

by 5, we obtain the next-generation matrix as follows:

fi =



(θhIh +θrIr)µhSh

Π

0

0

θ µrθ IrSr

Λ

0


and vi =



(β +η +µh)Eh

−βEh +(α +δ +µh)Ih

−αQh +(ρ +µh)Th

(κ +µr)Er

−κEr +µrIr


(16)

Taking partial derivatives of equation 16 with respect to Eh, Ih, Th, Er and Ir and evaluating at

E0 gives:

F =



0
θhµhS0

h
Π

0 0
θrµhS0

h
Π

0 0 0 0 0

0 0 0 0 0

0 0 0 0
θ µrS0

r

Λ

0 0 0 0 0


and V =



β +η +µh 0 0 0 0

−β α +δ +µh 0 0 0

0 0 ρ +µh 0 0

0 0 0 κ +µr 0

0 0 0 −κ µr



(17)
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Hence, we evaluate FV−1 at the disease-free equilibrium as:

FV−1 =



θhβZ
(α +δ +µh)(β +η +µh)

θhZ
(α +δ +µh)

0 0
θrZ
µr

0 0 0 0 0

0 0 0 0 0

0 0 0
θκ

µr(κ +µr)

θ

µr

0 0 0 0 0


(18)

where, Z = (χ +µh)
/
(χ +π +µh).

R0 is calculated as the spectral radius of the matrix FV−1. The eigenvalues of FV−1 are

determined, and the value of R0 is obtained as the maximum among the set {0,0,0,R0h,R0r}.

Here, R0h and R0r are defined in Equation 19. This definition allows us to assess the potential

for disease transmission: if R0 < 1, the infection can be eliminated in both human and rodent

populations, while R0 > 1 indicates the potential for persistence of the infection in both host

populations.

R0h =
θhβ (χ +µh)

(χ +π +µh)(β +η +µh)(α +δ +µh)
and R0r =

θκ

µr (κ +µr)
(19)

R0h and R0r are the reproduction numbers for human-to-human transmission and rodent-to-

rodent transmission respectively.

4.3. Existence of Endemic Equilibrium Point. The endemic equilibrium point is a state in

which the disease remains prevalent within the population. It is characterized by the values of(
S∗h,V

∗
h ,E

∗
h ,Q

∗
h, I
∗
h ,T

∗
h ,R

∗
h,S
∗
r ,E
∗
r , I
∗
r
)
. Thus, we can express the endemic equilibrium as follows:
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(20)

S∗h =
Π(χ +µh)

µh
2 +
(
π +χ +λ ∗h

)
µh +χ λ ∗h

V ∗h =
Ππ

µh
2 +
(
π +χ +λ ∗h

)
µh +χ λ ∗h

E∗h =
λ ∗h Π (µh +χ)

(β +η +µh)
(
µh

2 +
(
π +χ +λ ∗h

)
µh +χ λ ∗h

)
Q∗h =

ηΠλ ∗h (µh +χ)

(β +η +µh)(φ +µh)
(
µh

2 +
(
π +χ +λ ∗h

)
µh +χ λ ∗h

)
I∗h =

λ ∗h Π (µh +χ)β

(α +δ +µh)(β +η +µh)
(
µh

2 +
(
π +χ +λ ∗h

)
µh +χ λ ∗h

)
T ∗h =

(χ +µh)((α β +η φ)µh +φ ((η +β )α +η δ ))λ ∗h Π

(β +η +µh)(φ +µh)(α +δ +µh)(ρ +µh)
(
µh

2 +
(
π +χ +λ ∗h

)
µh +χ λ ∗h

)
R∗h =

ρ (χ +µh)((α β +η φ)µh +φ ((η +β )α +η δ ))λ ∗h Π

(β +η +µh)(φ +µh)(α +δ +µh)(ρ +µh)µh
(
µh

2 +
(
π +χ +λ ∗h

)
µh +χ λ ∗h

)
S∗r =

Λ

λ ∗r +µr

E∗r =
λ ∗r Λ

(λ ∗r +µr)(κ +µr)

I∗r =
κ λ ∗r Λ

µr (λ ∗r +µr)(κ +µr)

5. STABILITY ANALYSIS OF THE MODEL

5.1. Local Stability of the Disease-Free Equilibrium. Theorem 5.1. The disease-free equi-

librium point, E0, of the model system is locally asymptotically stable if R0 < 1 and unstable

otherwise.



14 SOLOMON ESHUN, RICHMOND ESSIEKU, JAMES LADZEKPO

Proof. The Jacobian matrix, J of the system evaluated at E0 is given as

(21)

J=



−µ−π χ 0 0 −θhZ 0 0 0 0 −θrZ

π −χ−µh 0 0 0 0 0 0 0 0

0 0 −η−β −µh 0 θhZ 0 0 0 0 θrZ

0 0 η −φ −µh 0 0 0 0 0 0

0 0 β 0 −α−δ −µh 0 0 0 0 0

0 0 0 φ α −ρ−µh 0 0 0 0

0 0 0 0 0 ρ −µh 0 0 0

0 0 0 0 0 0 0 −µr 0 −θ

0 0 0 0 0 0 0 0 −κ−µr θ

0 0 0 0 0 0 0 0 κ −µr


The eigenvalues of J are:

λ1 =−µr, λ2 =−(χ +π +µh), λ3,4 =−µh,

λ5 =−
κ +2µr +

√
κ(κ +4θ)

2
, λ6 =−

κ +2µr−
√

κ(κ +4θ)

2
,

λ7 =−
(η +β +α +δ +2 µh)K +

√
K((η +β −α−δ )2K +4β θh (χ +µh))

2K
and

λ8 =−
(η +β +α +δ +2 µh)K−

√
K((η +β −α−δ )2K +4β θh (χ +µh))

2K
where, K = (χ +π +µh).

Clearly, all the eigenvalues of the Jacobian matrix are strictly negative, provided that λ6 and

λ8 are both negative. As a result, we seek to examine whether λ6 and λ8 are negative or not.

For λ6 to be negative, we have √
κ(κ +4θ)<κ +2µr(√

κ(κ +4θ)
)2

<(κ +2µr)
2(22)

Simplifying Equation 22 further gives

κ
2 +4θκ < κ

2 +4κµr +4µ
2
r

4θκ

4µr(κ +4µr)
<

4µr(κ +4µr)

4µr(κ +4µr)

θκ

µr(κ +µr)
< 1 =⇒ R0r < 1(23)

Therefore, λ6 is negative when R0r < 1.
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For λ8 to be negative, it implies

√
K((η +β −α−δ )2K +4θhβ (χ +µh))< (η +β +α +δ +2 µh)K

K((η +β −α−δ )2K +4θhβ (χ +µh))< (η +β +α +δ +2 µh)
2 K2

4θhβ (χ +µh)< (η +β +α +δ +2 µh)
2 K− (η +β −α−δ )2K

4θhβ (χ +µh)

4K (β +η +µh)(α +δ +µh)
<

4K (β +η +µh)(α +δ +µh)

4K (β +η +µh)(α +δ +µh)
(24)

Substituting the expression of K into Equation 24, we have

θhβ (χ +µh)

(χ +π +µh)(β +η +µh)(α +δ +µh)
< 1 =⇒ R0h < 1(25)

Therefore, λ8 is negative when R0h < 1.

Therefore, the eigenvalues of J are all negative if R0h < 1 and R0r < 1. Hence, the disease-

free equilibrium is locally asymptotically stable.

5.2. Global Stability of the Disease-Free Equilibrium. The global asymptotic stability of

the model is examined using the approach presented by Castillo-Chavez, Feng, and Huang [17].

As a result, we rewrite the system in the form
X ′(t) = F(X ,Y )

Y ′(t) = G(X ,Y ), G(X ,0) = 0
(26)

where, X = (Sh,Vh,Rh,Sr) and Y = (Eh,Qh, Ih,Th,Er, Ir) with X ∈R4
+ denoting (its components)

the number of uninfected individuals and Y ∈ R6
+ denoting (its components) the number of

infected individuals. The disease free equilibrium is now denoted by E0 = (X∗,0).

Theorem 5.2. The Disease-Free Equilibrium is said to be globally asymptotically stable if

R0 < 1 and the following two conditions hold:

C1. X ′(t) = F(X ,0), X∗ is globally asymptotically stable.

C2. G(X ,Y ) = AY − Ĝ(X ,Y ) with Ĝ(X ,Y )≥ 0 for all (X ,Y ) ∈Ω, where A = GY (X∗,0).

Proof.
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C1: From 5, it follows that:

F(X ,0) =



Π+χVh− (π +µh)Sh

πSh− (χ +µh)Vh

−µhRh

Λ−µrSr


=⇒ JF(X ,0) =



−π−µh χ 0 0

π −χ−µh 0 0

0 0 −µh 0

0 0 0 −µr



(27)

The system described in Equation 27 is globally asymptotically stable if all the eigenvalues of

the Jacobian matrix, denoted as JF(X ,0), are negative real roots. Specifically, the eigenvalues are

−µr, −(χ +π +µh), and −µh (with a multiplicity of 2). Therefore, the system exhibits global

asymptotic stability due to the negativity of these eigenvalues.

C2: Since A is the partial derivative of the function G(X ,Y ) with respect to Y at the disease-

free equilibrium, we have

(28) A =



−(β +η +µh) 0
θhS0

h

N0
h

0 0
θrS0

h

N0
h

η −(φ +µh) 0 0 0 0

β 0 −(α +δ +µh) 0 0 0

0 φ α −(ρ +µh) 0 0

0 0 0 0 −(κ +µr)
θS0

r
N0

r

0 0 0 0 κ −µr


By the condition C2, Ĝ(X ,Y ) is given by

(29) Ĝ(X ,Y ) =



S0
h(θhIh +θrIr)

N0
h

(
1− Sh

Nh

N0
h

S0
h

)
0

0

0

θ Ir

(
1− Sr

Nr

)
0


≥ 0
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Therefore Ĝ(X ,Y )≥ 0 for all (X ,Y ) ∈Ω implying that E0 is globally asymptotically stable.

6. SENSITIVITY ANALYSIS OF THE BASIC REPRODUCTION NUMBER

In modeling infectious diseases, identifying key parameters that significantly influence trans-

mission dynamics is crucial. Sensitivity analysis plays a vital role in assessing the robustness of

disease models and their predictions concerning different parameter values. Sensitivity analysis

quantifies the impact of varying independent variables on a specific dependent variable, based

on predefined assumptions [20]. Its goal is to understand how changes in parameter values

affect the outcome of interest, providing insights into the model’s responsiveness to different

parameter values.

The normalized forward sensitivity index is a commonly used measure to assess the sensi-

tivity of a variable to a particular parameter. It calculates the ratio of the relative change in

the variable to the relative change in the parameter. Specifically, for the variable R0h, which is

differentiably dependent on a parameter p, the normalized forward sensitivity index is defined

as:

(30) SR0h
p =

∂R0h

∂ p
× p

R0h

The sensitivity indices for all the parameters in R0h are presented in Table 2 below. A positive

sensitivity index indicates that increasing the corresponding parameter, while keeping all other

parameters constant, leads to an increase in the value of R0h. This increase in R0h amplifies

the transmission of monkeypox. On the other hand, negative sensitivity index indicate that

increasing the parameter would result in a decrease in R0h, leading to a reduction in monkeypox

transmission.
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TABLE 2. Sensitivity indices of model parameters in R0h

Parameter Sensitivity Index

π −0.6667

χ +0.3333

µh −0.1227

δ −0.3333

β +0.4908

η −0.3681

α −0.1227

θh +1.0000

Figure 2 provides a visual representation of the parameters with their respective sensitivity

indices. The results reveal that the value of R0h decreases as the values of the control parameters

η and π increase, as indicated by their negative sensitivity indices. The vaccination rate π shows

a negative index, indicating that a higher vaccination rate is associated with a decrease in R0h.

This highlights the significant role of increasing vaccination coverage in reducing monkeypox

transmission. Similarly, the negative index of η , implies that an increase in contact tracing

leads to a decrease in R0h. This explains the importance of effective contact tracing strategies

in limiting the spread of monkeypox. The progression rate of infected individuals into the

treatment class (α) also shows that a faster progression into treatment reduces R0h by reducing

the duration of infectiousness. Finally, the human-to-human contact rate shows the highest

sensitivity index of +1, underscoring the importance of reducing contact with infected humans.
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FIGURE 2. Sensitivity indices of model parameters on R0h

7. RESULTS AND DISCUSSIONS

7.1. Impact of vaccination and effective contact tracing on R0h. In this section, we analyze

the factors influencing R0h, a key measure of disease transmission dynamics and control strate-

gies. Using contour plots, we explore the relationships between parameters such as human-to-

human contact rate (θh), vaccination rate (π), effective contact tracing rate (η), and the rate

of progression from exposed to infected (β ). These plots provide visual insights into the pat-

terns and trends, helping us understand the impact of these factors on monkeypox transmission

dynamics.

Figure 3A provides the interaction between the θh and π , regarding the impact on R0h. The

plot reveals that as θh increases, the value of R0h also increases. This indicates that a higher

rate of contact between individuals leads to an elevated transmission potential of the disease,

resulting in a larger outbreak size. It also demonstrates that when the π , is very low or no

vaccination is implemented, the value of R0h tends to be higher. This suggests that a lack of

vaccination coverage allows the disease to spread more easily within the population, resulting

in a higher risk of an epidemic. Interestingly, when θh is high and the vaccination rate, π , is also
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high, the value of R0h can be observed to be less than 1. This implies that a high vaccination

rate in the presence of high contact rate can effectively reduce the transmission potential of the

disease, potentially leading to disease control and prevention of a major outbreak.

According to Figure 3B, it can be observed that R0h increases as β becomes higher and when

there is low vaccination coverage. This indicates a higher potential for rapid disease spread in

such scenarios. However, for higher values of β , high vaccination coverage keeps R0h below the

critical threshold of 1, demonstrating the effectiveness of vaccination in controlling monkeypox

transmission even with a high rate of progression. Moreover, for lower values of β , R0h remains

below 1 regardless of vaccination coverage, indicating that a low rate of progression naturally

limits monkeypox transmission and can help contain the spread.

Figure 3C shows that higher values of θh are associated with an increased R0h, indicating

a greater potential for disease spread through human-to-human interactions. The presence of

effective contact tracing plays a crucial role in controlling monkeypox transmission, as demon-

strated in Figure 3D, where higher levels of contact tracing effectiveness contribute to a re-

duction in R0h. Conversely, when contact tracing is low, R0h exhibits a significant increase,

emphasizing the critical role of contact tracing measures in controlling disease spread. These

findings highlight the importance of robust contact tracing protocols and preventive measures

in managing and controlling monkeypox outbreaks.
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(A) (B)

(C) (D)

FIGURE 3. Contour plots illustrating the interactions between key parameters

and their effects on R0h. (A) interaction between the human-to-human contact

rate and the vaccination rate. (B) interaction between vaccination coverage and

the rate of progression from the exposed to the infected state. (C) presents the

interaction between the effectiveness of contact tracing and the human-to-human

contact rate. Finally, (D) demonstrates the interaction between the effectiveness

of contact tracing and the rate of progression from the exposed to the infected

state.
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7.2. Impact of Vaccination and Effective Contact Tracing on Epidemic Size. In Figure 4,

we examined the effect of varying η on the sizes of Eh(t), Qh(t), Ih(t) and Th(t). As η in-

creased, we observed a consistent pattern in the sizes of these compartments. Starting with

Figure 4A, the size of Eh(t) decreased with increasing η . This indicates that effective contact

tracing contributes to the early identification and isolation of individuals who have been ex-

posed to the disease, thereby reducing the number of individuals in the exposed compartment.

Figure 4B, on the other hand, demonstrated a tendency for Qh(t) to grow in size as η grew. This

suggests that with better contact tracing, more individuals who have been in close contact with

infected individuals are identified and placed under quarantine. Consequently, the quarantined

compartment expands as a result of these intensified efforts in isolating potentially infected in-

dividuals. In Figure 4C, we observed a reduction in the size of the Ih(t) as η increased. This

indicates that more efficient contact tracing leads to a quicker identification and isolation of

exposed individuals, limiting their ability to transmit the disease to others. Finally, Figure 4D

provides evidence that the size of Th(t) tends to expand with increasing η . This indicates that as

contact tracing becomes more effective, a larger proportion of infected individuals are promptly

identified and receive appropriate treatment. As a result, the size of the treated compartment

increases, reflecting the positive impact of contact tracing on the timely management of infected

individuals.
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(A) (B)

(C) (D)

FIGURE 4. The impact of effective contact tracing on Qh(t), Eh(t), Ih(t) and

Th(t) over time

Aside the contact tracing, we also examined the impact of vaccination on these compartments

in Figure 5. By examining the variations in these compartments as π increases, we can assess

the influence of vaccination on the transmission dynamics and management of the disease.

In Figure 5A, a consistent decrease in the size of Eh(t) was observed as π increased. This

indicates that a higher vaccination rate leads to a reduction in the number of individuals who

become exposed to the disease. Vaccination provides protection against infection and lowers

the likelihood of individuals transitioning to the Exposed compartment, thus limiting the spread

of the disease. This finding suggests that as more individuals are vaccinated, the number of
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individuals requiring quarantine due to exposure to infected individuals decreases, as shown in

Figure 5B. As the size of the Exposed compartment decreases, there is a subsequent decrease in

the number of individuals transitioning to the quarantined compartment. This highlights the ef-

fectiveness of vaccination in preventing the progression of exposed individuals to the infectious

stage. Similarly, in Figure 5C, an inverse relationship between the vaccination rate and the size

of the infected compartment is observed. As the vaccination rate increases, the number of in-

fected individuals decreases, indicating the significant role of vaccination in reducing the spread

of the disease. Furthermore, Figure 5D shows a decreasing trend in the treated compartment

with higher vaccination rates. When a population is vaccinated against a specific disease, the

vaccination aims to provide immunity and prevent individuals from becoming infected or expe-

riencing severe symptoms if they do contract the disease. By reducing the number of infections

within the population, vaccination can help prevent the disease from progressing to a severe

state, leading to a decreased need for medical interventions, hospitalizations, and treatments.
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(A) (B)

(C) (D)

FIGURE 5. The impact of vaccination on the sizes of Qh, Eh, Ih and Th over time

8. CONCLUSION

In this study, the dynamics of monkeypox virus transmission were comprehensively exam-

ined, with a focus on the prevention and control of the disease’s spread through vaccination

and efficient contact tracing. The equilibrium points of the model were derived and analyzed

to determine the stability of the system. R0 was utilized as a threshold parameter. The analy-

sis revealed that when R0 < 1, the disease-free equilibrium point is both locally and globally

asymptotically stable. This stability criterion implies that, under certain conditions, the disease
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can be effectively eradicated from the population. The numerical simulations carried out sup-

ported this conclusion by showing that R0 can be decreased below unity with effective contact

tracing and effective vaccination. The identification and monitoring of people who have had fre-

quent contact with infected people is made possible via contact tracing. The risk of additional

transmission is reduced by quickly identifying and isolating these contacts. The execution of

preventive measures, such as vaccination or post-exposure prophylaxis, for people who may

have been exposed to the virus is also made possible via contact tracing. With this tailored

strategy, the disease is further slowed down by ensuring that people who are most at risk of

infection receive the appropriate treatments. The thorough analysis provided in this work high-

lights the symbiotic role that contact tracing and vaccination have in controlling the dynamics

of monkeypox transmission. When used together, these strategies significantly contribute to

interrupting the transmission chain, thereby stopping the virus’s transmission. These findings

emphasize the need for continued efforts in promoting vaccination programs and strengthening

contact tracing capabilities to effectively manage and contain monkeypox outbreaks.
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