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Abstract: In this paper, a linear infinite dimensional distributed systems in a Hilbert space has been 

discussed and analyzed where the dynamics of system is governed by strongly continuous semi-groups. 

The characterizations of regional strategic sensors have been given and tackled for different cases of 

regional observability.  Furthermore, the results so obtained are applied to two-dimensional systems.  

Various cases of sensors are considered and analyzed.  Also, the authors show that, the existent of a 

sensor for the diffusion system is not strategic in the usual sense, but it may be regionally strategic of 

this system. 
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1. Introduction 

Many works, in distributed parameter systems (DPSs), have been devoted to the 

observation problem [1]. It has often been studied independently of any geometric 

considerations, and most of the works were focused on the observation and 

reconstruction of the state in a certain observation space [2-3]. The notion of sensors 

and actuators introduced in the 1980s by El Jai and Pritchard allows for a better 

description of measurements and actions [4]. In addition, the study of observability 

and controllability can be considered with respect to the structure, number and 

location of sensors and actuators [5-6]. For linear DPSs, observability and 

controllability are dual notions and most results on observability can be deduced from 

those on controllability by duality [7-8]. The regional observability concept has been 
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developed recently by El Jai et al., in the 1993 [8]. In this case of regional analysis, 

the problem concerns the state observation in a sub-region ω of system domain Ω 

[10-11].  

The study of this notion motivated by certain concrete-real problem, in thermic, 

mechanic, environment [11-14]. If a system is defined on a domain   and 

represented by the room model as in the figure 1below, then we are interested in the 

regional state on ω of the domain   [15]. 

 

Fig. (1) Room model of sensor and actuator problem. 

The purpose of this paper is to give sufficient conditions of strategic sensor in this 

region which observes regional state. This paper is organized as follows: 

The second section is focused on the considered system and the problem of regional 

observability. The third section is devoted to the mathematical concept of regional 

observability and the characterization of regional strategic sensors in various 

situations is studied. In the last section, we illustrate applications with many situations 

of sensor locations.  

    

2. Regional observability 

In this section, we are interested to study the notion of regional observability and 

recall original results related to particular systems. 

2.1 Problem statement 

Let  be a regular bounded open subset of ,nR  with boundary   and  T,0 , 

0T  be a time measurement interval. Suppose that   be a non-empty given 

sub-region of .  We denote [,0] T  and [.,0] T  The 

considered distributed parabolic systems is described by the following state space 

equations   



REGIONAL STRATEGIC SENSORS CHARACTERIZATIONS           403 

              






















                             0     ),(

                      )(     )0,(

      )(),(),(

tx

xx

tButAxt
t

x







                                                  (1) 

augmented with the output function  
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where A  is a second order linear differential operator, which generates a strongly 

continuous semi-group  
0

)(
tA tS  on the Hilbert space )(2  LX  and is self-

adjoin with compact resolvant. The operator ),( XRLB p and ),( XRLC q , 

depend on the structures of actuators and sensors [16-18].  The spaces UX  ,  and O  

be separable Hilbert spaces where X  is the state space, ) ,,0( 2 pRTLU   is the 

control space and ),,0(2 qRTLO   is the observation space, where p  and q  are the 

numbers of actuators and sensors. Under the given assumption, the system (1) has a 

unique solution [1]:                                                                                                      
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The problem is that, how to present sufficient conditions for regional strategic sensors 

which enable to observe the current state in a given sub region    (see figure 

1above), using convenient sensors. 

 

2.2  Definitions and characterizations 

The regional observability concept has been developed recently by El Jai [9-10] and 

extended to the regional asymptotic state by Al-Saphory and El Jai in ref.s [13,16-18]. 

To recall regional observability, consider the associated autonomous system to (1) 

given by 
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With )0,(x  is supposed known in . )(2 L  Thus, the knowledge of )0,(x  permit 

to observe regional state ),( tx   at any time . t   

▪ The measurements are obtained from the output function (2). In this case, the 
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solution of (4) is given by the following form,                    

          ],0[    , )()(),( TtxtStx A                                                                          (5) 

 ▪ We define the operator  

          OxCSKxXxK A  (.):                                (6) 

Then, we obtain  

           )0( . ,)()( . , xtKty   

where  is bounded linear operator (this is valuable on some output function) [19 ]. 

▪ We note that    XOK  :  is the adjoint operator of K  defined by 

           
 

t

A dsyCSyK
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                                      (7) 

▪ Consider a sub-region    and let   is the restriction function defined by 

            )()(: 22  LLX                                    (8) 

                        xxx   

where is the restriction of   to   

▪ The adjoint
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Now, to present strategic sensors, we need some definitions and characterizations of 

regional observability concept as in [11-12 ]. 

 

Definition 2.1. The system (4) augmented with the output function (2) is said to be 

regionally exactly observable on   (or exactly - observable), if  

      

Definition 2.2. The
 
system (4) augmented with the output function (2) is said to be 

regionally approximately observable on    (or approximately  - observable), if  

 

Remark 2.3. The definition 2.2. is equivalent to say that the system (4)-(2) is 

approximately -observable if 

ker   

Then, the following characterizations can extend to the regional case as in ref. [7]. 

 

K

 x x  . 

)()(: 22  LL 

)(Im 2  LK 

)((.)Im 2  LK 



 0)( 
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Proposition 2.4. The system (4)-(2) is exactly -observable if there exists    

such that  ),(2 Lx      

           ‖𝜒𝜔 𝑥°‖𝐿2(𝜔) ≤ 𝜈 ‖𝐾𝜒∗
𝜔 

𝑥°‖𝐿2(0,𝑇,𝑂)
                          (9) 

Proof.  The proof of this property is deduced from the usual results on observability 

considering   [3].  

Let 𝐸, 𝐹 and 𝐺 be Banach reflexive space and 𝑓 ∈ 𝐿(𝐸, 𝐺), 𝑔 ∈ 𝐿(𝐹, 𝐺), then we 

have 

     (1) 𝐼𝑚 𝑓 ⊂ 𝐼𝑚 𝑔 

    (2) then there exist 𝑐 > 0 such that  

          ‖𝑓∗𝑥∗‖𝐸∗  ≤ ‖𝑔∗𝑥∗‖𝐹∗ ,  𝑥∗ ∈ 𝐺∗. 

Now, if this result is applied. Choosing 

          𝐸 = 𝐺 =  )(2 L ,  𝐹 = 𝑂, 𝑓 = 𝐼𝑑
)(2 L

 

and  

           𝑔 = 𝜒𝜔𝐾∗,  

therefore, we obtain the inequality (9) ∎. 

From the proposition 2.4 .we can get the following result. 

 

Corollary 2.5. we have: 

(1) The notion of approximate -observability is far less restrictive than the 

exact -observability. 

   (2) From the equation (9) there exists a reconstruction error operator that gives 

an estimation of the initial state   in 𝜔 [10]. Then, we have 

                                          (10)  

Remark 2.6. The regional observability concept is more convenient in the analysis of 

real systems. We can deduce that: 

  (1) The definitions 2.1. and 2.2. are general and can be applied to the case where 

 𝜔 =  𝛺.   

  (2) The equation (10) shows that he regional state reconstruction will be more  

   precise than if we estimate the state in the whole domain 𝛺.   

  (3) A system is exactly observable, then, it is exactly 𝜔-observable, but the  

   converse is not true in general. Now, we prove that property (3) of remark 2.6. 

 

Proof. We see that if the system is exactly observable on Ω, then it is exactly 

𝜔-observable and this is a consequence of (10) and then 
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We can explain this by: 
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Then from proposition 2.6., then system (4)-(2) is exactly -observable. 

 

3. -Strategic sensors 

The purpose of this section is to give the characterization for sensors in order that the 

system (1) is regionally observable in a region  . 

  

3.1 Sensors notion 

This subsection consists of the concept of the sensors, which was coined by A. El Jai   

[4]. Sensors can play a fundamental role in the understanding of any real system. 

Sensors form an important link between a system and its environment. Sensors have a 

passive role and allow the system evolution to be measured. This means that the 

sensors will define an output function. In any case of sensors is considered via a space 

variable, mathematically speaking, the space variable is present in all systems 

described by partial differential equations. Now, let   be the spatial domain in 

which the system (4) is modeled. We can have much geometry for the support given 

by the following cases (see figure 2 below): 

      (1) Pointwise or zone sensors inside the physical domain . 

      (2) Pointwise or zone sensors on the boundary of the physical domain . 

      (3) Filament sensors in the domain . 

      (4) Mobile pointwise sensors in the domain . 

 

Fig. (2) The domain of  , the sub-region  , various sensors locations. 
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Definition 3.1. A sensor may be defined by any couple ),( fD  where:  

(1) D  denotes a closed subset of , which is the support of sensor in the zone case   

 bD   in the pointwise case), 

(2) f )(2  L  defines the spatial distribution of the sensor in the zone case ( bf   

in the pointwise case, b  is a Dirac mass in b ). 

Remark 3.2. According to the choice of the parameters D  and f  we have various 

types of sensors.  In this case of q  sensors, we consider qiii fD 1),(  with  

 iD  (or iD  )   

and   

 .1if ,2 q ji   D) , D(DLf jiii     

The associated output function is:  

     Tq tytytyty  )( ...,  ),( ),( )( 21  

where  

       
)(2),(     )(

iDLii ftxty   

In the case of zone sensors and then, 

           T

DLqDL q

ftxftxty ] ),( ..., , ),([)(
)()(1 2

1
2                    (11) 

From these equations the output function may be written in the form 

      )( )( txCty   

If the sensors (or some of them) are pointwise, the correspondent components to the 

associated output are given by: 

      
 

       

  )( ...,  ),( ),(  )( T

21 tytytyty q
                        (12)                      

                              

                   
)(2),(  




Lbi
tx   

                   ),( tbx i  

where  
ib  denotes the Dirac mass concentrated in ib . Now, let us consider the 

orthonormal set of eigenfunctions ( nj ) of A is associated with the eigenvalues ( n   ) 
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of multiplicity ,nr  then, the state vector  )(tx  can be expressed by the following 

form: 







1,

)( )(
jn

nnj txtx                                           (13) 

and we have the following forms: 

(i) Zone sensors case: In this case, the operator  C  is of type  q  

with 
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and then the output function can be given by 
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Then from (13) the output function (12) can be written in the form  

              
iD
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Pointwise sensors case: The operator C  is of type  q  with 

)(,,
)(2 injLbnjij bC

i
 


 

          1 a n d   1  1  , )() ,(   nrjq, i dbt nibnj i
  

Thus we have 

              







































 

 

 


 


1 1
)(

1 1
)(

2

2

,    )(

,    )(

)(

n

r

j
Lbqnjn

n

r

j
Lbjnn

n

n

i

tx

tx

ty





                     (16) 

In this case C  is not bounded operator in X  [5]. Then, from above the output 

function (12) can be given by the form 
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Boundary sensors case:  In the case of boundary measurements (pointwise or zone) 

the support of sensors iD  is subset of  .  

i.e. the output function can be obtained by 
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Now in the case where the zone measurements, with      ii ΓD  and 
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The operator C  is not bounded in this case [5]. Then, the output function (12) can be 

given by the form 

             
 


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i

dft
ν

x
tCxty i

 
 )( ),(    )(.,)(.,                                                       (21) 

Definition 3.3.  A sensor ( fD, ) is  -strategic if the corresponding system (14) 

augmented with the output function (2) is approximately  -observable .  

Definition 3.4. A suite of  qiii fD 1),(  is said to be  - strategic if there exist at least 
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one sensor  ),( 11 fD  which is approximately  -strategic. 

We can deduce that the following result: 

Corollary 3.5. A sensor is  -strategic if the corresponding system (12)-(14) is 

exactly  -observable. 

 

Proof. Let the system (12)-(14) is exactly  -observable. Then, we have             

           

From the decomposition sub-spaces of direct sum in Hebert space, we can represent 

)(2 L  by the unique form [3]   

           ker  Im )(2  LK  

we obtain  

           

This is equivalent to 

            

 Finally, we can deduce this system is approximately  -observable and therefore this 

sensor is   -strategic.∎ 

Thus, the definition 2.1., proposition 2.4. and corollary 3.5. guarantee  -strategic 

sensors with far more restrictive conditions.  

 

Remark 3.6. From the previous results, we note that: 

(1)  a sensor which is strategic for a system, is -strategic. 

(2) a sensor which is 𝜔1-strategic for a system where 𝜔1 ⊂ 𝛺, is 𝜔2-strategic for 

any 𝜔2 ⊂ 𝜔1. 

(3) One can find various sensors which are not strategic in usual sense for systems, 

but may be -strategic and achieve the observability in  . This is illustrated in the 

following counter-example. 

 

3.2 A counter- example 

Consider the diffusion process  
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where Ω =]0, 1[ and the function output 
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where 𝑏 is the location of  pointwise sensor (𝛿𝑏 , 𝑏) in Ω  as defined  in figure 3 

 
Fig. (3) The domain  , the sub-region   and the location sensors b . 

 First, we must prove that the system (22)-(23) is not approximately observable in Ω, 

that means the sensor (𝛿𝑏 , 𝑏) is not strategic. For this purpose, we can write the 

system (22) as a state space one dimensional system  
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Where,
 

 are the eigenfunctions and the associated eigenvalues of 𝐴. From the 

solution of (22), we have 

 xtKxtCSbxtty
i

iLii  )( )()(,)( exp),( 
1

)(2 




  

then, the system  (22)-(23) is approximately observable if  

Ker  0)( tK  

As proved by El Jai and Pritchard  [7], if  Qb (the rational number), then the system 

(22)-(23) is not approximately observable and the sensor (𝛿𝑏, 𝑏) is not strategic. This 

is the case if we consider 

 NjbjJ 2     

then  

               Ker  
JjitK


 )(  

Now, we can prove that for certain ,Jj   the state 
j

  that is not approximately 

observable in   but can be  approximately  -observable on certain sub-region 

 
0

)(
t

tS








1

i)(i  ,  )  ( exp)( 2

i
Li xtxtS  

ii  ,
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 .  Let  

   ,  1,0  ,     with     b , we have      

            



 Jjdj     2

    and for       ,  ji , ,  Jji  

we obtain 

           



 0dji  

If Jj   then 
j

 is not approximately observable on    1 ,0  and the sensor is not 

strategic. Let us show that 
j

 is approximately  -observable on  .  ,   we 

have  

T]. [0, 0,   )(  ttK    
Then  

              0)(  ,)exp(
)(2 

 ji

iLii bt
j




 

              Ji
Lij         0  , 

)(2 



 

for ii   such that    ,  ,12 Nkkbi  we have  

              
jiijji

Lij ,        , tan tan       0  , 
)(2  


 

which is not true, in general.  Consider the space where 

.4     ,6      ,
2

1
    , 

4

1
  jib   Then   yx 6sin2  is approximately   

 -observable on  
4

3
,

4

1








and the sensor is -strategic.∎ 

The concept of regional strategic sensor on 𝜔 can be characterized by the following 

results:   

 

Theorem 3.7. Assume that 𝑠𝑢𝑝 𝑟𝑛 = 𝑟 <  ∞, then the suite of sensors qiii fD 1),(  

is  - strategic if and only if  

      (1) rq   

      (2) nn rGrank    


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where 

               nijnn rjqiGG  1    ,1              )(  

and 

              





























)()(

)(1)(1

22
1

1
2

1
2

1

( . ),,,( . ),

( . ),,,( . ),

  )(

pnr
np

nr

LqLqn

LnLn

ijn

ff

ff

G











 

Proof. The proof is developed in the case where the sensors are of zone type and 

located inside the domain .   If suite of sensors are  - strategic, then the 

corresponding system (22)-(24) is approximately  -observable, it is equivalent to 

  0z   0   xK  , for  , )(2 Lx  [6] we have  

qifxtxK
n

injnj

r

j

n

n














  







 1       ,   ,  ,)exp(  
1 1

   

If the suite of sensors is not strategic sensors,  i.e, the system (22)-(24) is not 

approximately  -observable, then there exists     0x  such that 

          1    ,       0   ,,         0
nr

1j

 


 nnfxxK injnj    

Let nx  define by 

          





























)(

)(

2

2
1

, 

      

, 









Lrn

Ln

n

x

x

x

n

  

Then, 

       
    nnnn rGr a n knxG                 1      ,0 . 

Now, we to prove conversely if nn rGrank      for some ,n  then there exists    

          0

 

   

  
1























nr
n

n

n

x

x

x  ,    0)(   2

1




  Lxx
nr

j

njnj   

such  that    

              0nn xG  

so we can construct a non zero )( 2 Lx  . Considering  
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              nj,x
Ljk              if     0

)(2 
         and  

              nnknk rkxx   1           ,    ,   

for which   qin,  jxf jk

r

k

ijk

j

i
 



 1          0 , ,
1

     and also  

           qixf nk

r

k

ink

j

i
 



 1            0 , ,
1

  

otherwise there exists    )(  0 2 Lx   ,  such that   

              ,  0 xK   

Thus, the system (22)-(24) is not approximately  -observable and then the sensors 

are not  -strategic. ∎ 

 

Corollary 3.8. If the system (22)-(24) is exactly  -observable, rank condition in 

theorem 3.7. is satisfied. 

Remark 3.9. The previous result can be extended to the case of pointwise, filament 

sensors as in ref.s [16-18]. 

 

4. Application to sensor locations 

 In this section, we present an application of the above results to a two-dimensional system 

defined on [1 ,0]  [1 ,0]   by the form  

              






















                              0),,(

                 ),()0,,(

             ),(),,(

21

2121

2121

tx

xx

txt
t

x







                                                                    (25) 

together with output function by (2). Let [,]  [,] 2211    be the considered region is 

subset of [1 ,0]  [1 ,0]  .  In this case, the eigenfunctions of system (25) are given by  

       )(sin)(sin
))((

2
),(

22

22

11

11

2211

21
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
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
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








 jiij                            (26) 

associated with eigenvalues 
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
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
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



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2
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ji
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The following results give information on the location of internal zone or pointwise  -

strategic sensors. 

 

 

4.1 Internal zone sensor 

Consider the system (25) together with output function (2) where the sensor supports D  

are located in  . The output (2) can be written by the form 

               D
ddftxty 212121 ),(),,()(                                                                      (28) 

where D  is location of zone sensor and )(2 DLf  . In this case of (figure 4), the 

eigenfunctions and the eigenvalues  

 

Fig. (4) Domain  , sub-region   and location D  of internal zone sensor. 

are given by (4.2)  and (4.3). However,  if we suppose that  

              



2

22

2

11

)(

)(




Q                                                                                                     (29) 

Then 1r  and one sensor (𝐷, 𝑓) my be sufficient to achieve  -observability of systems 

(25)-(28) [20]. Let the measurement support is rectangular with 

                   22222111 ,, llllD    

then, we have the following result: 

Corollary 4.1. If 1f  is symmetric about 11    and 2f  is symmetric about 

,
22    then the sensor (𝐷, 𝑓) is  -strategic if  

  
)(

)(

11

11







i
  and  N   

)(

)(

22

22 






i
     for some   i . 

 

4.2 Internal pointwise sensor 

 Let us consider the case of pointwise sensor located inside of  . The system (25) is 

augmented with the following output function: 

                21221121 ),(),,()(  ddbbtxty                                                         (30) 

where ),( 21 bbb   is the location of pointwise sensor as defined  in (figure 5) 
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Fig. (5) Rectangular domain, and location b  of internal pointwise sensor. 

If  )/()( 2211  Q then 1m  and one sensor ),( bb   may be sufficient for  -

observability of systems (25)-(30).  

Thus, we obtain the following result,  

Corollary 4.2. The sensor ),( bb   is  -strategic if  )/()( 1111  bi  and  

Νbi  )/()( 2222  , for every .i  

 

4.3 Internal filament sensor 

Consider the case where the information is given on the curve )( Im    with 

)1 ,0(1C (see figure 6), then we have, 

 
Fig. (6) Rectangular domain, and location   of internal filament sensors. 

 

Corollary 4.3. If the measurements recovered by filament sensor ),(   such that is 

symmetric with respect to the line .   Then the sensor ),(   is  -strategic if  

)/()( 1111  i  and Νi  )/()( 2222   for all .,...,1 qi   

Remark 4.4. These results can be extended to the following: 

1. Case of Neumann or mixed boundary conditions [4-5]. 

2. Case of disc domain )1 (  D,  and )0(    , r  where   and 10  r     

[16-17] . 

3. Case of boundary sensors where )  ,( qRXLC , we refer to see [19, 21].  

4. we can show that the observation error decreases when the number and support 

of sensors increases [22]. 
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5. Conclusions 

The regional strategic sensors have been developed.  A various regional observability have 

been discussed and analyzed which permit us to avoid some bad sensor locations. Various 

interesting results concerning the choice of such sensors are given and illustrated in specific 

situations with diffusion systems. Many questions still opened, for example, the simulations 

of this model are under consideration and the problem of finding an optimal sensor location 

ensuring such an objective. 
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