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Abstract. The problem of determining the collaboration graph of co-authors of Paul Erdos is a

challenging task. Here we take up this problem for the case of Rolf Nevanlinna Prize Winners. Even

though the number of the prize winners as on date is 8, the collaboration graph has 23 vertices and

48 edges and posses several interesting properties. In this paper we have obtained this graph and

determined standard graph parameters for both this graph and its complement besides probing its

structural properties. Several new results were obtained.
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1. Introduction

In the past decade, graph theory has gone through a remarkable shift and a profound

transformation. The change is in large part due to humongous amount of information
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that are confronted with. A main way to sort through massive data sets is to build

and examine the network formed by interrelations. For example, Google’s successful web

search algorithms are based on the www graph, which contain all WebPages as vertices

and hyper links as edges. These are sorts of information networks, such as biological

networks built from biological databases and social networks formed by email, phone

calls, instant messaging and various other types of physical networks. Of particular

interest to mathematicians is the collaboration graph, which is based on the data from

Mathematical Reviews. In the collaboration graph, every mathematician is a vertex, and

two mathematicians who wrote a joint paper are connected by an edge.

The graph considered in his paper is finite, simple and undirected. For any undefined

terms see [1] and [11]. For any graph G, we denote by V (G) and E(G) the vertex set and

the edge set of G respectively. The collaboration graph G has as vertices all researchers

(dead or alive) from all academic disciplines with an edge joining vertices u and v if u

and v have jointly published a paper or book. The distance between two vertices u and v

denoted d(u, v), is the number of edges in the shortest path between u and v in case if such

a path exists and ∞ otherwise. Clearly d(u, u) = 0. We now consider the collaboration

subgraph centered at Paul Erdos (1913-1996). For a researcher v, the number d(Erdos, v)

is called the Erdos number of v. That is, Paul Erdos himself has Erdos number 0, and his

coauthors have Erdos number 1. People not having Erdos number 0 or 1 but who have

published with some one with Erdos number 1 have Erdos number 2, and so on. Those

who are not linked in this way to Paul Erdos have Erdos number ∞. The collection

of all individuals with a finite Erdos number constitutes the Erdos component of G.

511 people have Erdos number 1, and over 5000 have Erdos number 2. In the history

of scholarly publishing in Mathematics, no one has ever matched Paul Erdos’s number

of collaborators or papers (about 1500, almost 70% of which were joint works). Many

important people in academic areas other than mathematics proper-as diverse as physics,

chemistry, crystallography, economics, finance, biology, medicine, biophysics, genetics,

metrology, astronomy, geology, aeronautical engineering, electrical engineering, computer

science, linguistics, psychology and philosophy do indeed have finite Erdos numbers. Also
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see [13] for more details.

Problem: For the sake of brevity we denote the Rolf Nevanlinna Prize Winners

Collaboration Graph by G∗. In this paper we consider the problem of 1) obtainting

G∗; 2) determining for G∗ and its complement, certain standard graph parameters; and

3) investigating the structural properties of G∗.

We have already described in [23, 24, 25]about the Rolf Nevanlinna Prize, History of

Rolf Nevanlinna Prize

2. Construction of G∗

G∗ is constructed as follows: G∗ has twenty three vertices and forty eight edges.

V (G∗) = {u1, u2, . . . , u23} here u1 = Paul Erdos, u2 = Maria Margarat Klawe, u3 =

Siemion Fajtlowicz, u4 = Robert Robinson, u5 = George Gunthar Lorentz, u6 = Endre

Szemeredi, u7 = Laszlo Lovasz, u8 = Nathan Linial, u9 = Alon Noga, u10 = Boris Aronov,

u11 = Andrej Ehrenfeucht, u12 = Mark Jerrum, u13 = Alok Aggarwal, u14 = Robert

Endre Tarjan, u15 = Leslie Valiant, u16 = A.A. Razborov, u17 = Avi Wigderson, u18 =

Peter W. Shor, u19 = Madhu Sudan, u20 = Jon Kleinberg, u21 = Mario Szegedy, u22 =

Lance J. Fortnow, u23 = Daniel Spielman. Note that the chronological order of prize

winners are defined in order by uj, j = 14 to 20, 23, E(G∗) = {e1, e2, . . . , e48} where

e1 = (u1, u2), e2 = (u1, u3), e3 = (u1, u4), e4 = (u1, u5), e5 = (u1, u6), e6 = (u1, u7),

e7 = (u1, u8), e8 = (u1, u9), e9 = (u1, u10), e10 = (u2, u8), e11 = (u2, u13), e12 = (u2, u14),

e13 = (u2, u17), e14 = (u2, u18), e15 = (u3, u11), e16 = (u4, u12), e17 = (u5, u16),

e18 = (u6, u9), e19 = (u6, u16), e20 = (u6, u17), e21 = (u7, u8), e22 = (u7, u9), e23 = (u7, u17),

e24 = (u7, u18), e25 = (u8, u9), e26 = (u8, u13), e27 = (u8, u17), e28 = (u8, u18),

e29 = (u9, u10), e30 = (u9, u17), e31 = (u9, u19), e32 = (u10, u13), e33 = (u11, u15),

e34 = (u12, u15), e35 = (u13, u17), e36 = (u13, u18), e37 = (u13, u19), e38 = (u13, u20),

e39 = (u16, u17), e40 = (u17, u19), e41 = (u19, u20), e42 = (u1, u21), e43 = (u7, u21),

e44 = (u9, u21), e45 = (u17, u22), e46 = (u19, u21), e47 = (u21, u22), e48 = (u22, u23). None of

the eight RNPW’S have Erdos number 1. Out of the 511 direct co-authors of Paul Erdos,

with Erdos Number 1, only ten members are connected by a path of length 1 with the
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RNPW’S. Out of the eight RNPW’S only five members namely u14, u16, u17, u18, u19 have

Erdos number 2, the remaining members namely u15, u20, u22, u23 have Erdos number 3.

G∗ is shown in Figure 1.

Figure 1. G∗

The method of obtaining the G∗ is described as follows:

: Step 1: Click on the link:

http://www.ams.org/mathscinet/collaborationDistance.html

The result of step 1 is the following screen:
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: Step 2: Enter the Author name and Enter another author name or click on the

use Erdos icon. For example, if the author name is: Jon.M. Kleinberg and the

another author name is: Paul Erdos then we obtain the following screen:

To know more details about the joint work of these authors, just click on the respective

MR number. For example, if we click on MR1427557 then we derive the following screen:

Proceeding like this, one can obtain all the eight RNPW’S collaboration details one

by one. Since the number of RNPW’S is a small number, the above procedure is

recommended. It is vital to record a fact that, if there is no co author relationship

at all between two persons say X and Y , then the result of our action of doing the

Step 2 will be: “No path found”. We have thoroughly checked all possible combinations.
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That is, first, we have checked the co author relationship between any of the RNPW’S

with any of the 10 applicable co-authors at level 1 with Erdos number 1. This action

leads to 5 × 10 + 3 × 10 (where 5 × 10 stands for the possible collaboration between 5

RNPW’s at level 2 with any of the 10 possible collaborators at level 1 and 3× 10 stands

for the possible collaboration between 3 RNPW’s at level 3 with any of the 10 possible

collaborators at level 1) combinations. Then we have considered the possible collaboration

of the 4 non RNPW’s at level 2 with any of the 10 possible collaborators at level 1. This

action leads to 4 × 10 combinations. Then we have to consider possible collaborators

between themselves of both 5 RNPW’s and 4 non RNPW’s at level 2. This action leads

to
(
5
2

)
+
(
4
2

)
+ 5 × 4 combinations. Then we have to consider the possible collaborators

between 3 of the RNPW’s at level 3 with 5 RNPW’s at level 2 and with 4 non RNPW’s

at level 2. This action leads to 3× 5+3× 4 combinations. Finally we have to consider all

possible combinations between themselves of the 3 RNPW’s at level 3. This action leads

to
(
3
2

)
combinations. A scrupulous implementation of the above said procedure has led

to the graph G∗ in Figure 1.

3. G∗ - its Certain Coloring Parameters and their Properties

Graph coloring is an important area of theoretical and practical research in

combinatorics. By a coloring we mean an assignment of colors to the vertices or edges.

More formally, a coloring of a graph G(V,E) is a function f from V (G) or E(G) to the

set of all natural numbers. Here we restrict our attention to only vertex colorings. Hence,

the range of the coloring is only a finite subset; and if the graph is colored with k-colors,

without loss of generality, we can assume the range of the coloring to the {1, . . . , k}.

A coloring of a graph G is called proper if no two adjacent vertices are assigned the

same color. The minimum number of colors used in such a coloring is what is called

the chromatic number of G, denoted by χ(G). A coloring (not necessarily proper) of a

graph G is called a pseudocomplete coloring if for every pair of distinct colors, say, i, j

there exists an edge e = (u, v) ∈ E(G) such that u is colored i and v is colored j. The

maximum number of colors used in a pseudocomplete coloring of a graph G is called

the pseudoachromatic number, ψ∗(G). The maximum number of colors used in a proper
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complete coloring of a graph G is the achromatic number, ψ(G). (Note that the chromatic

number of G is the minimum of colors used in a proper pseudocomplete coloring of G).

Further it is easy to see that χ(G) ≤ ψ(G) ≤ ψ∗(G).

Proposition 3.1. χ(G∗) ≤
(

ω(G∗)+1
2

)
Proof. Look at G∗. As {u2, u8, u13, u17} constitutes the complete graph on four

vertices as an induced subgraph of G∗, we have χ(G∗) ≥ 4. Now color the vertices

u2, u3, u4, u5, u6, u7, u10, u19, u23 with color a; u8, u11, u12, u14, u16, u20, u22 color the

vertices with color b; color the vertices u1, u13, u15, u21 with color c; color the vertices

u9, u17, u18 with d. This gives raise to a chromatic 4-coloring of G∗. This implies that

χ(G∗) ≤ 4. Hence χ(G∗) = 4. Further, it is easy to check that G∗ contains no K5,

the complete graph on 5 vertices as an induced subgraph. Therefore ω(G∗) = 4; As

4 = χ(G∗) ≤ 10 =
(
4+1
2

)
, the proposition follows. �

We know that if a graph G does not contain 2K2 as an induced subgraph then χ(G) ≤(
ω(G)+1

2

)
.

Proposition 3.2. It is not necessary that a graph G satisfying the inequality χ(G) ≤(
ω(G)+1

2

)
should not contain 2K2 as an induced subgraph.

Proof. Clearly (u13, u20) and (u22, u23) constitutes 2K2 as an induced subgraph of G∗. The

result now follows from Proposition 3.1. �

Proposition 3.3. 10 ≤ χ(G∗) ≤ 20, where G∗ denotes the complement of G∗.

Proof. As no two of the vertices {u2, u3, u4, u5, u6, u7, u10, u15, u19, u22} is an independent

set in G∗, it induce a K10 in G∗. Therefore χ(G∗) ≥ 10. To obtain the upper bound we

appeal to the famous Nordhaus and Gaddum inequality. χ(G)+χ(G∗) ≤ |V (G∗)|+1. �

G∗ and its chromatic polynomial

We know that any given graph G on n vertices can be properly colored in many different

ways using a sufficiently large number of colors. This property of a graph is expressed
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elegantly by means of a polynomial. This polynomial is called the chromatic polynomial of

G and is defined as follows: The value of the chromatic polynomial Pn(λ) of a graph with

n vertices gives the number of ways of properly coloring the graph, using λ or fewer colors.

Let ri be the different ways of properly coloring G using exactly i colors. Since i colors can

be chosen out of λ colors in
(
λ
i

)
different ways, there are

(
λ
i

)
different ways of properly

coloring G using exactly i colors out of λ colors. Since i can be any positive integer from 1

to n (it is not possible to use more than n colors on n vertices), the chromatic polynomial

is a sum of these terms; that is, Pn(λ) =
n∑

i=1

ri

(
λ

i

)
. Clearly r1 = 0, as any graph with

non empty edge set requires at least two colors for properly coloring its vertices. Now

Consider G∗. r23 = 23! as G∗ can be properly colored in 23! ways using 23 different

colors. As χ(G∗) = 4, it is easy to deduce that r2 = r3 = 0. We leave it to the readers to

determine ri for 4 ≤ i ≤ 23. Hence,

Theorem 3.4. The chromatic polynomial of G∗ is P23(λ) =
23∑
i=4

ri

(
λ

i

)
+

23∏
i=0

(λ− i).

G∗ and its Partitions

The Vertex-arboricity a(G) of a graph G is the fewest number of subsets in a partition

of the vertex set of G such that each subset induces an acyclic subgraph. Clearly a(G) ≤

χ(G) for any graph G.

Proposition 3.5. a(G∗) = 2.

Proof. As a(G∗) ≤ χ(G∗) = 4, we have a(G∗) ≤ 4. Partition the vertex set of G∗ as

V (G) =
3∪

i=1

Vi with V1 = {u1, u2, u3, u4, u5, u6, u7, u10, u11, u12, u14, u17, u18, u19, u22},

V2 = {u8, u9, u13, u15, u16, u20, u21, u23}. Note that each Vi, 1 ≤ i ≤ 2 induces an acyclic

subgraph. Now it is easy to see the result. �

Proposition 3.6. 2 ≤ a(G∗) ≤ 11.
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Proof. Mitchem [17] proved that for any G of order p, 1)
√

(p) ≤ a(G∗)+a(G∗) ≤ p+3
2
; 2)

p
4
≤ a(G∗)a(G∗) ≤

(
(p+3)

4

)2

. In view of this we get for our G∗, 4.8 ≤ a(G∗) + a(G∗) ≤ 13

and this inturn yields that 2 ≤ a(G∗) ≤ 11. �

G∗ and connectivity properties

A set A of vertices of a graph G is a separator if G − A has at least two connected

components. If A induces a clique in G then we call A a clique separator. G∗ has a

number of clique separators. For example, {u1, u2}, {u1, u7, u8}, {u2, u8, u13, u17} are all

clique separators of different cardinality. Further the vertices u14, u20 and u23 are simplicial

vertices, as the set of vertices adjacent to them respectively induces a clique in G∗. That

is adj(u14) = {u2}, a K1, the complete graph on one vertex and adj(u20) = {u13, u19}, a

K2, adj(u23) = {u22}, a K1, where adj(u) = {v : (u, v) ∈ E(G)}. It is interesting to note

that the simplicial vertices need not be clique separators, as ω(G∗) = ω(G∗ − u14) and

ω(G∗) = ω(G∗ − u23).

Proposition 3.7. G∗ is not a chordal graph.

Proof. We call a graph G, chordal, if every cycle in G of length at least 4 has a chord.

G∗ is not a chordal graph, because, the set of vertices of G∗, namely, {u17, u19, u21, u22},

even though induces a C4, has no chord edge between the non adjacent pair of vertices

(u17, u21), (u19, u22). �

Proposition 3.8. G∗ is not self complementary.

Proof. We know that a graph G is called a self complementary graph if G ∼= G. Also

Clapham [7] has shown that every self-complementary graph has a Hamiltonian cycle. As

G∗ has a pendent vertices u14, u23, it has no Hamiltonian cycle. �.

Proposition 3.9. κ(G∗) = κ′(G∗) = 1, κ(G∗), κ′(G∗) are the vertex and the edge

connectivity of G∗.

Proof. As G∗ has pendent vertices u14, u23, we have κ(G∗) ≤ κ(G∗) ≤ 1. Now κ(G∗) = 1

as ω(G∗ − u2) ̸= ω(G∗) and κ′(G∗) = 1 as ω(G∗ − (u22, u23)) ̸= ω(G∗). �
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Observation 3.10. It is quite interesting to observe that a vertex disjoint clique

decomposition of G∗ account for only fifteen edges out of a total of forty eight edges which

is one third of q(G). That is V (G) =
12∪
j=1

Hj, where H1 = {u2, u8, u13, u17} ∼= K4; H2 =

{u1, u6, u9} ∼= K3; H3 = {u3, u11} ∼= K2; H4 = {u4, u12} ∼= K2; H5 = {u5, u16} ∼= K2;

H6 = {u7, u18} ∼= K2; H7 = {u19, u20} ∼= K2; H8 = {u22, u23}; H9 = {u10},; H10 = {u14};

H11 = {u15}; H12 = {u21} all Hi
∼= K1, 9 ≤ i ≤ 12. By a clique graph cl(G) of a given

graph G, we mean the graph, whose vertices are the vertex-disjoint cliques of G and the

edge set is constructed as follows: Introduce an edge between two clique vertices, if any

vertex of one clique is adjacent to any vertex of the other clique. The clique graph cl(G)

of G∗ is given in Figure 2.

Figure 2. cl(G∗)

Observation 3.11. We call an open walk that includes all the edges of a graph without

retracing any edge a unicursal line or an open Euler line. A connected graph that has a

unicursal line will be called a unicursal graph. We know that if a connected graph G has

exactly 2k odd vertices then there exist k edge-disjoint subgraphs such that they together

contain all edges of G and that each is a unicursal graph. Consider G∗. It has 10 (= 2k)

odd degree vertices (with k = 5) u8, u10, u13, u14, u16, u17, u19, u21, u22, u23. Now add 5 edges
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to G∗ between the vertex pairs (u8, u19), (u10, u16), (u13, u21), (u17, u23), (u14, u22) to form

a new graph (G∗). Since every vertex of (G∗) is of even degree, (G∗) consists of an Euler

line ρ: Remove from ρ the 5 edges we just added. Then ρ will be split into 5 walks, each of

which is a unicursal line. The first removal will leave a single unicursal line; the second

removal will split that into two unicursal lines; and each successive removal will split a

unicursal line into two unicursal lines, until there are 5 of them.

Proposition 3.12. β0(G∗) ≤ 14.

Proof. We know from [16] that if G and G are two complementary graphs of finite order

p then 1) β0(G) + β0(G) ≤ p + 1 and 2) β0(G)β0(G) ≤
⌊
p+1
2

⌋ ⌈
p+1
2

⌉
. In view of this we

deduce that β0(G∗) ≤ 14 as β0(G∗) = 10 and p = 23. �

Proposition 3.13. 8 ≤ β1(G
∗) ≤ 11. If β1 = max{β1, β1} else 1 ≤ β1 ≤ 12.

Proof. We know from Chartrand and Schuster [6] that for a pair of complementary graphs

G and G∗ of finite order p, 1)
⌊
p
2

⌋
≤ β1(G) + β1(G∗) ≤ 2

⌊
p
2

⌋
and 2) 0 ≤ β1(G)β1(G∗) ≤⌊

p
2

⌋2
. In view of this, we have 11 ≤ β1(G

∗) + β1(G∗) ≤ 22 and hence 8 ≤ β1(G∗) ≤ 11.

But the results of Cockayne and Lorimer [8] and Erdos and Schuster [9] imply, moreover,

that
⌊
(p+1)

3

⌋
≤ max{β1(G∗)β1(G∗)} ≤

⌊
p
2

⌋
. So, 8 ≤ max{β1(G∗)β1(G∗)} ≤ 11. �

Proposition 3.14. 12 ≤ α1(G∗) ≤ 15.

Proof. We know from Lasker and Aucrbach [15] that if G and G∗ are complementary

graphs of order p then

1) 2
⌊
(p+1)

2

⌋
≤ α1(G) + α1(G∗) ≤

⌈
3p
2

⌉
− 2;

2)
⌊
(p+1)

2

⌋2
≤ α1(G)α1(G∗) ≤

⌊
(⌈ 3p

2 ⌉−2)
2

⌋⌈
(⌈ 3p

2 ⌉−2)
2

⌉
;

3)
⌊
(p+1)

2

⌋
≤ min{α1(G)α1(G∗)} ≤

⌊
(2p+1)

3

⌋
; In view of this we have

24 ≤ α1(G
∗) + α1(G∗) ≤ 33; 144 ≤ α1(G

∗)α1(G∗) ≤ 272;

12 ≤ min{α1(G
∗), α1(G∗)} ≤ 15. Hence 12 ≤ α1(G

∗) ≤ 15. �
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4. G∗, a Bounded Fragmentation Graph

We now proceed to check whether G∗ is a bounded fragmentation graph or not? It

is quite a recent interesting property introduced by Mohammad Taghi Hajiaghayi and

Mahdi Hajiaghayi in [18]. We know that connectivity can be considered as a measure of

the reliability of a network. Suppose that a network N is represented by an undirected

graph G, in which two computers, namely nodes of the network, can communicate if and

only if there is a path in G from one to other. If G is k-connected, then after removing

at most k− 1 vertices of G, the rest of G (which has n− k+1 vertices) is still connected.

This means that if at most k − 1 nodes of the network fail, the rest of the nodes of

the network can communicate with each other. Now we define a bounded fragmentation

graph. A graph G is a (k, g(k))-bounded fragmentation graph if |ζ(G[V − S])| ≤ |g(k)|

for every S ⊆ V (G) of size at most k, where g is a function of k. A graph G is a totally

g(k)-bounded fragmentation graph if it is a (k, g(k))-bounded fragmentation graph for all

0 ≤ k ≤ n. Here ζ(G) denote the number of components of G, where each element of

ζ(G) is a connected graph. We remark that a bounded fragmentation can play a similar

role in the reliability of a network like connectivity. That is, if G is a (k, g(k))-bounded

fragmentation graph, then thereafter removing at most k vertices, we still have at least one

component which has Ω(n) vertices. The reason is that after removing at most k vertices

the rest of the nodes fall into at most a constant number of connected components (g(k))

and thus one component has at least Ω(n) vertices. Thus, after the failure of at most k−1

nodes of N , Ω(n) nodes in the rest of N (and not necessarily n−k) still can communicate

with each other. So by grouping these facts, we conclude that bounded fragmentation

can be considered as a generalization of connectivity. It also has another application in

the reliability of a network. Suppose that we need to repair the network N temporarily

by adding several links between the current nodes of the network (not by adding any new

node because of its high cost) when the number of failing nodes in the networks is at most

k. If G is a (k, g(k))-bounded fragmentation graph, then we can simply repair the network

by adding at most g(k) − 1 number of links, which is constant. Here after removing the

failure nodes, we find the connected components of G in O(|V (G)|) time. Then we can
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connect these at most g(k) − 1 edges among them. These two simultaneous properties

of bounded fragmentation graphs cause their corresponding networks to be more reliable

and robust.

Proposition 4.1. G∗ is a 10k bounded fragmentation graph.

Proof. Clearly the maximum degree of G, viz., ∆(G∗) = 10, is a constant. So after

removing any k vertices, 0 ≤ k ≤ 23, the number of connected components is at most

g(k) = 10k. �

Proposition 4.2. G∗ is totally 10-bounded fragmentation graph.

Proof. For any set S ⊆ V (G) of size k, 0 ≤ k ≤ 23, at least one vertex from each connected

component of G[V − S] is contained in any maximum independent set. Since the size of

the maximum independent set is 10, we see that the number of connected components is

bounded above by 6, as well. So, G is totally 10-bounded fragmentation graph. �

Proposition 4.3. G∗ is a totally (k + 5)-bounded fragmentation graphs.

Proof. G∗ has 5 disjoint paths viz., u1u2u14, u3u11u15u12u4, u5u16u6u9u10, u21u7u8u17u22u23,

u20u19u13u18. Now the removal of a vertex from a path splits the path into at most two

sub paths and thus at most two connected components. Thus, removing any k vertices,

0 ≤ k ≤ 23, can add at most k connected components. Thus we have at most (k + 5)-

connected components. �

We say that a vertex u of G covers an edge e if u is incident with e (and conversely, e

covers u). The minimum number of vertices (edges) covering all the edges (vertices)

of G is called vertex-(edge) covering number of G and denoted by α0(G)[α1(G)].

Similarly a set A of vertices [edges] of G is said to be independent if no edge [vertex]

of G is incident with more than one vertex [edge] in A. The maximum cardinality

of an independent set of vertices [edges] of G is called vertex-[edge-]independence

number of G and denoted by β0(G)[β1(G)]. For G∗, β0 = 10, and the vertices are:

{u2, u3, u4, u5, u6, u7, u10, u15, u19}. We know that α0 + β0 = p where p = |V (G)| and

hence β0(G
∗) = 10, p = 23 implies α0(G

∗) = 13, and the set of vertices which cover all
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the edges of G∗ are {u1, u8, u9, u11, u12, u13, u14, u16, u17, u18, u20}. Further we also have

a result that α1 + β1 = p and hence we now calculate either of these parameters for

G∗ to find the other. Here again β1(G
∗) = 10 and the set of independent edges are

{(u1, u10), (u2, u14), (u3, u11), (u4, u12), (u5, u16), (u6, u17), (u7, u9), (u8, u13), (u19, u20)}. So

α1(G
∗) = 13, and the set of edges which cover all the vertices of G∗ are {(u1, u10), (u2, u14),

(u3, u11), (u4, u12), (u5, u16), (u6, u9), (u7, u8), (u13, u17), (u12, u15), (u13, u18), (u19, u20),

(u1, u21), (u22, u23}.

5. G∗, its Diameter, Radius, Eccentricity etc.

We know that in a graph G, the distance between two vertices u and v, denoted by

dG(v) is the length of the shortest path between u and v in G. The distance of a vertex v in

G is defined dG(v) =
∑
dG(u, v). A vertex of minimum distance is called a median vertex

of G. The median is the subgraph of G induced by its median vertices and is denoted

by M(G). The eccentricity of a vertex v in G denoted e(v) is the number max
u∈v(G)

dG(u, v).

The subgraph of G induced by the vertices of minimum eccentricity is the center C(G)

of G. The radius r(G) is the minimum eccentricity of the vertices, whereas the diam(G),

the diameter of G is the maximum eccentricity. A vertex v is called a peripheral vertex if

e(v) = diam(G), and the periphery is the set of all such vertices.

Proposition 5.1. M(G∗) = K1, where M(G∗) is the median graph of G∗.

Proof. Compute the distance of each vertex of G∗.

d(u1) =
∑

v∈V (G)

d(u1, v) = d(u1, u2)+d(u1, u3)+d(u1, u4)+d(u1, u5)+d(u1, u6)+d(u1, u7)+

d(u1, u8)+d(u1, u9)+d(u1, u10)+d(u1, u11)+d(u1, u12)+d(u1, u13)+d(u1, u14)+d(u1, u15)+

d(u1, u16) + d(u1, u17) + d(u1, u18) + d(u1, u19) + d(u1, u20) + d(u1, u21) + d(u1, u22) +

d(u1, u23) = 1+1+1+1+1+1+1+1+1+2+2+2+2+3+2+2+2+2+3+1+2+3 = 37.

Similarly one can compute that d(u2) = 46, d(u3) = 54, d(u4) = 54, d(u5) = 55,

d(u6) = 51, d(u7) = 46, d(u8) = 44, d(u9) = 43, d(u10) = 50, d(u11) = 73, d(u12) = 71,

d(u13) = 58, d(u14) = 68, d(u15) = 85, d(u16) = 65, d(u17) = 53, d(u18) = 60, d(u19) = 56,

d(u20) = 64, d(u21) = 50, d(u22) = 72, d(u23) = 94. From this, it clears that u1 is the
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median vertex, as d(u1) = min{d(ui) : 1 ≤ i ≤ 23} = 37. As the median vertex for our

G∗ is unique; the median graph M(G∗) = K1. �

Proposition 5.2. C(G∗) = K1, where C(G
∗) is the center of G∗.

Proof. We compute the eccentricity of every vertex of G∗. e(u1) = max{d(u1, uj) : 2 ≤

j ≤ 23} = d(u1, u15) = 3; e(u2) = d(u2, u15) = d(u2, u23) = 4; e(u3) = d(u3, u20) =

d(u3, u23) = 4; e(u4) = d(u4, u20) = d(u4, u23) = 4; e(u5) = d(u5, u15) = d(u5, u23) = 4;

e(u6) = d(u6, u15) = d(u6, u23) = 4; e(u7) = d(u7, u15) = 4; e(u8) = d(u8, u16) =

d(u8, u23) = 4; e(u9) = d(u9, u15) = 4; e(u10) = d(u10, u15) = d(u10, u23) = 4;

e(u11) = d(u11, u20) = d(u11, u23) = 5; e(u12) = d(u12, u19) = d(u12, u23) = 5; e(u13) =

d(u13, u15) = d(u13, u23) = 5; e(u14) = d(u14, u15) = d(u14, u23) = 5; e(u15) = d(u15, u20) =

6; e(u16) = d(u16, u15) = d(u16, u23) = 5; e(u17) = d(u17, u15) = d(u17, u23) = 5;

e(u18) = d(u18, u15) = d(u18, u23) = 5; e(u19) = d(u19, u15) = 6; e(u20) = d(u20, u15) = 6,

e(u21) = d(u21, u20) = 4, e(u22) = d(u22, u15) = d(u22, u18) = d(u22, u19) = d(u22, u20) = 5,

d(u23, u15) == d(u23, u20) = 6u1 is the only vertex having minimum eccentricity 3, we

deduce that C(G∗) = K1. �

Theorem 5.3. M(G∗) = C(G∗).

Proof. It follows from Proposition 5.1 and Proposition 5.2.

Corollary 5.4. r(G∗) = 3, where r(G∗) is the radius of G∗.

Corollary 5.5. diam(G∗) = 6, where diam(G∗) is the diameter of G∗.

Corollary 5.6. The periphery of G∗ is an empty set.

Proof. As G∗ has no peripheral vertex the proof follows. �

Proposition 5.7. G∗ is the extremal graph for the inequality

r(G) ≤ diam(G) ≤ 2r(G).

Proof. It follows from Corollary 5.4 and Corollary 5.5. �

Proposition 5.8. diam(G∗) = r(G∗) ≤ 6.
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Proof. Bosak [2] have proved that, if G∗ and G∗ are two connected complementary graphs

of order p ≥ 6, then 1) 4 ≤ diam(G∗) + diam(G∗) ≤ p + 1 2) 4 ≤ diam(G∗)diam(G∗) ≤

2p − 2. In view of this, we have that diam(G∗) ≤ 42
7
= 6.3 = 6. The proof now follows

from Corollary 23.1 and Corollary 23.2. �

The average eccentricity of a graph G is the mean eccentricity of a vertex in G. That

is, avec(G) =
1

n

∑
v∈V (G)

e(v). It is easy to see that r(G) ≤ avec(G) ≤ diam(G). Now we

compute the avec(G∗).

avec(G∗) = 1
23
[3 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 5 + 5 + 5 + 5 + 6 + 5 + 5 +

5 + 6 + 6 + 4 + 5 + 6] = 107
23

= 4.6 and it lies between the radius and diameter of G∗,

i.e., r(G) = 3 ≤ 4.6 ≤ 6 = diam(G) . Similarly the average distance is defined as

µ(G) = 1
n(n−1)

∑
v∈V (G) dG(v) where dG(v) is the distance of a vertex v in G. Now

µ(G∗) =
1

506

[
23∑
j=1

d(uj)

]
=

1

506
[37 + 46 + 54 + 54 + 55 + 51 + 46 + 44 + 43

+ 50 + 73 + 71 + 58 + 68 + 85 + 65 + 53 + 60 + 56 + 64 + 50 + 72 + 94]

=
1

506
× 1349 = 2.66.

Note that for any graph G, avec(G) ≤ 1
n
d(C(G)) + r(G). One can check that this graph

the inequality.

Note 5.9. Nestled between the minimum eccentricity and maximum eccentricity is the

average eccentricity. It was introduced by Buckley and Harary [4]. This new parameter

has a practical relevance. For example, consider a communications network modeled by a

graph with vertices representing the nodes of the network and edges representing the links

between them. One might want to minimize the average, taken over all the nodes in the

system, of the maximum time delay of a message emanating from it. This is the average

eccentricity of the corresponding graph.

Deleting an edge from a graph may cause its diameter to increase or stay the same,

but it cannot decrease. A graph G is diameter-minimal if for all the edges e ∈ E(G),
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diam(G − e) > diam(G). Any edge that can be removed from G without affecting the

diameter is called superfluous. Note that diameter-minimal graphs have no superfluous

edges. For, Let G be a diameter-minimal graph with diameter 2. Then every superfluous

edge e = (u, v) is contained in a triangle. Suppose not, then the removal of e would make

diam(G) ≥ d(u, v) ≥ 3.

6. G∗ and Distance Degree Sequence

For a vertex v in a connected graph G, let ni(v) be the number of vertices at distance i

from v. The distance degree sequence of vertex v is dds(v) = (n0(v), n1(v), . . . , ne(v)(v)).

Clearly n0(v) = 1 for all v; n1(v) = deg(v). The length of the sequence dds(v) is one more

than the eccentricity of v;
∑
ni(v) = p. The distance degree sequence dds(G) of a graph

G consists of sequences dds(v) of its vertices, listed in numerical order. If a particular

dds appears k times, we list it once with k as an exponent to indicate the multiplicity.

For G∗, dds(u1) = (1, 10, 9, 3); dds(u2) = (1, 6, 11, 4, 1); dds(u3) = (1, 2, 10, 9, 1); etc.

Similarly one can have corresponding to the distance of each vertex, a special distance

sequence sds(G) of a connected graph G as the list of its distance values arranged in non

decreasing order. The distance values need not be consecutive integers; There need not

be two vertices with maximum distance value: sds(G) is derivable from dds(G): For the

sequence dds(v) = (n0(v), n1(v), . . . , ne(v)(v)), we have d(v) =

e(v)∑
i=1

ini(v). For instance we

have for G∗, d(u1) = 1× n1(u1) + 2× n2(u2) + 3× n3(u3) = 37.

A graph G is geodesic if every pair of vertices u and v are joined by a unique path of

length d(u, v). One can see [4] for more.

Proposition 6.1. G∗ is not a geodesic.

Proof. We know that if every cycle of G is odd, then G is a geodesic. As G∗ contains an

even cycle: u1u2u8u9u1, it is not geodesic. �

We know that, if G is geodesic, then every cycle of G of smallest length is odd. But

the converse is not true. For example, every cycle of G∗ of smallest length is 3, an odd

number, but G∗ is not a geodesic.
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Proposition 6.2. G∗ must contain a cycle with a diagonal.

Proof. We know that a graph G with p ≥ 4 vertices and 2p−3 edges must contain a cycle

with a diagonal. As G∗ has p = 23 vertices and greater than or equal to 2p− 3 edges, it

must contain a cycle with a diagonal. Obviously, u13u18u2u8u13 is a cycle in G∗ with a

diagonal u13u2. �

Proposition 6.3. G∗ contains two cycles with no edges in common.

Proof. We know that a graph G with p ≥ 5 vertices and p + 4 edges contains two cycles

with no edges in common. As G∗ has p = 23 vertices and greater than or equal to p + 4

edges, it must contain two cycles with no edges in common. Clearly u8u9u10u13u8 and

u6u16u17u6 are two cycles with no edges in common. �

Proposition 6.4. G∗ contains two cycles with no vertices in common even though it has

only less than 3p− 5 edges.

Proof. We know that a graph G with p ≥ 6 vertices and 3p− 5 edges contains two cycles

with no vertices in common. It is not necessary that the converse of the above stated

result be true. Clearly G∗ has p = 23 vertices and less than or equal to 3p− 5 edges and

it has two vertex disjoint cycles u8u9u10u13u8 and u6u16u17u6. �

We know that if G is connected with diameter d, then 2d−3−
⌊(

(d2−d−4)
p

)⌋
≤

⌊
(p2−2q)

p

⌋
.

It is easy to check that G∗ satisfies the inequality as L.H.S = 8 with d = 6 and R.H.S =

18 with p = 23, q = 48.

Proposition 6.5. g(G∗) ≤ 2 diam(G∗) + 1, where g(G∗) is the girth of G∗.

Proof. We know that if G is connected and not a tree, then g(G) ≤ 2diam(G)+ 1. As G∗

is connected and has a number of cycles as induced subgraph, it is not a tree. Further

as the length of the shortest cycle in G∗, namely, the girth is 3, and diam(G∗) = 6, the

result follows. �
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7. Domination and Total Domination

A set S of vertices in a graph G = (V,E) is a dominating set of G if every vertex in

V −S is adjacent to some vertex in S. The domination number γ(G) of G is the minimum

cardinality of a dominating set. A total dominating set S of G is a dominating set such

that the induced subgraph ⟨S⟩ has no isolates, or if any vertex v of G is adjacent to at

least one vertex of the set S. The total domination number γT (G) of G is the minimum

cardinality of a total dominating set. The maximum degree of a graph G, denoted by

∆(G) = max
v∈V (G)

deg(v).

Theorem 7.1. γ(G∗) = 6.

Proof. First we claim that no dominating set of G∗ can have cardinality 5. Suppose not,

then it means there exists a dominating set S with cardinality exactly 5. The degree

distribution of vertices of G∗ reveals the fact that S should contain u1 as deg(u1) =

∆(G∗) = 10, either u2 or u14, u22 or u23 as deg(u14) = 1 = deg(u23). Since deg(u2) >

deg(u14) and deg(u22) > deg(u23), it is clear that u2, u22 ∈ S. Now look at all the 2-

degree vertices of G∗. They are u3, u4, u5, u11, u12, u15, u20. We find no single vertex of G∗

adjacent with all the above given 2-degree vertices, to be included as, the fourth choice

of element of S. However, as u11, u12 are both adjacent only to u15, we allow u15 as the

fourth preferred element of S. This is because, if we did not allow u15 as an element of

S, then, in order to accommodate u11, u12, we need to include u3, u4 in S, in which case,

S = {u1, u2, u3, u4} and there exists an element u16 which is not adjacent to any element

of S. So S = {u1, u2, u22, u15}. Now the fifth element of S can be any one of the remaining

nineteen vertices of G∗. But it is clear that, none of the remaining 2-degree vertices can

be an element of S. Therefore, we have the number of choices reduced from nineteen to

thirteen. But obviously u14 cannot be the fifth element of S. So it is enough to consider

only the vertices u6, u7, u8, u9, u10, u13, u16, u17, u18, u19, u21, u23. Now as (ui, u16) ̸∈ E(G∗)

for i = 7, 8, 9, 10, 13, 18, 19, 21, 23; (u17, u20) ̸∈ E(G∗); (u16, u19) ̸∈ E(G∗); (u6, u19) ̸∈

E(G∗) we see that none of the vertices among u6, u7, u8, u9, u10, u13, u16, u18, u19, u21 and

u23 can be an element of S. Hence it follows that a five element subset cannot be a
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dominating set of G∗. This means that a probable dominating set of G∗ must contain at

least 6 elements.

Now let S be a subset of V (G) and v ∈ S. Then the Private Neighbourhood of v with

respect to the set S is denoted by Pr[v, S] and is defined as:

Pr[v, S] = {w ∈ V (G) : N(w) ∩ S = {v}}. Note that 1) if w ∈ V (G) − S and w is

adjacent to only v ∈ S, then w ∈ Pr[v, S], 2) if w ∈ S and w ̸= v, then w ̸∈ Pr[v, S],

3) If w = v is not adjacent to any vertex of S, then w ∈ Pr[v, S]. Haynes, Hedetniemi

and Slater [12] have showed that a dominating set in a graph G is a minimal dominal

set if and only if if for every vertex v ∈ S, Pr[v, S] ̸= ϕ. Now consider the set S1 =

{u1, u2, u17, u15, u22, u13}, a subset of V (G∗). As (ui, u1) for i = 2, 3, . . . , 10; (u21, u1),

(u22, u23), (ui, u15) for i = 11, 12; (ui, u13), for i = 17, 18, 19, 20 are all edges of G∗, we see

that S1 is a dominating set of G∗. As N(u4)∩S1 = {u1}; N(u20)∩S1 = {u13}; we see that

u4 ∈ Pr[u1, S1] and hence Pr[u1, S1] ̸= ϕ. Similarly N(u11) ∩ S1 = {u15}; N(u16) ∩ S1 =

{u17}; N(u23) ∩ S1 = {u22} implies that Pr[uj, S1] ̸= ϕ for j = 2, 13, 15, 17, 22. Therefore

S1 is a minimal dominating set. Note that G∗ has no minimum dominating set. That

is, we show that S2 = {u1, u14, u13, u15, u17, u22} is another minimal dominating set. S2 is

a dominating set, since, (ui, u1) for i = 2, 3, . . . , 10, 21; (ui, u15) for i = 11, 12; (u14, u2);

(u16, u17); (ui, u13) for i = 18, 19, 20 are all edges of G∗. Moreover, u4 ∈ Pr[u1, S2];

u2 ∈ Pr[u14, S2]; u20 ∈ Pr[u13, S2]; u11 ∈ Pr[u15, S2]; u16 ∈ Pr[u17, S2]; u23 ∈ Pr[u22, S2]

and hence Pr[ui, S2] ̸= ϕ for all i ∈ S2. Therefore, S2 is a minimal dominating set. Hence

γ(G∗) = |S1| (or = |S2|) = 6. �

Note 7.2. It is interesting to note that even though deg(u14) < deg(u2) and deg(u23) <

deg(u2), u14 and u23 can also become an element of a dominating set in general and a

minimal dominating set in particular.

Theorem 7.3. γT (G
∗) = 7

Proof. By Theorem 7.1, we have seen that a dominating set of G∗ should have at least

six elements. Now we claim that any total dominating set of G∗ must have at least seven

elements. To see this, let us first start with an arbitrary set S ⊆ V (G∗) with indispensable
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elements as dictated by the structure of G∗. By Theorem 7.1, the compulsory

elements of G∗ are {u1, u2, u15, u22, u6} (or) {u1, u2, u15, u22, u16} (or) {u1, u2, u15, u22, u17}

(or) {u1, u14, u15, u22, u6} (or) {u1, u14, u15, u22, u16} (or) {u1, u14, u15, u22, u17}. Suppose

{u1, u2, u15, u22, u6} then the all possible dominating sets are S1 = {u1, u2, u6, u13, u15, u22},

S2 = {u1, u2, u6, u15, u19, u22}, S3 = {u1, u2, u6, u15, u20, u22}. This is because

{u1, u2, u6, u15, u22, uj} is not a dominating set as (uj, u20) ̸∈ E(G∗) for the follow-

ing different possible combinations: (u1, u2, u3, u6, u15, u22) (or) (u1, u2, u4, u6, u15, u22)

(or) (u1, u2, u5, u6, u15, u22) (or) (u1, u2, u6, u7, u15, u22) (or) (u1, u2, u6, u8, u15, u22) (or)

(u1, u2, u6, u9, u15, u22) (or) (u1, u2, u6, u10, u15, u22) (or) (u1, u2, u6, u11, u15, u22) (or)

(u1, u2, u6, u12, u15, u22) (or) (u1, u2, u6, u14, u15, u22) (or) (u1, u2, u6, u15, u16, u22) (or)

(u1, u2, u6, u15, u17, u22) (or) (u1, u2, u6, u15, u18, u22). Again if S = {u1, u2, u15, u22, u16}

(or) {u1, u2, u15, u22, u17} (or) (u1, u6, u14, u15, u22) (or) (u1, u14, u15, u17, u22) then the all

possible dominating sets are S1 = {u1, u2, u6, u13, u15, u22}, S2 = {u1, u2, u6, u15, u19, u22},

S3 = {u1, u2, u6, u15, u20, u22}, S4 = {u1, u2, u13, u15, u17, u22}, S5 = {u1, u2, u15, u17,

u19, u22}, S6 = {u1, u2, u15, u17, u20, u22}, S7 = {u1, u6, u13, u14, u15, u22}, S8 =

{u1, u13, u14, u15, u16, u22}, S9 = {u1, u13, u14, u15, u17, u22} for the same reason given above.

In view of this, the total number of distinct dominating sets possible for G∗ is twelve.

It is easy to see that none of these eight dominating sets can be a total dominating set.

This is because, the u22 is not adjacent with any of the elements of any of these twelve

dominating sets. Hence we infer that a total dominating set of G∗ must have at least

seven elements.

Now by the definition of a total dominating set, we infer that every element in the total

dominating set S must be adjacent with at least one element of the S. The presence of u15

as an indispensable element in the construction of a total dominating set reveals the fact

that the sixth element must be either u11 or u12. Hence the all possible total dominating

sets of G∗ are T1 = {u1, u2, u11, u13, u15, u17, u22}, T2 = {u1, u2, u11, u15, u17, u19, u22}, T3 =

{u1, u2, u12, u13, u15, u17, u22}, T4 = {u1, u2, u12, u15, u17, u22}. Let G be a graph and S a

subset of V (G). For v ∈ S, the total private neighbourhood of v with respect to S in

G, denoted TPr[v, S] is defined as: TPr[v, S] = {w ∈ V (G) : N [w] ∩ S = {v}}. Note
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that, 1) if w ∈ V (G) − {v} and w is adjacent to only v ∈ S, then w ∈ TPr[v, S]. 2)

if w = v ∈ S, then w ̸∈ TPr[v, S]. We claim that a total dominating set S in G is a

minimal total dominating set if and only if for every vertex v ∈ S, TPr[v, S] ̸= ϕ. Let

S be a minimal total dominating set in G and v ∈ S be any arbitrary vertex. So there

exists a w ∈ V (G) such that w is not adjacent to any vertex S − v. If w = v, then w

is not adjacent to any vertex of S and in which case, S will turn out to be a non total

dominating set, a contradiction. Now let w ̸= v ∈ V (G). As S is a total dominating set

and w is adjacent to only v in S, we see that w ∈ TPr[v, S]. That is, TPr[v, S] ̸= ϕ for

any v ∈ S. Conversely, suppose that S is a total dominating set in G for any vertex v ∈ S,

TPr[v, S] ̸= ϕ. Let S1 = S−{v} and w ∈ TPr[v, S]. Then w ̸= v is adjacent to only v in

S. Also w is not adjacent to any vertex of S. That is, S1 is not a total dominating set in

G. This is true, of course, for any vertex v of S. Hence S is a minimal total dominating

set in G. Clearly S = {u1, u2, u11, u13, u15, u17, u22} is a minimum total dominating set.

This is because (ui, u1) for i = 3, . . . , 10, 21; (u12, u15); (u14, u2); (u16, u17); (ui, u13) for

i = 18, 19, 20; (ui, u22) for i = 21, 23; (u1, u2); (u2, u17); (u11, u15); (u13, u17); (u17, u22) are

all edges of G∗ or the subgraph induced by S, namely ⟨S⟩, has no isolates. Further note

that u4 is adjacent to only u1 ∈ S; u13 is adjacent to u2 ∈ S; u15 is adjacent to only

u11 ∈ S; u19 is adjacent to only u13 ∈ S; u12 is adjacent to only u15 ∈ S; u16 is adjacent

to only u17 ∈ S, u23 is adjacent to only u22 ∈ S. This shows that TPr[ui, S] ̸= ϕ for all

ui ∈ S. For the same reason we infer that S1 = {u1, u2, u11, u13, u15, u17, u22} is a minimal

total dominating set in G∗. Therefore we infer that G∗ has no minimum total dominating

set. Hence we conclude that γT (G
∗) = |S| = 7. �

Note 7.4. In Theorem 7.1, we have seen two dominating sets. In the course of the proof

of Theorem 7.3, we have decisively found all the dominating sets of G∗.

Note 7.5. We have found in the course of the proof of Theorem 7.3 all the minimal

total dominating sets of G∗. They are T1 = {u1, u2, u11, u13, u15, u17, u22}, T2 =

{u1, u2, u11, u15, u17, u19, u22}, T3 = {u1, u2, u12, u13, u15, u17, u22}, T4 = {u1, u2, u12, u15,

u17, u19, u22}.
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Let us present here an algorithm to find a dominating set of any graph G.

Algorithm

(1) Pick a vertex u ∈ V (G) and color it A.

(2) Color all uncolored neighbours of all vertices with color A with the color B.

(3) Color all uncolored neighbours of all vertices with color B with the color A.

(4) If there are uncolored vertices, go to step 2.

(5) Let SA = {u ∈ V (G) : color(u) = A} and SB = {u ∈ V (G) : color(u) = B}.

If |SA| > |SB| then S = SB; else S = SA. SA is the set of vertices with color A,

SB is the set of vertices with color B. The resulting dominating set is not necessarily

minimal but |S| ≤ n/2, where n = V (G). We use the above algorithm and construct

a dominating set of G∗. Pick u1 and let col(u1) = A where c : V (G∗) → {A,B} is a

color function. So initially SA = {u1}. Assign all the neighbours of u1 with color B. As

N(u1) = {ui : 2 ≤ i ≤ 10, 21}, we get SB = {u2, u3, u4, u5, u6, u7, u8, u9, u10, u21}. Now

color all the uncolored neighbours of all the elements of SB with the color A. Then the

initial SA gets revised to SA = {u1, u11, u12, u13, u14, u16, u17, u18, u19, u23}. Now color all

the uncolored neighbours of all the elements of SA with the color B. This gives revised

SB with SB = {u2, u3, u4, u5, u6, u7, u8, u9, u10, u15, u20, u21, u22}. As |SB| > |SA|, we get

S = SA and it is a dominating set. Also note that |SA| = 10 < 11.5 (= 23/2).

We observe that the above algorithm is not an efficient one to produce a minimal

dominating set. However, for networks of enormous size, this algorithm proves useful in

producing an initial dominating set, which can be pruned later into a minimal one by

employing other heuristic or greedy approaches.

8. Global Domination and Total Global Domination

A dominating set S of G is a global dominating set if S is also a dominating set of

GC . The global domination number γg(G) of G is the minimum cardinality of a global

dominating set. A global dominating set S of G is a total global dominating set, if S

is also a total dominating set of GC . The total global domination number γtg(G) is the
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minimum cardinality of a total global dominating set. Note that γ(G) and γg(G) are

defined for any graph G, while γt(G) is defined only for those G with δ(G) ≥ 1 and γtg(G)

is defined only for those G with δ(G) ≥ 1 and δ(GC) ≥ 1.

Theorem 8.1. γg(G
∗) = 6

Proof. In the course of the proof of Theorem 7.3, we have found all the dominating

sets of G∗. They are S1 = {u1, u2, u6, u13, u15, u22}, S2 = {u1, u2, u6, u15, u19, u22}, S3 =

{u1, u2, u6, u15, u20, u22}, S4 = {u1, u2, u13, u15, u17, u22}, S5 = {u1, u2, u15, u17, u19, u22},

S6 = {u1, u2, u15, u17, u20, u22}, S7 = {u1, u6, u13, u14, u15, u22}, S8 = {u1, u13, u14, u15,

u16, u22}, S9 = {u1, u13, u14, u15, u17, u22}. As (u13, uj) ∈ E(G∗)C for j = 3, 4, 6, 7, 9, 11, 21;

(u14, uj) ∈ E(G∗)C for j = 8, 10, 13, 16, 17, 18, 19, 20, 23; (u2, u15); (u12, u16) are edges in

(G∗)C ; we find that S1 is a global dominating set. Moreover, we find Sj is a global

dominating set for j = 1 to 12. In view of this, we infer that there is no minimum global

dominating set. Hence γg(G
∗) = 5. �

Theorem 8.2. γtg(G
∗) = 7

Proof. In the course of the proof of Theorem 7.3, we have found all the to-

tal dominating sets of G∗. They are T1 = {u1, u2, u11, u13, u15, u17, u22}, T2 =

{u1, u2, u11, u15, u17, u19, u22}, T3 = {u1, u2, u12, u13, u15, u17, u22}, T4 = {u1, u2, u12, u15,

u17, u19, u22}. Consider the total dominating set T1 = {u1, u2, u11, u13, u15, u17, u22} of

G∗. We claim that T1 is also a total global dominating set of G∗. As (u1, ui) for

i = 11, 13, 14, 17, 18, 22; (u2, ui) for i = 3, 4, 5, 6, 7, 9, 10, 12, 15, 16, 19, 20, 21, 23; (u8, u11);

are all edges of (G∗)C , the claim follows. By Theorem 7.3, γt(G
∗) = 7 with T1 as the

minimum total dominating set. Moreover, we find Tj is a global total dominating set for

j = 1 to 4. In view of this, we infer that there is no minimum total global dominating set

and γtg(G
∗) = 7. �

Theorem 8.3. The global dominating set and total global dominating set of G∗ are distinct

with different cardinality.
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Proof. In [1], we proved that diam(G∗) = 3. Kulli and Janakiram [14] have showed that

if G and GC both have no isolated vertices and diam(G) ≥ 5 then a set S ⊆ V (G) with

δ(⟨S⟩) ≥ 1 is a global dominating set if and only if S is a total global dominating set.

Here both G∗ and (G∗)C have no isolated vertices and diam(G∗) = 3. This implies that

G∗ has global dominating set distinct from its total global dominating set. This result

was further confirmed by Theorem 8.1 and Theorem 8.2. �

Theorem 8.4. It is not necessary that diameter of a graph should be at least 5 to have

the same total dominating set and total global dominating set.

Proof. Kulli and Janakiram [14] have showed that for a graph G with diam(G) ≥ 5,

a set S ⊆ V (G) is a total dominating set iff S is a total global dominating set. But

we have proved in Theorem 8.2, that γtg(G
∗) = 7 and γt(G

∗) = 7 with the same set

S = {u1, u2, u11, u13, u15, u17, u22} serving as a total global dominating set and a total

dominating set. Also in [1], we have proved that diam(G∗) = 3. Hence the result follows.

�

Observation 8.5. Kulli and Janakiram [14] have proved: A total dominating set S of

G is a total global dominating set iff for each v ∈ V there exists a vertex u ∈ S1 =

{u1, u2, u13, u15, u6, u22} such that v is not adjacent to u. The graph G∗ satisfies this

result. This can be seen by noticing that for ui, i = 3, 4, 5, 6, 7, 11, 12, 15, 16 there exists

a vertex u2 ∈ S = and for ui, i = 1, 2, 8, 9, 10, 13, 14, 17, 18, 19, 20 there exists a vertex

u11 ∈ S such that ui are not adjacent to u2, u11 for respective i’s. Also we have established

by Theorem 7.3 and 8.2 above that S is the same for both total domination and total global

domination.

Observation 8.6. Kulli and Janakiram [14] have proved: If G is a graph such that neither

itself nor its complement has an isolated vertex, then γtg(G) = |V (G)| iff G is isomorphic

to one of P4, mK2, (mK2)
C, m ≥ 2. As G∗ is different from these graphs we conclude

that γtg(G
∗) ̸= |V (G∗)| = 23. Moreover we have proved in Theorem 8.2 that γtg(G

∗) = 7.
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9. Connected Domination

Sampath Kumar and Walikar [20] defined a connected dominating set S to be a

dominating set S whose induced subgraph is connected. Since a dominating set of a

graph G must contain at least one vertex from each component of G, it follows that only

connected graphs have connected dominating set. A connected dominating set S is said

to be a minimal connected dominating set of G if and only if for any v ∈ S, S − v is not

a connected dominating set.

Theorem 9.1. γC(G
∗) = 9

Proof. Let S be a connected dominating set in G and v ∈ S. Then note that 1) if

w ∈ V (G) − S and w is adjacent to only v ∈ S, then w ∈ Pr[v, S] 2) if w ∈ S and S

contains at least two vertices, then w ̸∈ Pr[v, S], 3) if S = {v}, then v ∈ Pr[v, S].

First we claim that a connected dominating set S in G is a minimal connected

dominating set if and only if at least one of the following conditions are satisfied by

every vertex v ∈ S. (i) Pr[v, S] ̸= ϕ, (ii) v is a cut vertex of S. Let S be a minimal

connected dominating set in G and v ∈ S. Then, S−v is not a connected dominating set.

So, either the subgraph induced by S − v is not connected or S − v is not a dominating

set.

Case-1 The subgraph induced by S − v is connected. In this case, v is a cut-vertex of S.

Case-2 S − v is not a dominating set in G. In this case, there exists a vertex w ∈

V (G)−{S− v} such that w is not adjacent to any vertex of S− v. That is, w is adjacent

to only one vertex of S. If w = v, then w is not adjacent to every vertex of S and therefore

the subgraph induced by S is not connected, a contradiction. So, w ̸= v and w is adjacent

to only v ∈ S. This means w ∈ Pr[v, S]. That is, Pr[v, S] ̸= ϕ. Conversely, suppose

that S is a connected dominating set in G and at least one of the following conditions are

satisfied by every vertex v ∈ S, viz., (i) Pr[v, S] ̸= ϕ, (ii) v is a cut vertex of S. Now two

cases arise.

Case-1 v is not a cut vertex of S. Then the subgraph induced by S − v is connected.

That is, S contains at least two vertices. Let w ∈ Pr[v, S]. Then w ̸∈ S and w is adjacent
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to only v in S. Let S1 = S − v. Then S1 is not a dominating set in G. Thus, if a vertex

v ∈ S is not a cut-vertex of S, then S − v is not a connected dominating set.

Case-2 v is not a cut vertex of S and the subgraph induced by S − v is not connected.

In this case, S − v is not a connected dominating set. To sum up, in all the above cases,

we have that for any v ∈ V (G), S − v is not a connected dominating set. Hence S is a

minimal connected dominating set in G.

Figure 3

By Theorem 7.1 and Theorem 7.3 it follows that the dominating sets of G∗ are S1 =

{u1, u2, u6, u13, u15, u22}, S2 = {u1, u2, u6, u15, u19, u22}, S3 = {u1, u2, u6, u15, u20, u22},

S4 = {u1, u2, u13, u15, u17, u22}, S5 = {u1, u2, u15, u17, u19, u22}, S6 = {u1, u2, u15, u17, u20, u22},

S7 = {u1, u6, u13, u14, u15, u22}, S8 = {u1, u13, u14, u15, u16, u22}, S9 = {u1, u13, u14, u15,

u17, u22}. First we establish a connected dominating set must contain at least 9 elements.

The presence of u15 and u22 in each Sj, for j = 1 to 9 indicates that u11 or u12 and u21 must

be there in every Sj, for j = 1 to 9. This means Tj = Sj∪{u11, u21} orWj = Sj∪{u12, u21}

and in both cases |Tj| = |Wj| = 8. We observe that Sj at this stage does not induce a

connected graph for any j. This is because, the subgraphs induced by Tj for j = 1 to 9 are:

G1∪K2, G2∪K2, G3∪K1∪K2, G4∪K2, P6∪K2 (where P6 = u22u21u1u2u17u19), G5∪K2,

P4 ∪ 2K1 ∪K2 (where P4 = u22u21u1u6 and K1 = u14, K1 = u13), P3 ∪ 3K1 ∪K2 (where
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P3 = u22u21u1 and K1 = u13, K1 = u16, K1 = u14), P3 ∪ 2K2 ∪K1 (where P3 = u22u21u1

and K1 = u14, K2 = u1u15, K2 = u13u17) where G1, G2, . . . are shown in Figure 3.

Where the K2 in ⟨Tj⟩ for j = 1 to 8 is (u11, u15). Further, we also observe on similar

lines that the subgraphs induced by Wj for j = 1 to 9 are almost the same as one induced

by Tj except for the only change where instead of u11, we have now u12. In view of the

above discussion we deduce that a connected dominating set of G∗ must contain at least

9 elements. Now consider the subgraphs Hi induced by Uj = Tj ∪{u3} or Vj = Wj ∪{u4}

for j = 1, 2, 4, 5 as shown in Figure 4, for i = 1 to 4 and obviously Hi for every I are

connected.

Next consider Tj and Wj for j = 3, 6, 7, 8, 9. Clearly for the nineth element of both Tj

and Wj, there are
(
15
2

)
choices each. Suppose that U3 = T3 ∪ {um} for m = 3 to 10, 12 to

14, 17 to 19, 23. Consider ⟨u3⟩. The presence of an isolated vertex u20 for all values of m

except 13, 19 indicates that ⟨u3⟩ is not connected. Again for m = 13, 19 the presence of

an isolated edge (u11, u15) indicates that κ(⟨u3⟩) ≥ 2. Next suppose that U6 = T6 ∪ {um}

for m = 3 to 10, 12 to 14, 16, 18, 19, 23. For the same reason as above, we observe that

κ(⟨u6⟩) ≥ 2. Next suppose that U7 = T7 ∪ {um} for m = 2 to 5, 7 to 10, 12, 16 to 20,

23. Here we infer that the presence of an isolated vertex u14 indicates that κ(⟨u7⟩) ≥ 2

for all values of m except 2. Again the presence of an isolated edge (u11, u15) yields that

κ(⟨u7⟩) ≥ 2. Next suppose that U8 = T8 ∪ {um} for m = 2 to 10, 12, 17 to 20, 23. For

the same reason as given for the case U7 we derive that κ(⟨u8⟩) ≥ 2. Finally consider

U9 = T9 ∪ {um} for m = 2 to 10, 12, 16, 18 to 20, 23. Here also by proceeding on similar

lines as in the case U7 we get κ(⟨u9⟩) ≥ 2. Further by repeating the above procedure for

W for j = 3, 6 to 9 as in Tj, we observe that the κ(⟨Vj⟩) ≥ 2 where Vj =Wj ∪ {um} with

um assuming any one of the
(
15
1

)
appropriate choices for the respective j’s. Hence the

above analysis allows us to omit from our consideration the subgraphs induced by Uj and

Vj for j = 3, 6 to 9. This is because we are interested in the computation of connected

domination number which stands for the minimum cardinality of a connected dominating

set.
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Now let us check how many of Uj and Vj for j = 1, 2, 4, 5 are minimal connected

dominating sets. First consider U1. Here ui for i = 1, 2, 3, 11, 21, 23 is a vertex. Further

u12 ∈ Pr[u15, U1], u16 ∈ Pr[u6, U1] and u20 ∈ Pr[u13, U1]. This shows that U1 is a minimal

connected dominating set. Next consider U2. Here ui. For i = 1, 3, 11, 21 is a cut vertex.

Further u18 ∈ Pr[u2, U2], u12 ∈ Pr[u15, U2], u23 ∈ Pr[u22, U2], u16 ∈ Pr[u6, U2] and

u20 ∈ Pr[u19, U2]. That is U2 is a minimal connected dominating set. Next consider U4.

Here ui for i = 1, 2, 3, 11, 21 is cut vertex. Further u12 ∈ Pr[u15, U4], u23 ∈ Pr[u22, U4],

u16 ∈ Pr[u17, U4] and u20 ∈ Pr[u13, U4]. So U4 is a minimal connected dominating set.

Next consider U5. Here ui for i = 1, 2, 3, 11, 17, 21 is cut vertex. Further u12 ∈ Pr[u15, U5],

u23 ∈ Pr[u22, U5] and u20 ∈ Pr[u19, U5]. So U5 is a minimal connected dominating set.

Next consider V1. Here ui for i = 1, 2, 4, 12, 21, 22 is cut vertex. Further u16 ∈ Pr[u6, V1],

u20 ∈ Pr[u13, V1] and u11 ∈ Pr[u15, V1]. So V1 is a minimal connected dominating set.

Next consider V2. Here ui for i = 1, 4, 12, 21 is cut vertex. Further u18 ∈ Pr[u2, V2], u11 ∈

Pr[u15, V2], u23 ∈ Pr[u22, V2], u16 ∈ Pr[u6, V2] and u20 ∈ Pr[u19, V2]. So V2 is a minimal

connected dominating set. Next consider V4. Here ui for i = 1, 4, 12, 21 is cut vertex.

Further u11 ∈ Pr[u15, V4], u23 ∈ Pr[u22, V4], u16 ∈ Pr[u17, V4] and u20 ∈ Pr[u13, V4]. So V4

is a minimal connected dominating set. Finally consider V5. Here ui for i = 1, 4, 12, 17, 21

is cut vertex. Also u11 ∈ Pr[u15, V5], u23 ∈ Pr[u22, V5] and u20 ∈ Pr[u19, V5]. So V5 is a

minimal connected dominating set. We find here that all connected dominating sets are

minimal. This implies that there exists no minimum connected dominating set. Hence

γC(G
∗) = 9. �

10. k-Domination

The concept of k-domination is stronger than the concept of domination. There are

dominating sets which are not k-dominating for k ≥ 2. Let G be a graph and k be a

positive integer. A subset S of V (G) is said to be a k-dominating set in the graph G

if every vertex v ∈ V (G) − S is adjacent to at least k vertices of S. A k-dominating

set S in G is said to be minimal k-dominating set if for any v ∈ S, S − v is not a k-

dominating set. A k-dominating set in G with minimum cardinality is called a minimum

k-dominating set in G. The minimum cardinality of a k-dominating set, denoted γk(G) is



450 V. YEGNANARAYANAN AND G.K. UMAMAHESWARI

called the k-dominating number. If S is a k-dominating set in G, γk(G) ≤ |S|. If k = 1,

then γ1(G) = γ(G). If S is a k-dominating set in G then it is also j-dominating set for

1 ≤ j ≤ k, and γj(G) = γk(G).

Theorem 10.1. γ2(G
∗) = 12

Proof. Let G be any graph and S a subset of V (G). Let v ∈ S and k ≥ 1. The Private

k-neighbourhood of v with respect to S, denoted PRk[v, S] is defined as: PRk[v, S] =

{w ∈ V (G)− S : w is adjacent to exactly k vertices of S including v} ∪ {v : v is adjacent

to at most k − 1 vertices of S}. First we claim that a k-dominating set S in a graph

G is a minimal k-dominating set if and only if PRk[v, S] ̸= ϕ, ∀ v ∈ S. Let S be a

minimal k-dominating set in G. Let v ∈ S be any arbitrary vertex. Then S − v is not a

k-dominating set in G. So there exists a vertex w ∈ V (G)− (S − v) which is adjacent to

at most (k − 1) vertices of S − v. If w = v and is adjacent to at most (k − 1) vertices

of S. Then v ∈ PRk[v, S] and PRk[v, S] ̸= ϕ. If w ̸= v ∈ V (G) − (S − v) then as S is

k-dominating and w is adjacent to at most (k − 1) vertices of S − v, w must be adjacent

to v. This means, w is adjacent to exactly k vertices of S and so w ∈ PRk[v, S] and and

PRk[v, S] ̸= ϕ. Conversely, suppose that PRk[v, S] ̸= ϕ for every v ∈ S. Let v ∈ S be

any arbitrary vertex and w ∈ PRk[v, S]. If w = v and w is adjacent to at most (k − 1)

vertices of S. Then w is adjacent to at most (k − 1) vertices of S − v. That is, S − v

is not a k-dominating set in G. If w ̸= v then w is adjacent to exactly k vertices of S

including v. That is, w is adjacent to exactly (k − 1) vertices of S − v and S − v is not

k-dominating set in G. This means S is a minimal k-dominating set in G.

Now let us contruct a minimal 2-connected dominating set S. First we allow all vertices

of degree one as the element of S for obvious reasons. Therefore S1 = {u14, u23}.

Next let us include all vertices of degree two in S. Then S1 gets refined to S2 =

{u14, u23, u3, u4, u5, u11, u12, u15, u20}. Clearly S2 is not a 2-connected dominating set as

u6 is not adjacent to any element of S2. Now as u11 is adjacent to u3, u15 and u12

is adjacent to u4, u15, we can conveniently drop u11 and u12 from S2 to include other

vital elements to produce a 2-connected dominating set. So S2 gets refined to S3 =

{u14, u23, u3, u4, u5, u15, u20, }. We find that the inclusion of u2 and u22 are mandatory, else,
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Pr2(u14, S) and Pr2(u23, S) will become empty by the defintion of a minimal 2-connected

dominating set. So S3 gets modified into S4 = {u14, u23, u3, u4, u5, u15, u20, u2, u22}. Now

as u6 to u10 and u21 are adjacent to u1, the inclusion of u1 will ensure at least one vertex

of adjacency to these vertices in the proposed minimal 2-connected dominating set. So S4

gets refined to S5 = {u1, u2, u3, u4, u5, u14, u15, u20, u22, u23}. Similarly as u17 is adjacent

to u6 to u9, u13, u16 and u19. For the same reason as above, we allow u17 into our proposed

set. Hence S5 gets modified into S6 = {u1, u2, u3, u4, u5, u14, u15, u17, u20, u22, u23}. But

S6 is still not a 2-connected dominating set. This is because, u10 is adjacent to only one

vertex in S6. Again as u13 is adjacent to u10, u18 and u20, we allow u13 into the proposed

set. So S6 gets modified into S = {u1, u2, u3, u4, u5, u13, u14, u15, u17, u20, u22, u23}. Now as

u6 to u9 are adjacent to u1 and u17, u10 is adjacent to u1 and u13, u11 is adjacent to u3

and u15, u12 is adjacent to u4 and u15, u16 is adjacent to u5 and u17, u18 is adjacent to u2

and u13, u19 is adjacent to u13 and u17, u21 is adjacent to u1 and u22 we see that S is a

2-connected dominating set.

Moreover we find that u10 ∈ Pr2[u1, S], u18 ∈ Pr2[u2, S], u11 ∈ Pr2[u3, S], u12 ∈

Pr2[u4, S], u16 ∈ Pr2[u5, S], u10 ∈ Pr2[u13, S], u11 ∈ Pr2[u15, S], u7 ∈ Pr2[u17, S], u21 ∈

Pr2[u22, S], u14 is adjacent to only u2 in S, u20 is adjacent to only u13 in S, u23 is adjacent

to only u22 in S we see that Pr2[uj, S] ̸= ϕ for all j = 1 to 5, 13 to 15, 17, 20, 22 and 23.

Hence we deduce that S is a minimal 2-connected dominating set.

Interestingly we find another minimal 2-connected dominating set S ′ by just adding u16

to S and dropping u5 from S. That is S ′ = {u1, u2, u3, u4, u13, u14, u15, u16, u17, u20, u22, u23}

is a minimal 2-connected dominating set as u5 ∈ Pr2[u16, S
′]. In view of this we

conclude that there exists no minimum or a unique 2-connected dominating set with

twelve elements. Hence γ2(G
∗) = 12. �

Note 10.2. It is quite cute to note the existence of one another 2-connected dominating

set with 12 elements but fails to be a minimal 2-connected dominating set. That is

S ′′ = {u1, u3, u4, u10, u14, u15, u16, u17, u18, u20, u21, u23} a 2-connected dominating set. But

Pr2[u14, S
′′] = ϕ and Pr2[u23, S

′′] = ϕ.
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Note 10.3. It is easy to see from the structure of G∗ that there exists no k-dominating

set for k ≥ 3 as there are a number of vertices (7 to be exact) with maximum degree equal

to 2.

Note 10.4. In [23] we have found the vertex independence number β0 of G
∗. β0 = 10 and

I = {u2, u3, u4, u5, u6, u7, u10, u15, u19, u} is an independent set. It is interesting to observe

that an independent set need not be a 2-dominating set. That is, I is not 2-dominating as

u14 is adjacent to only u2 and out of the two adjacent elements u13, u19 of u20 in G∗ only

u19 ∈ I.

11. Strong Domination

For a graph G = (V,E), a set S ⊆ V is a strong dominating set if every vertex v ∈ V −S

has a neighbour u in S such that the degree of u is not smaller than the degree of v. The

minimum cardinality of a strong dominating set of G is the strong domination number,

γstrong(G).

Theorem 11.1. γstrong(G
∗) = 6

Proof. We know from Theorem 7.1, 7.3 that a dominating set of G∗ must have atleast six

elements and the possible dominating sets are

S1 = {u1, u2, u6, u13, u15, u22}, S2 = {u1, u2, u6, u15, u19, u22}, S3 = {u1, u2, u6, u15,

u20, u22}, S4 = {u1, u2, u13, u15, u17, u22}, S5 = {u1, u2, u15, u17, u19, u22}, S6 = {u1, u2, u15,

u17, u20, u22}, S7 = {u1, u6, u13, u14, u15, u22}, S8 = {u1, u13, u14, u15, u16, u22}, S9 =

{u1, u13, u14, u15, u17, u22}. Let us now determine how many of these are strong dominating

sets. It turns out that Sj is a strong dominating set for j = 1, 4, 5, 6, 9 are strong

dominating sets. This is because, for S1: uj is adjacent to u1 with deg(u1) > deg(uj); for

j = 3 to 5, 7 to 10; uj is adjacent to u15 for j = 11, 12; with deg(u15) > deg(uj); u14 is

adjacent to u2 with deg(u2) > deg(u14); u16 is adjacent to u6 with deg(u6) > deg(u16);

uj is adjacent to u13 for j = 17 to 20 with deg(u13) > deg(uj); u21 is adjacent to u1

with deg(u1) > deg(u21); u23 is adjacent to u22 with deg(u22) > deg(u23); For S4, uj

is adjacent to u1 with deg(u1) > deg(uj); for j = 3 to 10; uj is adjacent to u15 for
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j = 11, 12; with deg(u15) ≥ deg(uj); u16 is adjacent to u6 with deg(u6) > deg(u16); uj

is adjacent to u13 for j = 17 to 20 with deg(u13) > deg(uj); u21 is adjacent to u1 with

deg(u1) > deg(u21); u23 is adjacent to u22 with deg(u22) > deg(u23); For S5, uj is adjacent

to u1 with deg(u1) > deg(uj); for j = 3 to 10; uj is adjacent to u15 for j = 11, 12; with

deg(u15) ≥ deg(uj); u13 is adjacent to u17 with deg(u17) > deg(u13); u14 is adjacent to u2

with deg(u2) > deg(u14); u16 is adjacent to u17 with deg(u17) > deg(u16); u18 is adjacent

to u2 with deg(u2) > deg(u18); u20 is adjacent to u19 with deg(u19) > deg(u20); u21 is

adjacent to u1 with deg(u1) > deg(u21); u23 is adjacent to u22 with deg(u22) > deg(u23);

For S6, uj is adjacent to u1 with deg(u1) > deg(uj); for j = 3 to 10; uj is adjacent to u15

for j = 11, 12; with deg(u15) ≥ deg(uj); u13 is adjacent to u17 with deg(u17) > deg(u13);

u14 is adjacent to u2 with deg(u2) > deg(u14); u16 is adjacent to u17 with deg(u17) >

deg(u16); u18 is adjacent to u2 with deg(u2) > deg(u18); u19 is adjacent to u17 with

deg(u17) > deg(u19); u21 is adjacent to u1 with deg(u1) > deg(u21); u23 is adjacent to u22

with deg(u22) > deg(u23); For S9, uj is adjacent to u1 with deg(u1) > deg(uj); for j = 2

to 10; uj is adjacent to u15 for j = 11, 12; with deg(u15) ≥ deg(uj); u16 is adjacent to u17

with deg(u17) > deg(u16); u18 is adjacent to u13 with deg(u13) > deg(u18); u19 is adjacent

to u17 with deg(u17) > deg(u19); u20 is adjacent to u13 with deg(u13) > deg(u20); u21 is

adjacent to u1 with deg(u1) > deg(u22); u23 is adjacent to u22 with deg(u22) > deg(u23);

Now Sj is not a strong dominating set for j = 2, 3, 7, 8 because, the degree of u17 an

element of Sj has degree more than all the elements of Sj. Further as there exists more

than one strong dominating set, we conclude that G∗ has no minimum strong dominating

set. Hence γstrong(G
∗) = 6. �
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