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Abstract. Contamination of drinking water sources can result from the issue of saltwater intrusion into fresh-

water aquifers. Because of the compatibility produced by the mathematical model of saltwater intrusion, many

researchers employ the finite element or finite volume method to arrive at the outcome. In this paper, we proposed

to develop a mathematical analysis to solve the mathematical model describing the saltwater intrusion phenomenon

using the radial basis function collocation method, which is a mesh-free technique for numerical solving. The sim-

plified version of the problem has been taken into consideration. We constructed the RBF scheme and employed

Newton’s technique to solve the nonlinear system of equations it generated, as long as the RBF approach makes

use of simply distributed nodes. The RBF scheme obtained is robust and requires knowledge of the computer

programming language.
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1. INTRODUCTION

Coastal aquifers are important water resources for the population in coastal areas with high

population densities and intense agricultural activity. These are areas where the demand for

water is growing. This is facilitated by the shallowness of groundwater in these coastal areas.

However, the exploitation of these aquifers poses complex problems because it combines the

notion of groundwater reserves with that of their quality.

Of all the water on earth, only 3% of the world’s water is freshwater, 2/3 of the freshwater is

frozen, forming polar ice caps, glaciers, and icebergs and 1/3 is either surface water (found

in rivers, creeks, lakes and reservoirs) or groundwater [8]. Many parts of the continent use

groundwater to satisfy the daily needs of households, industry, and agriculture. Several studies

have shown the risks of degradation of the quality of these slicks due to overexploitation. In

the case of coastal aquifers, saltwater is denser than freshwater therefore it sinks and when the

water table elevation is too low, it causes salt water to flow into the freshwater aquifers and

this process is called saltwater intrusion. Human activities such as clearing land for irrigation,

industrial use, etc are the main sources that increase saltwater intrusion. Then, salt effects can

result in the degradation of soils and vegetation. This phenomenon requires permanent control

of the use of these aquifers.

The Saltwater intrusion modeling in coastal aquifers is mainly focused on freshwater-

seawater interface behavior. The interface is studied by using two assumptions; sharp form

and transition zone. The following is a brief of literature review of the basic idea of the density-

dependent flow of groundwater in coastal environments; the existing numerical code; and some

related published results from prior works of the numerical simulation of groundwater behavior

at coastal aquifers. [7] have developed some flow and transport equations adopted by FEFLOW

and applied them to examine saltwater intrusion in the coastal Pingtung aquifer in southwest

Taiwan, East Asia. The model can examine the lag between precipitation, surface water, and

groundwater recharge. The model can also choose the best location to apply artificial recharge

as a management scenario to mitigate the effect of seawater intrusion (SWI) based on the anal-

ysis of potential river flooding and maximum river flow. The results provide new hydrological

insights for the region, such as the fact that the rainfall ratio between the rainy season and
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the dry season in this plain is significantly higher than in the rest of Taiwan. [1] examined

the displacement of the sharp boundary between saltwater and freshwater in groundwater flow,

the author constructs a completely implicit finite volume approach to solve the coupled sys-

tem that models seawater intrusion. The simulation was run using the open-source platform

DuMu X, and numerical results from a practical test, scenarios were provided to demonstrate

the method’s efficiency and performance. [2] determined hydraulic heads and predicts the po-

sition of the seawater intrusion interface in the coastal aquifer of Hersonissos, near Heraklion,

Crete, Greece. The simulation findings, which were obtained using the MODFLOW and SWI2

packages, demonstrate that the optimization of the pumping rates of the saltwater supply and

extraction wells was more acute in some areas, such as where the thickness of the intrusion zone

is shown. [4] presented a numerical model based on the Meshfree method to study the seawater

intrusion problem. To simulate the seawater intrusion problem, they proposed the point collo-

cation method (PCM) based on the radial basis function. A diffusive interface approach with

density-dependent dispersion and solution flow and solute transport was used to develop the

model. The model developed was verified with Henry’s problem and found to be satisfactory.

Furthermore, the model has been applied to another established problem and an attempt is made

to examine the influence of important system parameters including pumping and recharge on

seawater intrusion. [12] worked on the modeling of saline intrusion in the Tripoli-Lebanon

aquifer. In this study, a Mathematical model of seawater intrusion in the Tripoli aquifer is de-

veloped, based on the implementation of the steep interface approach in ” Freefem ++ ”. This

model mainly provides the depth of the freshwater/saltwater interface. The limitations of the

model are exposed and the model is validated against the analytic solution, against the numeri-

cal code ”BFSWIM ” and against terrain measurements where the root mean square error varies

between 0.1 m and 2 m. [10] presented a three-dimensional density-dependent numerical model

developed with FEFLOW code and model calibration, using reported water points and chlo-

ride concentrations, based on data from 14 monitored boreholes from May 2008. In December

2009, model results show that tidal-induced seawater irritation significantly affects groundwa-

ter levels and concentrations near the estuary of the Dasha River, which implies an important
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hydraulic connection between this river and groundwater. The model is calibrated to predict fu-

ture changes in water levels and chloride concentration. The numerical results show a decrease

in the tendency for seawater intrusion if the groundwater exploitation does not reach the upper

limit of about 1.32× 104m3/d. The model results also guide the control of seawater intrusion

in these coastal aquifer systems.

In most of the studies mentioned above, the authors modeled saltwater intrusion in different

regions of the world while relying on the advection and dispersion approach and sharp inter-

face approach. Each study uses different digital software: SUTRA, Opengeosystem, SEAWAT,

MOCDESD3D, and Freefem ++. The models are validated and calibrated and have as output

the concentration of salt and the hydraulic head. The results found are very interesting for de-

veloping a sustainable water consumption strategy. Since the majority of the previous work is

based on steady state, the objective of this paper was to develop the mathematical analysis of the

resolution of saltwater intrusion in heterogeneous and isotropic confined aquifer in an unsteady

state.

Furthermore, most numerical techniques, such as the Finite Element Method, Finite Differ-

ence Method, and Finite Volume Method [5, 11], which are used to solve the mathematical

model that simulates the behavior of saltwater intrusion in the literature so far, always involve

mesh, or an assemblage of elements, which makes interpolation easier. The work required to

build such a mesh and its connectivity data, or how each node is connected to other nodes in an

interpolation scheme, and how each element shares the common nodes with other elements, is

not straightforward in a complicated solution geometry. We used the RBF collocation method

to improve transport simulation within the transition zone and this method is briefly presented

by [3], in fact, it is a meshless method that is also simple to use theoretically and doesn’t require

connection data and the implementation is simple.

2. DIFFERENTIAL EQUATIONS FOR THE MATHEMATICAL MODEL

The model is essentially based on the coupling of two laws: the first being that which char-

acterizes the flow velocity of a fluid in porous media, the second being that expresses the mass

conservation principle [8].
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2.1. Mathematical model based on Variable density and dispersion model. Basically, the

mathematical model based on Variable density and dispersion model describing seawater intru-

sion in a coastal aquifer consists of:

•: A definition of the geometry of the surfaces that bound the domain.

•: Mass balance equation for the water(=salt solution).

•: Flux equation(e.g. Darcy’s law) for the water.

•: Mass balance equation for the dissolved salts.

•: Flux equation for the dissolved salts.

•: Initial conditions that describe the known state of the system at some initial time.

•: Initial conditions that describe the interaction of the domain with its environment(i.e,

outside the delineated domain) across their common boundaries.

2.2. Darcy’s law. Discovered experimentally by Darcy in 1856, Darcy’s law is an equation

that describes the flow of a fluid through a porous medium.It is used to define the relation

between specific flow and hydraulic head which can be measured.

(1) v =−K∇h

Where: v denotes specific discharge (volume of fluid per unit cross-sectional area of porous

medium per unit time, m/s) and also call as Darcy velocity.

K is hydraulic conductivity or permeability (m/s), and considered as isotropic, i.e. constant

in all directions x,y,z.

∇h is the hydraulic gradient, which is the driving force of groundwater flow per unit weight

of groundwater (dimensionless).

The equation (1) is a simplified form of general physical law for fluid flow in a porous

medium, which also applies to variable-density fluids [8]

(2) v =− k
µ
(∇P−ρg)

Where k is the permeabilities (m2), a property of the porous medium; µ is dynamic viscosity

(kg/m/s) of the groundwater; P is fluid pressure (kg/m/s2), ρ is fluid density (kg/m3) and g is

the gravitational acceleration (m/s2).
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2.3. Continuity equation or the mass balance equation for the fluid. The continuity equa-

tion of the flow in porous media is based on the mass conservation principle and is written:

(3)
∂ρφ

∂ t
+div(ρv) = ρQ

Where ρ is the density of fluide (ML−3), φ the porosity of the medium (dimensionless) and Q

the source term (T−1), which express the recharge and pumping rates per unit volume of the

aquifer medium.

2.4. The mass balance equation for the dissolved salts. The hydrodynamic dispersion equa-

tion or the mass balance equation for salt ions can be written as

(4)
∂φC
∂ t

=−∇ · (vC−φD ·∇C)+CQ

Where φ is the porosity of the medium, C is the concentration, D is the hydrodynamic dispersion

tensor, v Darcy flux and Q source term.

2.5. Flux equation for the dissolved salts. The flux equation for the dissolved salts is given

by [8]:

(5) Di j = αi jkm
vk vm

v
f (Pe,δ ),

where v is the average velocity, δ is the ratio of the length characterizing their cross-section,

and f (Pe,δ ) is a function which introduces the effect of tracer transfer by molecular diffusion

between adjacent streamlines at the microscopic level. For practical applications the function

f (Pe,δ ) = 1.

2.6. Mathematical model. A set of four connected nonlinear partial differential equations is

used to represent the seawater intrusion problem as it evolves and for the sake of simplicity, we

consider the model simplified problem developed by [6] as follows:

Ss
∂h
∂ t

= ∇ · [K (∇h+ηc∇z)](6)

φ
∂c
∂ t

= ∇ · (φD ·∇c)−∇ · (cv)(7)

v =−K (∇h+ηc∇z)(8)
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Dxx = αL
v2

x

|v|
+αT

v2
z

|v|
+ τDm,Dzz = αT

v2
x

|v|
+αL

v2
z

|v|
+ τDm,Dxz = Dzx = (αL−αT )

vxvz

|v|
(9)

where αL and αT are respectively the longitudinal and transverse dispersivities, Dm is the

molecular diffusion coefficient,τ is the tortuosity.

Now, we have

K (∇h+ηC∇z) =


Kxx

∂h
∂x

Kzz

(
∂h
∂ z

+ηC
)
 ,(10)

Substituting equation (10) into the equation (8), then the equation (8) becomes

v =


−Kxx

∂h
∂x

−Kzz

(
∂h
∂ z

+ηC
)
 ,(11)

and we obtain

∇ · [K (∇h+ηC∇z)] = Kxx
∂ 2h
∂x2 +Kzz

(
∂ 2h
∂ z2 +η

∂C
∂ z

)
.(12)

For the sake of simplicity, we have taken the porosity φ as a constant, we then have for the

transport equation,

∇ · (cv) =−Kxx
∂h
∂x

.
∂c
∂x
−Kzz

∂h
∂ z

.
∂c
∂ z
−2Kzzηc

∂c
∂ z
−Kxxc

∂ 2h
∂x2 −Kzzc

∂ 2h
∂ z2 ,(13)

and

D ·∇c =

 Dxx
∂c
∂x

+Dxz
∂c
∂ z

Dzx
∂c
∂x

+Dzz
∂c
∂ z

 ,(14)

also,

∇ · (D ·∇C) = Dxx
∂ 2C
∂x2 +Dxz

∂ 2C
∂x∂ z

+Dzx
∂ 2C
∂ z∂x

+Dzz
∂ 2C
∂ z2 .(15)

Substituting the equation (12) into the equation (6), yields

∂h
∂ t

=
1
Ss

Kxx
∂ 2h
∂x2 +

1
Ss

Kzz
∂ 2h
∂ z2 +

1
Ss

Kzzη
∂C
∂ z

(16)
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Similarly, substituting the equations (13) and (15) into the equation (7) yields

∂c
∂ t

= Dxx
∂ 2c
∂x2 +Dxz

∂ 2c
∂x∂ z

+Dzx
∂ 2c

∂ z∂x
+Dzz

∂ 2c
∂ z2 +

1
φ

[
Kxx

∂h
∂x

.
∂c
∂x

+Kzz

(
∂h
∂ z

+ηc
)

∂c
∂ z

]
+

1
φ

[(
Kxx

∂ 2h
∂x2 +Kzz

∂ 2h
∂ z2 +Kzzη

∂c
∂ z

)
c
](17)

3. BOUNDARY CONDITIONS

For resolution of problem (16-17), we treated the case of constant dispersion [9] where αL =

αT = 0 and Dm = 6,6 ·10−2, Kxx = Kzz = 1. Thus Dxx = Dzz = τDm and Dxz = Dzx = 0. with

τ = 1, equation (12), hence the mathematical model becomes
∂h
∂ t

=
1
Ss

∆h+
1
Ss

η
∂c
∂ z

∂c
∂ t

= Dm∆C+
1
φ

∂h
∂x

.
∂c
∂x

+
1
φ

(
∂h
∂ z

+ηc
)

∂c
∂ z

+
1
φ

(
∆h+η

∂c
∂ z

)
c

(18)

Considering the computational cost in time that motivates the method of the finite volumes

for resolution of the problem 18 as in [11], Henry’s problem provides the enforced boundary

conditions [9]. We used the RBF Collocation method for solving the problem, compare the

obtained numerical results with those discovered by the authors cited above, and then validate

our test on this model.
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vn =
∂c
∂n

= 0

Fresh

water

f low
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→
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∂n

= 0
←−−−−−−−−−−−−→

h = ε (100− z)

c = 1

vn =
∂c
∂n

= 0

Figure 1: Henry’s problem configuration

4. NUMERICAL TECHNIQUE

We establish a vector field U = (h,c)t and the operators L1, L2, L3, L4, L, and R, then use it

to apply the RBF Collocation method developed by [3].

L1 : h 7−→ 1
Ss

∆h,(19)

L2 : c 7−→ 1
Ss

η
∂c
∂ z

,(20)

L3 : h 7−→ 0,(21)

L4 : c 7−→ Dm∆c,(22)

L : (h , c) 7−→


L1 (h)+L2 (c)

L3 (h)+L4 (c)

(23)
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R : (h , c) 7−→


R1 (h , c)

R2 (h , c)

=


0

1
φ

∂h
∂x

.
∂c
∂x

+
1
φ

(
∂h
∂ z

+ηc
)

∂c
∂ z

+
1
φ

(
∆h+η

∂c
∂ z

)
c

 .(24)

Substituting the equations (19),(20),(21),(22),(23) and (24) into the equation (18), we then

obtain 
∂h
∂ t

= L1 (h)+L2 (c)

∂c
∂ t

= L4 (c)+R2 (h , c)

(25)

where R2 (h , c) =
1
φ

∂h
∂x

.
∂c
∂x

+
1
φ

(
∂h
∂ z

+ηc
)

∂c
∂ z

+
1
φ

(
∆h+η

∂c
∂ z

)
c

Thus, the problem 25 can be written as:
∂U
∂ t

= L ·U+R(U) on [0,200]× [0,100]× [0,T [

U(x,0) = 0 ∀x ∈ [0,200]× [0,100]

(26)

With T is the maximum convergence time for the problem-solving algorithm.

In order to discretize problem 26, we applied the iterative Newton technique established in

[3], the Crank-Nicolson scheme, and the RBF Collocation approach.
Un+1−Un

∆t
=

1
2
(
L ·Un+1 +R

(
Un+1))+ 1

2
(L ·Un +R(Un)) on [0,200]× [0,100]

U0 (x,z) = U(x,z,0) = 0 ∀(x,z) ∈ [0,200]× [0,100]

(27)

where Un (x,z)≈ U(x,z, tn) is the approximation of the solution at tn = n∆t, and ∆t = tn+1− tn

is the time step.

RBF Collocation method assumes that the field of the unknown vector U = (h , c), that is,

U(x,z, t) = (h(x,z, t) , c(x,z, t)) with h(x,z, t) =
N−1
∑
j=0

h j (t)ψ j (x,z) , c(x,z, t) =

N−1
∑
j=0

c j (t)ψ j (x,z)

where
(
ψ j
)

0≤ j≤N−1 are given functions
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ψ j : R2 −→ R

(x,z) 7−→ ψ
(∥∥(x,z)− (x j,z j

)∥∥
2

)
,

(
x j,z j

)
0≤ j≤N−1 are N points set in [0,200]× [0,100], ψ

is a fixed radial function, and ‖.‖2 is the Euclidean norm of R2.

We set Un (x,z) = U(x,z, tn), hn (x,z) = h(x,z, tn) , cn (x,z) = c(x,z, tn), then hn
j = h j (tn) and

cn
j = c j (tn).

Thus, we have

Un (x,z) =



N−1
∑
j=0

hn
jψ j (x,z)

N−1
∑
j=0

cn
jψ j (x,z)

 .(28)

Equation (27) is transformed into
Un+1− 1

2
∆t
[
L ·Un+1 +R

(
Un+1)]= Un +

1
2

∆t [L ·Un +R(Un)]

U0 = L ·U0 = R
(
U0)= 0

(29)

By reccurrence we show that

Un+1− 1
2

∆t
[
L ·Un+1 +R

(
Un+1)]= 2(−1)n

n

∑
k=0

(−1)k Uk,(30)

we finally obtain the following scheme

N−1
∑
j=0

hn+1
j

(
ψ j−

1
2Ss

∆t∆ψ j

)
+

N−1
∑
j=0

cn+1
j

(
− 1

2Ss
η∆t

)
∂ψ j

∂ z
= 2(−1)n n

∑
k=0

(−1)k hk

N−1
∑
j=0

cn+1
j

(
ψ j−

1
2

∆tDm∆ψ j

)
− 1

2
∆tR2

(
hn+1 , cn+1)= 2(−1)n n

∑
k=0

(−1)k ck

(31)

4.1. Newton Raphson method for a system of nonlinear equations (31). For solving non-

linear systems of equations (31), the Newton-Raphson method is the preferred approach.

We set

ζ
n+1 =

(
ζ

n+1
j

)
, 0≤ j ≤ 2N−1 with


ζ

n+1
j = hn+1

j , if 0≤ j ≤ N−1

ζ
n+1
j = cn+1

j−N , if N ≤ j ≤ 2N−1
(32)
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χ j = ψ j−

∆t
2Ss

∆ψ j, if 0≤ j ≤ N−1

χ j =

(
− 1

2Ss
η∆t

)
∂ψ j−N

∂ z
, if N ≤ j ≤ 2N−1

(33)

Furthermore, we have

F̃1
(
ζ

n+1)= N−1

∑
j=0

hn+1
j

(
ψ j−

∆t
2Ss

∆ψ j

)
+

N−1

∑
j=0

cn+1
j

(
− 1

2Ss
η∆t

)
∂ψ j

∂ z
,(34)

then

F̃1
(
ζ

n+1)= N−1

∑
j=0

hn+1
j

(
ψ j−

∆t
2Ss

∆ψ j

)
+

2N−1

∑
j=N

cn+1
j−N

(
− 1

2Ss
η∆t

)
∂ψ j−N

∂ z
(35)

which implies that,

F̃1
(
ζ

n+1) =
2N−1

∑
j=0

ζ
n+1
j χ j(36)

W n
1 = 2(−1)n

n

∑
k=0

(−1)k hk.(37)

Similarly, we have

G̃1
(
ζ

n+1) =
N−1

∑
j=0

cn+1
j

(
ψ j−

1
2

∆tDm∆ψ j

)
− 1

2
∆tR2

(
hn+1 , cn+1)(38)

W n
2 = 2(−1)n

n

∑
k=0

(−1)k ck(39)

Hence, for (xi,zi) ∈ [0,200]× [0,100] , 0≤ i≤ N−1, we have
F̃1
(
ζ n+1

)
(xi,zi) =

2N−1
∑
j=0

ζ
n+1
j χ j (xi,zi)

G̃1
(
ζ n+1

)
(xi,zi) =

N−1
∑
j=0

Cn+1
j

(
ψ j (xi,zi)−

1
2

∆tDm∆ψ j (xi,zi)

)
− 1

2
∆tR2

(
hn+1 , cn+1

)
(xi,zi)

(40)


F̃1
(
ζ n+1)(xi,zi)−W n

1 (xi,zi) = 0, 0≤ i≤ N−1

G̃1
(
ζ n+1)(xi,zi)−W n

2 (xi,zi) = 0,0≤ i≤ N−1

(41)
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Let

L = (F,G) with


F = (Fi)0≤i≤N−1

G = (Gi)N≤i≤2N−1

(42)

F
(
ζ

n+1)= (Fi
(
ζ

n+1))
0≤i≤N−1(43)

G
(
ζ

n+1)= (Gi
(
ζ

n+1))
N≤i≤2N−1(44)

where

Fi
(
ζ

n+1)= F̃1
(
ζ

n+1)(xi,zi)−W n
1 (xi,zi) , 0≤ i≤ N−1(45)

Gi
(
ζ

n+1)= G̃1
(
ζ

n+1)(xi−N ,zi−N)−W n
2 (xi−N ,zi−N) , N ≤ i≤ 2N−1(46)

L = (F,G) can be now written as

L = (Li)0≤i≤2N−1 with


Li = Fi i f 0≤ i≤ N−1

Li = Gi i f N ≤ i≤ 2N−1
(47)

We then obtain

L
(
ζ

n+1)= (Li
(
ζ

n+1))
0≤i≤2N−1 .(48)

The Jacobian matrix of the operator L at ζ n+1 is therefore written

JL
(
ζ

n+1)=( ∂Li

∂ζ
n+1
j

(
ζ

n+1))
0≤i≤2N−1
0≤ j≤2N−1

(49)

∂Li

∂ζ
n+1
j

(
ζ

n+1)= ∂Fi

∂hn+1
j

(
ζ

n+1) , 0≤ i≤ N−1, 0≤ j ≤ N−1,(50)

∂Li

∂ζ
n+1
j

(
ζ

n+1)= ∂Fi

∂cn+1
j−N

(
ζ

n+1) , 0≤ i≤ N−1, N ≤ j ≤ 2N−1,(51)

∂Li

∂ζ
n+1
j

(
ζ

n+1)= ∂Gi

∂hn+1
j

(
ζ

n+1) , N ≤ i≤ 2N−1, 0≤ j ≤ N−1,(52)

∂Li

∂ζ
n+1
j

(
ζ

n+1)= ∂Gi

∂cn+1
j−N

(
ζ

n+1) , N ≤ i≤ 2N−1, N ≤ j ≤ 2N−1,(53)
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Let’s now calculate (50), (51), (52), (52) and (53). By deriving (45) and (46) with respect to

the variables hn+1
j and cn+1

j , we then get

∂Li

∂ζ
n+1
j

(
ζ

n+1)= ∂Fi

∂hn+1
j

(
ζ

n+1)= χ j (xi,zi) = ψ j (xi,zi)−
1
2

∆t
Ss

∆ψ j (xi,zi) ,(54)

0≤ i≤ N−1,0≤ j ≤ N−1

∂Li

∂ζ
n+1
j

(
ζ

n+1)= ∂Fi

∂Cn+1
j−N

(
ζ

n+1)= χ j (xi,zi) =−
1
2

η∆t
Ss

∂ψ j−N

∂ z
(xi,zi) ,(55)

0≤ i≤ N−1,N ≤ j ≤ 2N−1

∂Li

∂ζ
n+1
j

(
ζ

n+1)= ∂Gi

∂hn+1
j

(
ζ

n+1)=−1
2

∆t
∂R2

∂hn+1
j

(
hn+1,cn+1)(xi−N ,zi−N) = 0,(56)

N ≤ i≤ 2N−1,0≤ j ≤ N−1

∂Li

∂ζ
n+1
j

(
ζ

n+1)= ∂Gi

∂Cn+1
j−N

(
ζ

n+1)= ψ j−N (xi−N ,zi−N)−
1
2

∆tDm∆ψ j−N (xi−N ,zi−N)

−1
2

∆t
∂R2

∂cn+1
j−N

(
hn+1,cn+1)(xi−N ,zi−N) ,N ≤ i≤ 2N−1,N ≤ j ≤ 2N−1

(57)

For X0 given, we construct a sequence
(
Xk) such that Xk =

(
Xk

j

)
0≤ j≤2N−1

with
Xk

j = hk+1
j , i f 0≤ j ≤ N−1

Xk
j =Ck+1

j−N , i f N ≤ j ≤ 2N−1

The Newton system is given by

Xk+1 = Xk−
[
J(Xk) (L)

]−1
·L
(

Xk
)

(58)

where J(Xk) (L) =
(

∂Li
∂Xk

j

(
Xk))

0≤i≤2N−1
0≤ j≤2N−1

is the Jacobian matrix of operator L in Xk which is

equivalent to solving
[
J(Xk) (L)

]
·Zk =−L

(
Xk)

Xk+1 = Xk +Zk until
∥∥Zk
∥∥

2 ≺ δ with δ ≺≺ 1 previously fixed
(59)
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4.2. Boundary condition discretization. With the relation V = −K (∇h+ηC∇z) and K = 1 0

0 1

, we have v =

 vx

vz

 with vx = −
∂h
∂x

and vz = −
(

∂h
∂ z

+ηc
)

from the equation

(11).

4.2.1. West boundary. vx =U , c = 0. We have a boundary condition of Dirichlet type on the

concentration and a Neuman type boundary condition on the hydraulic head, we have

∂hn+1

∂x
(0,z) =U

cn+1 (0,z) = 0 = 0

∂cn+1

∂ z
(0,z) = 0

∂ 2cn+1

∂ z2 (0,z) = 0

R2
(
hn+1,cn+1

)
(0,z) =

U
φ

∂cn+1

∂x
(0,z)

∂R2

∂hn+1
j

(
hn+1,cn+1

)
(0,z) = 0

∂R2

∂cn+1
j

(
hn+1,cn+1

)
(0,z) =

U
φ

∂ψ j

∂x
(0,z)

∀z ∈ ]0;100[(60)

4.2.2. South boundary. We have a Neuman type boundary condition on the hydraulic head

and the concentration vn = 0 and
∂c
∂n

= 0. Thus,

∂hn+1

∂ z
(x,0)+ηcn+1 (x,0) = 0

∂cn+1

∂ z
(x,0) = 0

R2
(
hn+1,cn+1

)
(x,0)≈

2
∆t

cn+1 (x,0)−Dm∆cn+1 (x,0)−W n
2 (x,0)

∂R2

∂hn+1
j

(
hn+1,cn+1

)
(x,0)≈ 0

∂R2

∂cn+1
j

(
hn+1,cn+1

)
(x,0)≈

2
∆t

ψ j (x,0)−Dm∆ψ j (x,0)

∀x ∈ ]0;200[(61)
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4.2.3. North boundary. Similarly, we have a Neuman type boundary condition on the hy-

draulic head and the concentration vn = 0 and
∂c
∂n

= 0. Thus,



∂hn+1

∂ z
(x,100)+ηcn+1 (x,100) = 0

∂cn+1

∂ z
(x,100) = 0 (40)

R2
(
hn+1,cn+1

)
(x,100)≈

2
∆t

cn+1 (x,100)−Dm∆cn+1 (x,100)−W n
2 (x,100)

∂R2

∂hn+1
j

(
hn+1,cn+1

)
(x,100)≈ 0

∂R2

∂cn+1
j

(
hn+1,cn+1

)
(x,100)≈ c

2
∆t

ψ j (x,100)−Dm∆ψ j (x,100)

∀x ∈ ]0;200[(62)

4.2.4. East boundary.

∀z ∈ ]0;80[ ,



hn+1 (200,z) = ε (100− z)

∂hn+1

∂ z
(200,z) =−ε ,

∂ 2hn+1

∂ z2 (200,z) = 0

cn+1 (200,z) = 1,

∂cn+1

∂ z
(200,z) = 0,

∂ 2cn+1

∂ z2 (200,z) = 0

R2
(
hn+1 , cn+1

)
(200,z) =

2
∆t

cn+1 (200,z)−Dm∆cn+1 (200,z)−W n
2 (200,z)

∂R2

∂hn+1
j

(
hn+1,cn+1

)
(200,z)≈ 0

∂R2

∂cn+1
j

(
hn+1,cn+1

)
(200,z)≈

2
∆t

ψ j (200,z)−Dm∆ψ j (200,z)

(63)
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4.2.5. Initial conditions.
h0 (x,z) = h(x,z,0) = 0

c0 (x,z) = c(x,z,0) = 0

,∀(x,z) ∈ [0,200]× [0,100](64)

We choose 30 nodes from the boundary ∂Ω and 36 interior nodes at Ω spacing of 20m .

Hence, the number of nodes is N=66. The nodes (xi,zi) are defined as follows:

(xi,zi) = (i∗PAS ; 0) , i f 0≤ i≤ 10

(xi,zi) = ((i−11)∗PAS ; PAS) , i f 11≤ i≤ 21

(xi,zi) = ((i−22)∗PAS ; 2∗PAS) , i f 22≤ i≤ 32

(xi,zi) = ((i−33)∗PAS ; 3∗PAS) , i f 33≤ i≤ 43

(xi,zi) = ((i−44)∗PAS ; 4∗PAS) , i f 44≤ i≤ 54

(xi,zi) = ((i−55)∗PAS ; 5∗PAS) , i f 55≤ i≤ 65

(xi,zi) = ((i−66)∗PAS ; 0) , i f 66≤ i≤ 76

(xi,zi) = ((i−77)∗PAS ; PAS) , i f 77≤ i≤ 87

(xi,zi) = ((i−88)∗PAS ; 2∗PAS) , i f 88≤ i≤ 98

(xi,zi) = ((i−99)∗PAS ; 3∗PAS) , i f 99≤ i≤ 109

(xi,zi) = ((i−110)∗PAS ; 4∗PAS) , i f 110≤ i≤ 120

(xi,zi) = ((i−121)∗PAS ; 5∗PAS) , i f 121≤ i≤ 131

(65)

where PAS means the step of subdivision of coordinate axes. We chose here PAS = 20m.
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The hydraulics parameters Ss, φ , ε , Cmax, η are taken those from the digital experiment test

of Henry’s problem [9], that is to say Ss = 0.1, φ = 0,35, ε = 0,0245, cmax = 1.
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