
Available online at http://scik.org

J. Math. Comput. Sci. 2023, 13:14

https://doi.org/10.28919/jmcs/8189

ISSN: 1927-5307

OUT-GRAPHIC TOPOLOGY ON DIRECTED GRAPHS

HANAN OMER ZOMAM1,2,∗

1Department of Mathematics, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia

2Department of Mathematics, Faculty of Science, Shendi University, Sudan

Copyright © 2023 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we define a topology T out
G , for a digraph G = (V,E) without isolated vertices called out-

graphic topology, on the vertices’ set. When the graph is locally finite, T out
G will be an Alexandroff topology and

we give some characterisations of the minimal basis. Then, we give some open sets and some closed ones. Func-

tions between digraphs are studied and also those between graphic topological spaces and the relations between

them. Finally, for a strongly connected digraph, we prove that the topological space (V,T out
G ) can be disconnected

but in other cases can be connected.
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1. INTRODUCTION

Graph theory is one of discrete mathematics structures. It is simple and can represent a

lot of mathematical combinations. In 1736, L. Euler introduce graph theory for the first time

for solving the problem of the Königsberg seven bridges [5]. Later, graph theory becomes a

fundamental mathematical tool for a large of domain as chemistry, marketing and computers

network.
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Making a topology on the graphs enriches its structures and gives a more applications as in

economy domain, the traffick flow study [2, 8, 10], medical application and blood circulation

[6, 9, 11, 12].

A topology is called an Alexandroff topology if any intersection of open sets is an open set

[3, 13]. The graphic topology is an Alexandroff topology, and so the study of open sets, closed

sets, homeomorphism, compactedness can be done through minimal basis.

In 2013, Jafarian Amiri et al. [7] introduced an Alexandroff topology on the set of vertices of a

simple graph . This topology is known as graphic topology. In [14], the authors investigated the

graphic topology and solved partially an open problem mentioned in [7] (Problem 2 page 658).

In the paper [15] in 2022, Zoman et al. define the Z -graphic topology ZG which conserves

the connectivity of the simple graph. Graphic topology was also be defined on fuzzy graph by

Alzubaidi et al. in [4].

In the paper [1], Kacimi et al. defined two topologies on the edges set of directed graph called

compatible and incompatible edges topologies. In this paper,we introduce the out-graphic topol-

ogy on directed graph on the vertices set. Our motivation is the investigation of some properties

of directed graphs by their corresponding topology. In Section 2, we give some preliminaries

about directed graph theory and topology. Also, we introduce a subbasis for the out-graphic

topology and give some examples. In section 3, we prove some elementary results. Section

4 is devoted to more properties of the out-graphic topology. In Section 5, functions between

digraphs are investigated. Finally, Connectivity or disconnectivity of the out-graphic topology

of some graphs are studied.

2. PRELIMINARIES

In this paper, we will define and study the out-graphic topology on directed graphs. Recall

that a directed graph G (or digraph) is a given nonempty set V and a set of ordered pairs E,

subset of V ×V . This means, a graph is called a directed graph if each edge e ∈ E has a

direction. When e = (x,y) ∈ E, x is called the tail of the edge e and y the head of the edge. We

also say e is an edge from x to y and we write x→ y.

A directed graph G = (V,E) is called simple if (x,x) /∈ E and there is no multiple edges from x

to y, for any two vertices x,y of G.
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Definition 2.1. A digraph G = (V,E) is called complete if it is simple and for any distinct

x,y ∈V , there exist a unique edge from x to y and a unique edge from y to x.

Definition 2.2. A digraph G = (V,E) is said an oriented graph if for all x,y ∈V , at most one of

(x,y) and (y,x) is in E. If G is an oriented graph such that for all x,y ∈ V , we have (x,y) ∈ E

iff (y,x) /∈ E, then G is called a tournament.

Definition 2.3. Let G = (V,E) be a simple digraph. The complement of G is the digraph G =

(V,E) defined by (x,y) ∈ E if, and only if (x,y) /∈ E.

Example 1. The complement of the following graph

is given by

For x ∈V , we define the out-neighborhood set of x as

(1) Ox = {y ∈V,x→ y}= {y ∈V,(x,y) ∈ E}.
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and the int-neighborhood set of x by

(2) Ix = {y ∈V,y→ x}= {y ∈V,(y,x) ∈ E}.

We remark that

(3) y ∈ Ox if and only if x ∈Iy.

Definition 2.4. A vertex x in G is called isolated if Ix = /0. That is, x does not dominates any

y ∈V .

Example 2.

In this digraph, the vertex x1 is an isolated vertex.

In order to define the out-graphic topology for V , we suppose that the digraph G = (V,E) is

simple and without isolated vertices. So, for all x ∈V , x /∈ Ox.

Let us consider

(4) S out
G = {Ox,x ∈V}.

Now, if y ∈V and since G without isolated vertices, we get Iy 6= /0. There exists z ∈Iy and so,

by (3) there exists z ∈V such that y ∈ Oz. Therefore V ⊂ ∪x∈V Ox and then ∪x∈V Ox =V .

Hence S out
G is a subbasis for a topology of V called out-graphic topology and denoted by T out

G .

Example 3. For the graph G given by
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Ox1 = {x4},Ox2 = {x5},Ox3 = /0,Ox4 = {x2} and Ox5 = {x1,x3}.

Then, the basis of the topology T out
G is

B =
{
{x4},{x5},{x2},{x1,x3}

}
such that

S out
G =

{
/0,{x4},{x5},{x2},{x1,x3}

}
.

We get

T out
G =

{
/0,{x4},{x5},{x2},{x1,x3},{x4,x5},{x4,x2},{x4,x1,x3},{x5,x2},

{x5,x1,x3},{x2,x1,x3},{x2,x4,x5},{x4,x5,x1,x3},{x1,x2,x3,x5},{x1,x2,x3,x4},V
}
.

For a vertex x of G, the out-degree of x is defined as

d+(x) = card(Ox),

the cardinal of the out-neighborhood Ox and the int-degree of x is

d−(x) = card(Ix),

the cardinal of the int-neighborhood Ix.

The minimum out-degree and the minimum int-degree of a digraph G = (V,E) are given by

δ
+(G) = min{d+(x), x ∈V},
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and

δ
−(G) = min{d−(x), x ∈V}.

However, the maximum out-degree and maximum int-degree of G are respectively

∆
+(G) = max{d+(x), x ∈V},

and

∆
−(G) = max{d−(x), x ∈V}.

Definition 2.5. A digraph G is called locally finite if for all vertex x of G, the int-degree d−(x)

is finite. That is, Ix is a finite set for all x ∈V .

We remark that any finite digraph is locally finite.

Definition 2.6. Let (V,T ) be a topological space and X ⊂V .

(i) The set Xc = {x ∈V ; x /∈ X} is called the complement of X in V .

(ii) X is called a closed set of V if Xc is an open set of V .

(iii) The closure of X in V is the smallest closed set of V containing X. It will be denoted by

X.

Definition 2.7. Let G = (V,E) a directed graph.

(i) A directed path P from x0 to xn in G is a sequence of the form

x0,e0,x1,e1, · · · ,xn−1,en−1,xn, where xi ∈ V and ei an edge from xi to xi+1,

i = 0, · · · ,n−1.

(ii) Two vertices x and y are said connected if there is a directed path from x to y and a

directed path from y to x.

(iii) The directed graph G is called strongly connected if any two distinct vertices are con-

nected.

In this paper, a digraph means a simple locally finite digraph without isolated vertex.
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3. PRELIMINARY RESULTS

Theorem 3.1. Let G be a digraph. Then (V,T out
G ) is an Alexandroff space.

Proof. In order to prove that T out
G is an Alexandroff topology, it is sufficient to prove that any

intersection of elements in the subbasis S out
G is an open set. Let U a subset of V and consider

∩x∈UOx.

(i) If ∩x∈UOx = /0, then ∩x∈UOx is an open set.

(ii) If ∩x∈UOx 6= /0, then let z ∈ ∩x∈UOx. We have z ∈Ox, for all x ∈U . So, ∀x ∈U,x ∈Iz,

this means U ⊂ Iz. Since G is locally finite, we deduce that U is a finite set and so

∩x∈UOx is an open set.

Then, (V,T out
G ) is an Alexandroff space.

�

Let G be a digraph, then the out-graphic topology T out
G of V has a minimal basis

(5) UG = {Vx; x ∈V},

where Vx is the intersection of all open sets containing x, i.e. the smallest open set containing

the vertex x.

The first characterisation of the minimal basis is the following.

Theorem 3.2. Let G be a digraph and let x ∈V . Then, Vx = ∩y∈IxOy and Vx is a finite set.

Proof. Since G is without isolated vertices, Ix 6= /0.

Let y ∈Ix, then from (3), we have x ∈Oy and so ∩y∈IxOy is an open set containing x. Since Vx

is the smallest open set containing x, we get

Vx ⊂
⋂

y∈Ix

Oy.

Conversely, since S out
G is a subbasis for the topology and Vx is the smallest open set containing

x, there exists U ⊂V such that Vx = ∩y∈UOy.

For all y ∈U , x ∈ Oy. Therefore, for all y ∈U , y ∈Ix. Then, U ⊂Ix and so,

⋂
y∈Ix

Oy ⊂
⋂

y∈U

Oy =Vx.
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The result follows.

�

Corollary 3.1. Let G be a digraph and let x,y ∈V two distinct vertices.

(i) If Ix = {y}, then Vx = Oy.

(ii) If y ∈Ix, then Vx ⊂Oy.

(iii) If Vy ⊂Ix, then Vx ⊂ Oy.

Proof.

(i) If Ix = {y}, then Vx = ∩z∈IxOz = Oy.

(ii) Vx = ∩z∈IxOz, so Vx ⊂Oz for all z ∈Ix. Therefore, if y ∈Ix, we get Vx ⊂Oy.

(iii) If Vy ⊂Ix, then y ∈Vy ⊂Ix. From (ii), we obtain that Vx ⊂Oy.

�

Proposition 3.1. Let G be a digraph and let x,y ∈ V . Then, y ∈ Vx if, and only if, Ix ⊂ Iy.

That is,

Vx = {y ∈V ; Ix ⊂Iy}.

Proof. Since Vx = ∩z∈IxOz, we have

y ∈Vx⇔ y ∈ Oz,∀z ∈Ix

⇔∀z ∈Ix,z ∈Iy

⇔Ix ⊂Iy.

�

Proposition 3.2. Let G be a digraph and x ∈ V . Then, Vx∩Ix = /0. Also, if Vy ⊂Ix, we have

Vx∩Vy = /0.

Proof.

(i) Suppose that there exists z∈Vx∩Ix. Since z∈Vx, we get from Proposition 3.1 Ix⊂Iz.

But z ∈Ix and so z ∈Iz: this is impossible since the graph is simple. We deduce that

Vx∩Ix = /0.
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(ii) If Vy ⊂Ix, then Vy∩Vx ⊂Ix∩Vx. From (i), we get Vx∩Vy = /0.

�

Using the above result, we remark that {x} ⊂ Vx ⊂ I c
x , Ix ⊂ V c

x and if G is a tournament,

I c
x = Oc

x ∪{x}.

Finally, we have the following result.

Proposition 3.3. Let G be a directed graph and x ∈V . We have y ∈ {x} if and only if Iy ⊂Ix.

This means, {x}= {y ∈V ; Iy ⊂Ix}.

Proof. y ∈ {x} if and only if, for all open set O containing y, O∩ {x} 6= /0. But, this is

equivalent to Vy∩{x} 6= /0. So, y∈ {x} if and only if x∈Vy and the result follows by Proposition

3.1.

�

4. SOME PROPERTIES OF GRAPHIC TOPOLOGY

A topological space V is called compact if for any family {Ai}i∈I of open sets satisfying

V ⊂
⋃
i∈I

Ai

there exists a finite set J ⊂ I such that

V ⊂
⋃
i∈J

Ai.

For diagraphs, we have the following result.

Proposition 4.1. Let G = (V,E) be a digraph. Then, (V,T out
G ) is a compact topological space

if and only if V is finite.

Proof. First, suppose that V is a compact topological space. Consider the minimal basis UG

given by (5). UG is an open cover of V , so there exists a finite subcover M of UG. Since it is

minimal as basis, M = UG. Therefore, V is finite from (5).

Conversely, if V is finite, from any open cover we have a finite subcover. Hence, the result

follows.

�
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Proposition 4.2. Let G = (V,E) be a digraph. Then, U− = {x∈V, d−(x) = ∆−(G)} is an open

set for the graphic topology on G.

Proof. The idea is to prove that for all x ∈U−, we have x ∈Vx ⊂U−.

Let x ∈U− and y ∈Vx, the smallest open set containing x. From Proposition 3.1, Ix ⊂Iy. We

get d−(x)≤ d−(y). Since d−(x) = ∆−(G), we have d−(y) = ∆−(G) and so y ∈U−.

�

Proposition 4.3. Let G = (V,E) be a digraph. Then F− = {x ∈V, d−(x) = δ−(G)} is a closed

set for the graphic topology on G.

Proof. We will prove that F− = F−. Let x ∈ F−, we have Vx∩F− 6= /0.

Consider an element z ∈Vx∩F−. We have Ix ⊂Iz and d−(z) = δ−(G).

So, d−(x)≤ d−(z) = δ−(G). Then d−(x) = δ−(G) and so x ∈ F− and the result follows.

�

Proposition 4.4. Let G = (V,E) be a finite digraph. Then, the following results hold.

(i) T c
G = {A; Ac ∈T out

G } is a topology for V .

(ii) If G is an oriented graph and T out
G = T c

G , then T out
G is the discrete topology.

Proof. (i) •We have /0 =V c and V = /0c and V, /0 ∈T out
G .

• If A and B two elements of T c
G , then (A∩B)c = Ac∪Bc ∈T out

G and so, A∩B ∈T c
G .

• For any family {Ai} in T c
G , we have (∪iAi)

c =∩i(Ac
i ). Since T out

G is an Alexandroff topology,

∪iAi ∈T c
G .

(ii) Let x∈V . When G is an oriented graph, we have
(
Ix∪{x}

)c
=Ox. That is,

(
Ix∪{x}

)c
∈

T out
G . Since T out

G =T c
G , we have Ix∪{x}∈T out

G . Therefore, Vx⊂Ix∪{x}. From Proposition

3.2, we have get Vx ⊂ {x} and so Vx = {x} and the result follows.

�

5. ON FUNCTIONS BETWEEN DIGRAPHS

Definition 5.1. Let G1 = (V1,E1) and G2 = (V2,E2) be two digraphs. We say that G1 and G2

are isomorphic if there exists a bijection φ : V1→V2 satisfying

(6) (x,y) ∈ E1 if, and only if (φ(x),φ(y)) ∈ E2.
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Definition 5.2. Let (V1,T1) and (V2,T2) be two topological spaces. A function φ : V1→ V2 is

called continuous if for all U ∈ T2, we have φ−1(U) ∈ T1.

Further more, the two spaces V1 and V1 are said homeomorphic if there exists a continuous

bijective φ : V1→V2 such that φ−1 is also continuous.

Theorem 5.1. Let G1 = (V1,E1) and G2 = (V2,E2) be two digraphs. If G1 and G2 are isomor-

phic, then the topological spaces (V1,T
out

G1
) and (V2,T

out
G2

) are homeomorphic.

Proof. Let φ : V1→ V2 the bijection map satisfying (6) and let U an open set in V2. Without

loss of generality we can suppose that U is in the subbasis SG2 and so U =Oy, for some y∈V2.

Let x = φ−1(y), we have

φ
−1(U) = {z ∈V1, φ(z) ∈ Oy}

= {z ∈V1, (y,φ(z)) ∈ E2}

= {z ∈V1, (φ(x),φ(z)) ∈ E2}

= {z ∈V1, (x,z) ∈ E1}

= {z ∈V1, x→ z}

= Ox.

So, the function φ is continuous. Now, let U = Ox, x ∈V1. Denote y = φ(x), we have(
φ
−1
)−1

(U) = {z ∈V2, φ
−1(z) ∈ Ox}

= {z ∈V2, (x,φ−1(z)) ∈ E1}

= {z ∈V2, (φ
−1(y),φ−1(z)) ∈ E1}

= {z ∈V2, (y,z) ∈ E2}

= {z ∈V2, y→ z}

= Oy.

�

In general, the converse is not true. Let us consider the following two graphs:
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They have the same out-graphic topology (the discrete topology) but they are not isomorphic.

Proposition 5.1. Assume that G1 = (V1,E1) and G2 = (V2,E2) are two digraphs and φ : V1→

V2 a function. Then, φ is a continuous function from (V1,T
out

G1
) to (V2,T

out
G2

) if, and only if

Ix ⊂Iy =⇒Iφ(x) ⊂Iφ(y), for all x,y ∈V1.

Proof. (i) Suppose that φ is continuous. If Ix ⊂Iy, then y ∈Vx ( Proposition 3.1).

Consider the open set Vφ(x), we have x ∈ φ−1
(

Vφ(x)

)
and so Vx ⊂ φ−1

(
Vφ(x)

)
.

We get y∈ φ−1
(

Vφ(x)

)
, that is, φ(y)∈Vφ(x). From the Proposition 3.1, we obtain Iφ(x)⊂Iφ(y).

(ii) Suppose that for all x,y ∈ V1, if Ix ⊂ Iy then Iφ(x) ⊂ Iφ(y). Consider A ∈ T out
G2

and

let x ∈ φ−1(A), we claim that Vx ∈ φ−1(A). Indeed, let z ∈ Vx. We have Ix ⊂ Iz and so

Iφ(x) ⊂Iφ(z). Then, φ(z) ∈Vφ(x) ⊂ A. Therefore, z ∈ φ−1(A) and the result follows.

�

We have also the following characterisation of homeomorphic graphic topology spaces.

Theorem 5.2. Assume that G1 = (V1,E1) and G2 = (V2,E2) are two digraphs and φ : V1→V2

a function. Then the following properties are equivalent.

(i) φ is an homeomorphism between the topological spaces (V1,T
out

G1
) and (V2,T

out
G2

)

(ii) Ix ⊂Iy⇐⇒Iφ(x) ⊂Iφ(y), for all x,y ∈V1.

Proof. First, suppose that φ is an homeomorphism and let x,y ∈ V1. If Ix ⊂ Iy, from the

Proposition 5.1 we get Iφ(x) ⊂Iφ(y).

Now, we suppose that Iφ(x) ⊂Iφ(y). By using the Proposition 5.1 for the continuous function

φ−1, we get Ix ⊂Iy.
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Conversely, suppose that the result (ii) is true.

It is clear that the function φ is continuous by using Proposition 5.1.

We want to prove that φ−1 is also continuous. Let x′,y′ ∈V2 such that Ix′ ⊂Iy′ .

We have

Iφ(φ−1(x′)) ⊂Iφ(φ−1(y′)),

and so

Iφ−1(x′) ⊂Iφ−1(y′)

Again, from Proposition 5.1, the function φ−1 is continuous.

�

6. GRAPHIC TOPOLOGY AND CONNECTEDNESS

Definition 6.1. Let (X ,T ) a topological space. We say that X is connected if whenever

X = U ∪V and U ∩V = /0, we have U = /0 or V = /0. That is, X can not be the union of two

disjoint proper open sets.

Definition 6.2. A digraph G = (V,E) is called strongly connected if for all x,y ∈ V there exist

a path from x to y and a path from y to x.

For a digraph G = (V,E), we define the connected components as follows.

Definition 6.3. Let G = (V,E) be a digraph. Let V1,V2, · · · be subsets of V such that

(i) V = ∪iVi;

(ii) Vi∩Vj = /0, for all i 6= j;

(iii) For i = 1,2, · · · , for all x,y ∈Vi, there exist a path from x to y and a path from y to x.

(iv) For all x ∈Vi, y ∈Vj and i 6= j, there is no pair of paths: one from x to y and one from y

to x.

Then, each subset Vi is called connected component of the digraph G.

As a particular cases, a strongly connected digraph has one connected component. Also, a

finite digraph has a finite connected components.

When the graph G = (V,E) is undirected, and it is not connected, the connected components
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are open sets for the graphic topology TG and so, (V,TG) is a disconnected topological space.

But if G = (V,E) is not strongly connected digraph, the topology T out
G can be connected as in

the following example.

Example 4. Consider the following non strongly connected graph G:

We have

x Ox Ix Vx

a {a′,b,c} {b,c} {a}

a′ /0 {a} {a′,b,c}

b {a,b′,c} {a,c} {b}

b′ /0 {b} {a,b′,c}

c {a,b,c′} {a,b} {c}

c′ /0 {c} {a,b,c′}

and so, T out
G is connected.

In the following example, the graph is strongly connected but T out
G is not connected.

Example 5.
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We get in this example

x Ox Ix Vx

a {b,c} {d} {a}

b {c,d} {a} {b,c}

c /0 {a,b} {c}

d {a} {b} {c,d}

and so, T out
G is not connected.

Example 6. This is an example of not strongly connected graph with disconnected out-graphic

topology.

We have

x Ox Ix Vx

a {b} {d} {a,c}

b {c,d} {a} {b}

c /0 {b,d} {c}

d {a,c} {b} {c,d}

and so, T out
G is not connected.

Example 7. In this example, we have a strongly connected graph with connected out-graphic

topology.
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Since we have

x Ox Ix Vx

a {a′,b,c} {a′,b,c} {a}

a′ {a} {a} {a′,b,c}

b {a,b′,c} {a,b′,c} {b}

b′ {b} {b} {a,b′,c}

c {a,b,c′} {a,b,c′} {c}

c′ {c} {c} {a,b,c′}

then, the topological space (V,T out
G ) is

connected.

Theorem 6.1. Let G = (V,E) be a bipartite digraph, then T out
G is disconnected.

Proof. Suppose that V =U1∪U2, with U1∩U2 = /0 and

xy ∈ E and (x,y) /∈ A×B⇒ (x,y) ∈ B×A.

Set V1 =
⋃

x∈A Ox ⊂U2 and V2 =
⋃

x∈B Ox ⊂U1.

We have V1 6= /0 , V2 6= /0 and V =V1
⋃

V2 since S out
G is a subbasis for the topology T out

G .

The result follows from the fact that V1∩V2 ⊂U1∩U2 = /0.

�

In fact, we have the following result.

Proposition 6.1. For a strongly connected digraph G = (V,E), the space (V,T out
G ) is discon-

nected.

Proposition 6.2. If G = (x1, · · · ,xn) is a cycle of order n ≥ 3 (strongly connected), then T out
G

is disconnected.

Proof. Since G is a cycle (x1, · · · ,xn). We have Vxi = {xi}, for all i = 1, . . . ,n and so T out
G is

the discrete topology.

�
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CONCLUSIONS

In this work, we introduced the out-graphic topology for the vertex’s set of a directed graph

G = (V,E). We consider S out
G the set of all out-neighborhoods and we suppose that there not

exist a vertex without int-neighbor, that is, dominated at least one vertex. We prove that S out
G is

a subbasis for a topology denoted by T out
G . When the graph is locally finite, this topology is an

Alexandroff topology. Working with minimal basis helps to discover this minimal basis, char-

acterise it and study a lot of topological properties. In particular, we investigate a necessary and

sufficient condition for two graphs to be homeomorphic and the connectivity of the topological

space (V,T out
G ). As future work, we estimate solve the problem: are there some necessary and

sufficient conditions for the connectivity of (V,T out
G )?
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